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Abstract: This paper presents an innovative and efficient methodology for the determination of the
solid-state diffusion coefficient in electrode materials with phase transitions for which the assump-
tion of applying the well-known formula from the work of Weppner et al. is not satisfied. This
methodology includes a k-means machine learning screening of Galvanostatic Intermittent Titration
Technique (GITT) steps, whose outcomes feed a physics-informed algorithm, the latter involving a
pseudo-two-dimensional (P2D) electrochemical model for carrying out the numerical simulations.
This methodology enables determining, for all of the 47 steps of the GITT characterization, the
dependency of the Na+ diffusion coefficient as well as the reaction rate constant during the sodiation
of an NVPF electrode to vary between 9 × 10−18 and 6.8 × 10−16 m2·s−1 and between 2.7 × 10−14

and 1.5 × 10−12 m2.5·mol−0.5·s−1, respectively. This methodology, also validated in this paper, is
(a) innovative since it presents for the first time the successful application of unsupervised machine
learning via k-means clustering for the categorization of GITT steps according to their characteristics
in terms of voltage; (b) efficient given the considerable reduction in the number of iterations required
with an average number of iterations equal to 8, and given the fact the entire experimental duration
of each step should not be simulated anymore and hence can be simply restricted to the part with
current and a small part of the rest period; (c) generically applicable since the methodology and its
physics-informed algorithm only rely on “if” and “else” statements, i.e., no particular module/toolbox
is required, which enables its replication and implementation for electrochemical models written in
any programming language.

Keywords: Galvanostatic Intermittent Titration Technique (GITT); unsupervised machine learning;
k-means clustering; electrochemical model; pseudo-two-dimensional; sodium ion; NVPF; diffusion
coefficient; reaction rate constant

1. Introduction

Nowadays, there is a wide and further increasing use of lithium-ion batteries (LIBs) in
mobile and stationary applications, such as electric vehicles or large-scale electric energy
storage system installations. In this sense, LIBs are expected to face major challenges in
meeting the actual and further growing consumer demand [1,2]. These challenges are
associated with the availability limitation of LIBs in the long term and the high price of
the raw materials required for their manufacturing. In view of this problem, sodium-ion
batteries (SIBs) present several advantages. Among them, sodium resources have wide
geographic availability and low cost and can be safely transported in their discharge
state, and there are similar physicochemical properties between the two alkali Na and Li
metals [3–5]. A SIB comprises a positive electrode made of a material commonly containing
Na, a negative electrode material that does not necessarily contain Na, an electrolyte
(whether liquid or solid), as well as a separator [6]. During the charge or desodiation
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process, sodium ions are de-inserted from the positive electrode in order to be further
inserted into the negative electrode. Meanwhile, the current is flowing in the opposite
direction via an external circuit. Similarly, during the discharge or sodiation of the positive
electrode, sodium ions are moving from the negative electrode to go back into the positive
electrode [4]. This reversible intercalation process of ions into host electrode materials is
referred to as the rocking-chair working principle of battery electrochemical energy storage
systems [7]. Further, the material synthesis methods of sodium compounds can easily be
borrowed and adapted from lithium compounds [4]. The pouch, prismatic, or cylindrical
geometrical configurations used for LIBs can be further employed for manufacturing SIBs.
Hence, despite different charge carriers between SIBs (Na+) and LIBs (Li+), cell components
and electrochemical ion insertion/extraction mechanisms are basically identical for both
battery technologies [8]. This enabled the rapid growth of research and development
activities in the field of SIB [4,5]. The accurate knowledge of ion transport properties
in electrode materials is of great importance for the optimization of batteries and their
performances [9,10]. Regarding the redox potential, sodium exhibits a higher-standard
electrode potential than lithium (−2.71 vs. −3.02 V), involving a thermodynamic minimum
limit for the negative electrode materials used in SIBs, and further leading to a lower energy
density compared to LIBs [4]. In the battery energy storage market, SIBs are considered a
very promising technology as well as a relevant choice and an efficient alternative to LIBs
for applications in low-speed electric vehicles and large-scale stationary electric energy
storage systems [11,12].

In order to develop suitable batteries for these applications, the key to battery elec-
trochemical performance generally is the positive electrode materials [13–15]. However,
these materials intrinsically have an insulating-like nature (poor electronic mobility) and
relatively low ionic diffusion properties that can prevent them from reaching high rates
and power performances [13]. In SIBs, the charge carrier Na+ has a larger radius than Li+

(1.02 Å vs. 0.76 Å) as well as a heavier atom weight (23 g·mol−1 vs. 6.94 g·mol−1) [6,16].
However, the mass of the charge carrier represents a small percentage of the overall weight
of the electrode material components, such that the difference in the theoretical specific
capacity of the electrodes of both SIB and LIB technologies becomes smaller [4]. Nev-
ertheless, the differences in dimensions of the charge carrier and atom weight lead to a
larger ion transport channel for SIBs, worse transport kinetics, lower phase stability with
interphase formation, and low solubility in solids [17]. Tremendous efforts have been made
to find appropriate electrode materials to solve these problems, leading to the develop-
ment of dominant positive electrode materials for SIBs such as transition metal oxides,
polyanionic compounds, Prussian blue analogs, and organic compounds [18]. Among
them, fluorophosphate-based Na3V2(PO4)3 (NVP) and Na3V2(PO4)2F3(NVPF) materials
are the most favorable for use as positive electrodes in SIBs due to their three-dimensional
open framework, which can accelerate sodium ion transport by delivering large interstitial
spaces [19]. Na3V2(PO4)3 (NVP), with its NASICON (super-ionic conductor) structure,
was revealed to be a very promising positive electrode material for SIBs given its three-
dimensional sodium ion migration path, good discharge capacity, high discharge voltage
plateau, high thermal stability as energy density, and excellent cycling stability [20,21]. The
3D corner-sharing structure leads to large ion diffusion channels and thus high Na+ diffusiv-
ity capabilities. The volume change, occurring during the intercalation and deintercalation
processes of Na+ in the electrodeactive material particles, is relatively limited [21]. The NVP
electrode materials exhibit a high output voltage and a stable crystal structure during both
sodiation and desodiation processes [21]. During the reversible electrochemical reactions,
the two sodium ions in the NVP lattice cell are intercalated and deintercalated at 3.4 V,
and the theoretical discharge capacity (i.e., sodiation process) is up to 117.6 mAh·g−1 [22].
Techniques such as carbon material cladding modification, elemental doping, and lattice
nano-sizing are further investigated to improve the electronic conductivity capabilities
(1.63× 10−6 S·cm−1) of NVP electrode materials in order to target applications in large-scale
energy storage systems [22].
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Na3V2(PO4)3 (NVP) and Na3V2(PO4)2F3(NVPF), with its NASICON structure, are
materials with large interstitial spaces allowing for the fast intercalation and deintercalation
of Na+ ions in the electrodeactive material particles [23]. Furthermore, NVPF exhibits
high energy density and outstanding stability properties. In practice, its energy density
of around 475 Wh·kg−1 [24,25] is similar to that of LiFePO4 (around 580 Wh·kg−1) as
positive electrode material in LIBs [26]. Its theoretical capacity reaches values around
128 mAh·g−1 [27]. In addition, the presence of strong F-V bonding leads to a high working
voltage (3.7 V) vs. Na/Na+ [28].

Sodium ion transport inside battery (porous) electrodes is linked to the diffusion of
ions in their solid phase. Therefore, sluggish Na+ diffusion properties can prevent NVPF
material from reaching a high performance rate and long lifecycle [29]. The diffusion of
ions in the electrodes can be determined and quantified through advanced electrochemical
characterization techniques, namely, Cyclic Voltammetry (CV), Electrochemical Impedance
Spectroscopy (EIS), Potentiostatic Intermittent Titration Technique (PITT), and the Galvano-
static Intermittent Titration Technique (GITT). In practice, diffusion coefficients calculated
from CV lead to greater diffusion coefficient values compared to those determined by EIS
and GITT [30]. Particularly for the latter, Weppner and Huggins [31] proposed in 1977 a
convenient method to determine the diffusion coefficient of ions inside electrodes from
GITT characterization data, a method that is still widely used. However, in practice, the
assumption for applying the method and its formula is not met for all battery electrode
materials and their associated GITT characterization data. This aspect is observed in the
case of Na3V2(PO4)2F3 positive electrode materials.

A good alternative to determine the ion transport properties within electrode materials
of LIBs and SIBs when the aforementioned assumption is not met is to resort to numerical
simulations of GITT characterization data using either electrical equivalent circuit models
or electrochemical pseudo-two-dimensional (P2D) models [32–36]. These modeling frame-
works enable the quantification of parameter values as the diffusion coefficient in the solid
phase of battery porous electrodes, Ds, and the kinetic rate constant parameter, k, in the
case of pseudo-two-dimensional electrochemical modeling. A reasonable agreement of the
model predictions compared to the experimental data is shown in these previous works.

However, so far, the following were observed: (a) Ds and k values could not be de-
termined for all GITT steps, particularly for the ones located in the middle of the GITT
characterization data; (b) the number of iterations needed to determine Ds and k could be
potentially reduced if a more efficient extraction process of these parameter values was
developed; (c) the simulations associated with the determined Ds and k do not always
mimic the experimental data. These aspects can be attributed to the fact that the obtained
parameter estimates are the ones that exhibit the lowest error between the experimental
GITT step data and the simulations implementing all the pre-defined Ds and k value combi-
nations within a grid, which might not be a computationally efficient method or enable
determining appropriate and physically relevant parameter values for all the GITT steps.

With this work, an innovative and efficient methodology is developed and presented
in this paper. This methodology is based on a physics-informed algorithm that implements
unsupervised machine learning to cluster all the GITT steps, whose outcomes serve as
input to steer a P2D model for the simulations of each step and the extraction of their
corresponding Ds and k values. In the end, this method enables the extraction of both
Ds and k profiles for all the steps of the entire GITT characterization. Moreover, this
method also demonstrates to be fast and hence efficient, considering that it does not require
simulating the whole duration of each GITT step or many iterations, owing to the effort set
in this work toward the efficiency optimization of the parameter extraction process.
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2. Materials and Methods
2.1. Materials
2.1.1. Electrochemical Characterizations

A Na3V2(PO4)2F3 positive electrode material referred to as NVPF was considered for
the GITT characterizations and the modeling works presented in this paper. The diameter
of the active material particles is defined according to the particle size distribution (PSD),
in the range between 1.2 µm and 14.7 µm.

A CR2032 coin cell or button cell casing, 20 mm in diameter and 3.2 mm in height,
was used for the characterization in a half-coin cell (HCC) configuration of the electrode
vs. sodium metal. The thickness of the positive electrode is equal to 90 µm, the thickness
of the Na metal counter electrode sheet or negative electrode equals 100 µm, and the
Sigma-Aldrich (Saint Louis, United States of America) Whatman separator has a thickness
of 1 mm. The electrolyte is NaPF6 (1M) in EC: DMC (1:1).

GITT characterization was performed at 25 ◦C during the discharge or sodiation
(insertion of Na+ in the positive electrode) process of the NVPF electrode. A total of
47 titration steps were performed. Each titration step was defined by a galvanostatic
current pulse equivalent to C/25 or 122 µA for 30 min (i.e., low current value for a short
time), followed by a relaxation period (i.e., no current applied) with a duration allowing
it to reach a potential variation of less than 1 mV·h−1. In this way, a stable equilibrium
potential was reached, which therefore enabled us to derive accurately the Open Circuit
Potential curve of the electrode.

The experiments were carried out with a BioLogic (Claix, France) electrochemical
workstation while keeping the electrode in climate chamber conditions at 25 ◦C. The
evolution of the electrode potential with respect to both discharge capacity and GITT steps
is illustrated in Figure 1. The total discharge capacity of the GITT characterization is equal
to 2.81 mAh.
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Figure 1. NVPF electrode potential vs. discharge capacity during GITT characterization at 25 ◦C.

In addition, three pre-GITT characterization cycles were performed at 25 ◦C, with
a low C/20 C-rate following the Constant Current–Constant Voltage (CCCV) discharge
mode. According to this protocol, both Constant Current (CC) charge and discharge are
followed by a Constant Voltage (CV) step. The electrode potential is held at Vmax and Vmin
at the end of both charge and discharge until the current flowing through the electrode is
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lower than the current corresponding to C/20 (with C the capacity at the characterization
temperature 25 ◦C).

2.1.2. Pseudo-Two-Dimensional (P2D) Electrochemical Modeling

In this work, GITT simulations were carried out with a pseudo-two-dimensional (P2D)
electrochemical type of model. This model was developed and implemented in MATLAB
by means of the Livelink for MATLAB interface of the finite element software COMSOL
Multiphysics 5.2a. This model enables the simulation of the potential of the studied NVPF
electrode for each of the 47 GITT titration steps.

The schematic of the half-coin cell considered for P2D modeling is illustrated in
Figure 2. The working electrode (WE) refers to NVPF, the counter electrode (CE) refers
to sodium metal, and SP and CC refer to the separator and aluminum current collector,
respectively. Two dimensions in space are considered: the macroscopic x direction across
the half-cell, and the microscopic radial direction across the electrode particles. The NVPF
electrode is considered porous, associated with two solid and electrolyte phases. The
solid phase is assumed to be made of uniformly distributed spherical particles of the
same size. Hence, calculation of the effective conductivity and diffusivity parameters via
Bruggerman’s correlation is allowed. Further, it is considered that no volume change occurs
in the active material particles of the NVPF electrode during the insertion mechanism
of Na+, and the voltage drop across the aluminum current collector is negligible. The
temperature of the half-cell is considered to remain constant during the discharge or
sodiation of the NVPF electrode.
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Table 1 summarizes the governing nonlinear partial differential equations (PDEs)
and their constitutive equations involved in the P2D electrochemical modeling [32,37–39].
Tables A2 and A3 describe the corresponding subscripts and superscripts, and the Greek
and Roman letters, respectively.

Table 1. Physics and governing equations involved in the P2D electrochemical modeling [32,37–39].

Physics Governing Equations Mathematical Expressions

Electrochemical reaction
kinetics

Butler–Volmer equation j = asi0{exp
(
αaηF

RT

)
− exp

(
−αcηF

RT

)
}

Electrode overpotential η = (φs − φe)−U

Exchange current density i0 = k·F· (ce)
αa ·

(
cs,max − cs,sur f

)αa
·
(

cs,sur f

)αc

Charge conservation Solid phase ∇·
(

σe f f ·∇φs

)
− j = 0

Electrolyte phase ∇·
(

κe f f ·∇φe

)
+∇

(
κ

e f f
D ∇ln(ce)

)
+ j = 0

Mass transfer
Species conservation in solid phase ∂(εscs)

∂t = Ds
r2

∂
∂r (r

2 ∂cs
∂r

)
Species conservation in electrolyte ∂(εe ·ce)

∂t = ∇·
(

De f f
e ∇ce

)
+ 1−t+

F ·j
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The Open Circuit Potential (OCP) of the NVPF electrode as a model parameter is
derived from the last potential measurement of each GITT titration step. The electrolyte
ionic conductivity, diffusion coefficient, and transference number are derived from [40].

2.1.3. K-Means Unsupervised Machine Learning

The k-means algorithm, as part of unsupervised machine learning techniques, is a
well-known and widely used clustering method. Clustering in data science allows the
finding in a dataset of the greatest similarity within the same cluster and the greatest
dissimilarity between different clusters [41]. In this work, a k-means unsupervised machine
learning algorithm was implemented in Python via scikit-learn (version 1.2.2) with the
sklearn.cluster module and the KMeans submodule for the clustering of unlabeled data.
This aims at the categorization of the 47 GITT titration steps according to clusters based on
their voltage characteristics.

The k-means algorithm clusters data by attempting to distinguish samples in n groups
of equal variance, while minimizing a criterion known as the inertia or Within-Cluster
Sum-of-Squares. The k-means algorithm divides a set X of N samples into K disjoint
clusters C. The mean of each cluster, µj, is commonly called the “centroid”. The centroids
are defined in order to minimize the inertia, or the Within-Cluster Sum-of-Squares criterion
(WCSS) in Equation (1):

n

∑
i=0

min
µj∈C

(∥∥xi − µj
∥∥)2 (1)

The clustering of data via the k-means machine learning algorithm involves three
steps. The first step chooses the initial centroids based on k samples selected from the
dataset X. Thereafter, follows two steps: a step to assign each sample to its nearest centroid
and one to create new centroids based on the mean values of all the samples assigned
to each previous centroid. These last two steps are repeated by the k-means algorithm
until the difference between the old and the new centroids is less than a threshold and the
centroids do not move significantly [42].

2.2. Methods
2.2.1. Analytical Method

The galvanostatic intermittent titration technique consists of applying constant current
pulses during a given time and measuring the potential response of the studied system.

Fundamentally, the chemical diffusion coefficient, D, in a system can be determined
by GITT with Equation (2) (as long as τ � r2

D ) [43,44] in the case where particles can be
considered as semi-infinite solids:

D =
4
π

(
1

SFzA

)2( I0(dE/dc)
dE/d

√
t

)2
(2)

where S, F, and zA represent the particle area involved in the current pulses, the Faraday
constant, and the charge number of the ion, respectively. I0, E, and c designate the galvano-
static current step, the measured potential, and the surface concentration, respectively.

Basically, the determination of the diffusion coefficient with GITT characterization re-
lies on several assumptions. For the Na+ diffusion coefficient in electrodes, one-dimensional
semi-infinite particles are considered. Second, the transport of lithium is assumed to follow
Fick’s law. Third, diffusion coefficients are assumed not to vary during the current pulses.
For small and short current pulses, the dE/dc and dE/d

√
t derivatives can be considered

constant and approached by ∆Es/∆c and ∆Eτ/√t .
Taking into account the relations between S, F, zA, and I0, the Na+ diffusion coefficient

can be extracted from the data associated with each current pulse according to Equation (3):

Ds =

(
∆Es

∆Eτ

)2 4L2

πτ
(3)
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This equation was proposed by Weppner et al. and can be applied as long as the
assumption for its use τ � L2

Ds
is satisfied [43,44]. In Equation (3), L represents the

characteristic diffusion length equal to Rs/3 for spherical-like active material particles as
the ones of NVPF [45,46], τ is the duration of the discharge current pulse, and ∆Es and
∆Eτ represent the changes in the steady-state potential and in the transient potential of the
electrode.

Figure 3a shows the results of the diffusion coefficient Ds determined with Equation
(3) for all the GITT steps of the NVPF positive electrode material. The values range from
10−19 to 2× 10−16. It can be observed that for most of the GITT steps, τ is not significantly
lower than L2

Ds
, with a ratio in Figure 3b ranging between 0.01 and 1, which was, however,

the condition for the determination of Ds via Equation (3).
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2.2.2. Numerical Method

A numerical approach based on P2D electrochemical modeling for the determination
of the diffusion coefficient Ds and the reaction rate constant k for each GITT step via
simulations is of high relevance. As mentioned in Section 1, a first approach would be
to initially define a vector with possible values of Ds and k for the whole set of GITT
steps, then carry out simulations while looping over all these pre-defined Ds and k value
combinations. In the end for each step, the combination of Ds and k leading to the lowest
error between the experimental and simulation results is selected. In such an approach, the
best Ds and k values are purely determined based on the quantification of the simulation
error when compared to the experimental data. As a consequence, the time it takes
to test all the combinations might be considerably long, and for GITT steps associated
with phase transitions in the electrode material, adequate Ds and k values (allowing the
reproduction of the experimental data) are not always included in the predefined vector of
“guessed values”.

Therefore, it is important to consider, as in this work, that all the GITT steps and their
corresponding Ds and k values are interconnected. In this way, the determination of the Ds
and k values of step #n starts with the value extracted for step #n − 1. No specific upper or
lower bounds, depending on whether we are lowering or increasing both parameters, have
to be defined. In that way, it is therefore possible to extract adequate Ds and k values for all
of the steps of the GITT characterization data.

In practice, for each GITT titration step, first, a potential change occurs, referred
to as the “current response” in this work. This is caused by the galvanostatic current
pulse applied to the electrode initially in a near-equilibrium potential state. Thereafter, a
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second potential change is occurring, which is referred to as the “relaxation response” in
this work. The latter results from the application to the electrode of a rest period, whose
duration is longer than the “current response” to allow the electrode potential to return to
an equilibrium state.

Fundamentally, the diffusion coefficient Ds is linked to the relaxation response of a
GITT step and further influences the current response and its slope. A low Ds value leads
the simulated current response to exhibit a high negative slope. A high Ds value leads the
current response to be more horizontal and flattened.

The reaction rate constant, k, only impacts the current response. In practice, an
increase in the k value in the simulation shifts up the simulated current response. Similarly,
a decrease in the k value shifts down the simulated current response. Changes in the k
model parameter value purely result in a vertical upwards or downwards translation of the
current response. The current response is sensitive to both Ds and k, whereas the relaxation
response is only sensitive to Ds. Consequently, the approach for each GITT step in this
paper consists of first proceeding to the extraction, via P2D simulations, of the diffusion
coefficient in the solid phase Ds, followed by the extraction of the reaction rate constant k.

The flow diagram of the innovative and efficient methodology developed in this work
is presented in Figure 4.

This methodology entails the following 5 stages: (1) initialization and preparation
stage, (2) clustering via k-means unsupervised machine learning, (3) extraction of the
diffusion coefficient Ds, (4) extraction of the reaction rate constant k, (5) finalization stage.
The initialization and preparation stage includes the screening of all the GITT steps and the
extraction of their voltage characteristics for abstraction purposes for the next stage. In this
stage, clustering via k-means unsupervised machine learning is performed based on the
GITT step voltage characteristics. At this point, all the required information to conduct the
extraction of both Ds and k parameters via simulations is obtained. For these two extraction
stages, a physics-informed algorithm is designed by implementing a P2D electrochemical
model utilizing as input the results of the GITT step categorization of stage 2. In this way,
the designed algorithm knows how to handle each of the steps. The finalization stage
allows us to determine whether all the steps of the GITT characterization data have been
processed.

K-means machine learning for clustering of the GITT steps is implemented as part
of this methodology in stage 2, which enables us to distinguish between the “flat” steps
on one hand and between the “sloping” or “non-flat” steps on the other. To conduct
k-means machine learning clustering, each GITT step is abstracted and quantified by
the difference between its first and its last measurement V1N = V(n=1) −V(n=N) and the
difference between the second and last (i.e., at t = τ) measurement of its current response
V1nτ = V(n=1) −V

(nτ)
. In practice, for each step, V1N relates to the relaxation response

while V1nτ relates to the current response.
For sloping GITT steps, two conditions should be met to stop the iterations for the

extraction of Ds. First, all points of the current response exhibit a slope with the same order
of magnitude. Second, the simulated voltage corresponding to the first measurement of
the relaxation response is higher or lower than (whether we are iterating with positive or
negative increments) or equal to the corresponding experimental value.

Two conditions should be met to stop the iterations for the extraction of Ds in case
of flat GITT steps. First, all points of the current response exhibit a slope with the same
order of magnitude and the same sign. The iterations for the extraction of k are stopped
in case the last simulated potential of the current response is lower than or equal to the
corresponding measurement point. For each GITT step, the values of Ds are incremented
by 0.5% of the starting value at each new iteration, whereas the values of k are incremented
by 0.2%.

For steps associated with a change in category from “flat” to “sloping” or “sloping” to
“flat”, their Ds and k values are expected to increase or decrease (whether we are iterating
with positive or negative increments) more significantly compared to consecutive steps
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belonging to the same category. To speed up the process of Ds and k extraction for these
steps and reduce the number of iterations needed, increments up to 5% and 10% are defined,
respectively.
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3. Results
3.1. Potential vs. Time for All GITT Steps

Figure 5 presents an overview of the evolution in time of the NVPF electrode potential
for each GITT step from 1 to 47.
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Figure 5. Overview of the GITT characterization from steps 1 to 47.

The decay in potential along with the GITT steps can be clearly observed in Figure 5.
Several GITT steps such as 22, 23, 34, 46, and 47 exhibit nonlinear and steep current
responses. This is linked to the occurrence of phase transitions occurring in the electrode
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material in the potential region of these steps. Consequently, the duration of the relaxation
response needed for the potential to return to an equilibrium state is longer for these steps
compared to the other GITT steps. This is illustrated with the light blue bars in Figure 6.
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Figure 6. Duration of the GITT steps considered in the simulations and experimental characterization.

The dark blue bars in Figure 6 highlight the duration of the GITT steps used for
simulation purposes. An advantage of this methodology is that the duration of the GITT
steps to be taken into account in the simulations for the Ds and k parameters’ extraction can
be shortened compared to the experimental ones. On average, only 46% of the experimental
step duration should be taken into account as an input parameter of the model to carry
out the simulation of the GITT steps. For long steps associated with phase transitions
occurring in the material, only 16% of the experimental step duration should be simulated.
This enables a reduction in the time needed for simulating and extracting both Ds and k
parameters for each step, which reduces the total time required for the simulation of the
entire GITT characterization.

3.2. Clustering of GITT Steps by K-Means Unsupervised Machine Learning

Unsupervised k-means machine learning is achieved for the clustering of the 47 GITT
steps according to their voltage characteristics abstracted via the differences V1N = V(n=1)−
V(n=N) and V1nτ = V(n=1) − V

(nτ)
. Figure 7 presents an overview of the clustering of

GITT steps 1 to 20. A total of three clusters and their centroids were identified. Particularly,
step 1 is representing a cluster as such, with its x and y coordinates being those of the
centroid itself. The two other clusters, clusters 1 and 2, comprise a total number of steps
equal to 12 and 7, respectively.
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Figure 7. K-means clustering for GITT steps from 1 to 20.

In Figure 7, it can be observed that a difference V1N equal to 2 mV allows us to
distinguish between cluster 1 and cluster 2. GITT steps with a difference V1N less than 2 mV
and a difference V1nτ less than 3 mV are referred to as “flat” and belong to the purple area.
Those with a difference V1N greater than 2 mV and a difference V1nτ greater than 3 mV are
referred to as “sloping” or “non-flat” steps and belong to the red area. Steps belonging to
cluster 2 are observed not to be all part of the same area, i.e., step 20 belongs to the purple
area while all the others belong to the red area. According to these observations, GITT step
1 of cluster 3 can be classified as a sloping step. The area of flat GITT steps is defined by a
set of 13 steps {{2–9},{16–20}}, while the area of sloping steps is defined by a set of 6 GITT
steps {10–15}.

Figure 8 presents an overview of the clustering of GITT steps 21 to 33. A total of
five clusters and their centroids were identified. Particularly, steps 22, 23, and 24 are each
representing one cluster as such, whose x and y coordinates are those of the centroids
themselves. The two other clusters, clusters 1 and 2, comprise a total number of steps equal
to 7 and 3, respectively. The centroid of cluster 2, associated with a difference V1N equal
to 2 mV, delimits the flat and sloping GITT step areas. Steps belonging to cluster 2 are
observed not to be all part of the same area, i.e., steps 32 and 33 belong to the purple area,
while step 21 belongs to the red area. According to these observations, steps 22, 23, and
24 of clusters 3, 4, and 5 can be classified as sloping steps. The area of flat GITT steps is
defined by a set of nine steps {25–33}, while the area of sloping steps is defined by a set of
four GITT steps {21–24}.

Figure 9 presents an overview of the clustering of GITT steps 34 to 47. A total of six
clusters and their centroids were identified. Particularly, steps 35, 45, 46, and 47 are each
representing one cluster as such, whose x and y coordinates are those of the centroids
themselves. The two other clusters, clusters 1 and 2, comprise a total number of steps equal
to 7 and 3, respectively. The centroid of cluster 2, associated with a difference V1N equal
to 1.8 mV, delimits the flat and sloping GITT step areas. Steps belonging to cluster 2 are
observed not to be all part of the same area, i.e., steps 38 and 44 belong to the purple area,
while step 34 belongs to the red area. According to these observations, steps 35, 45, 46, and
47 of clusters 3, 4, 5, and 6 can be classified as sloping steps. The area of flat GITT steps
is defined by a set of 10 steps {36–45}, while the area of sloping steps is defined by GITT
step {34}.
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Figure 9. K-means clustering for GITT steps from 34 to 47.

In this methodology, the clustering and further categorization of the GITT steps are
achieved based on the implementation of k-means unsupervised machine learning. From
the results in Figures 7–9, a difference V1N less than or equal to 2 mV allows us to distinguish
the areas of flat and sloping GITT steps.

Overall, the flat step area comprises a set of 32 steps {{2–9},{16–20},{25–33},{36–45}},
whereas the sloping step area comprises a set of 15 steps {{1},{10–15},{21–24},{34,35},{46,47}}.

Figure 10 summarizes graphically these results with the use of the same purple
and red colors as in Figures 7–9. Throughout the entire GITT characterization, it can be
observed that eight switches are occurring in total between the two categories of steps.
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These switches are corroborating the occurrence of phase transitions in the electrode
material. In total, four category switches from sloping to flat steps occurring for steps
{{1,2},{15,16},{24,25},{35,36}} and four category switches from flat to sloping steps occurring
for steps {{9,10},{20,21},{33,34},{45,46}} are observed. In practice, sloping GITT steps exhibit
a difference V1nτ higher than of the flat steps. Flat GITT steps exhibit a difference V1N
lower than of the sloping steps. Therefore, a higher diffusion coefficient is associated with
the flat steps compared to the sloping steps. Consequently, an increase in the diffusion
coefficient Ds value is expected while a switch from a sloping step to a flat step occurs.
Conversely, a decrease in the diffusion coefficient Ds is expected while a switch from a flat
to a sloping step occurs. The resulting variations in the Ds values are illustrated graphically
in Figure 10.
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4. Discussion
4.1. Diffusion Coefficient and Reaction Rate Constant Profiles

The Ds and k parameter values extracted from the simulations of the 47 GITT steps
are illustrated in Figure 11. The Na+ diffusion coefficient and the reaction rate constant
throughout the sodiation of the electrode are determined to vary within two orders
of magnitude between 9× 10−18 and 6.8× 10−16 m2·s−1 and between 2.7× 10−14 and
1.5× 10−12 m2.5·mol−0.5·s−1, respectively. Despite differences in the material synthesis and
composition available in the literature, it seems that analytical formulas intrinsic to GITT,
EIS, and CV characterizations to derive Na+ diffusion coefficients in NVPF electrodes pro-
vide higher values in the ranges of [10−14–10−11] [47] (GITT), [10−13–10−12] [48] (EIS) and
[10−8–10−7] [49] (CV), respectively, compared to those extracted via numerical simulations,
as presented in this work.

In Figure 11a, when switching from a flat to a sloping step category (e.g., from step 9
to 10), as when switching from a sloping to a flat step category (e.g., from step 15 to 16), the
value of Ds clearly decreases and increases, respectively, in accordance with Figure 10. These
switches are accompanied by changes in the order of magnitude of Ds. These observations
are reflecting the occurrence of phase transitions in the NVPF electrode material that can be
identified using advanced XRD characterization techniques [50,51]. Several plateaus can
be observed in the diffusion coefficient Ds profile. These are generally lower in the second
compared to the first part of the GITT characterization.
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In Figure 11b, the profile of the reaction rate constant k exhibits an overall decreasing
trend throughout the sodiation of the electrode. In the case of plateaus in the diffusion
coefficient profile, the reaction rate constant decreases continuously. In case of an increase
or decrease in Ds when switching from one plateau to the other, the reaction rate constant
tends mostly to decrease or increase.

The overall decreasing trend observed in the profiles of k and Ds highlights that
more and more sodium ions are inserted in the NVPF active material particles during the
sodiation process of the electrode, which slows down the insertion of additional sodium
ions in remaining particles.

4.2. Number of Iterations

Figures 12 and 13 show the number of iterations needed to extract k and Ds values for
GITT steps 1 to 25 and 26 to 47, respectively. Overall, only eight iterations are required on
average for the physics-informed algorithm to extract the Ds and k values of a GITT step.
Importantly, each of the iterations performed contributes to coming closer and closer to
the final extracted Ds and k values. With this methodology, each iteration is thus relevant
and necessary. Since no “unnecessary” iterations are required, the parameter extraction
process is time-efficient. In Figures 12 and 13, it can be observed that 64% of all GITT steps
exhibit less than eight required iterations, the average value. For most of the steps, the
algorithm does not require more than eight iterations to extract both corresponding k and
Ds parameter values.

The number of iterations for the first GITT step in Figure 12 is relatively high. This
is due to the fact that no prior step exists, which does not allow for starting the first
iteration of the parameter extraction process with close enough values for Ds and k. For this
step, the starting value for Ds is equal to 1× 10−19 m2·s−1 from Figure 3a, and k is equal
to 5× 10−14 m2.5·mol−0.5·s−1. In Figure 13, GITT step 38 also exhibits a high number of
iterations. This is mostly due to the number of iterations needed to extract its corresponding
k value. In Figure 10, step 38 belongs to the flat GITT steps category like its previous step
37 and following step 39. This step is not associated with a switch in the step category such
that no significant changes in the k value are assumed compared to that of the previous
steps. Therefore, a small standard increment will be used for conducting the iterations. In
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view of the significant decrease in k occurring between steps 37 and 38, more iterations will
be needed for this step.
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Figure 13. (a) Evolution of the number of iterations with the GITT step number and the discharge
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Figures 12b and 13b show that for 67% of all the GITT steps, the share of iterations
(with respect to the total number of iterations) to extract the k value is higher than what is
needed for Ds. Thus, for most of the steps, the number of iterations needed to extract the
final k value is higher than what is needed to determine the final Ds value. This is in line
with the continuous decreasing trend with local variations in the k profile in Figure 11b.
In particular, more iterations for the extraction of Ds and k final values would be initially
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required for GITT steps associated with a switch in the step category. In practice, around
10 iterations are needed for these steps. This results from the definition for these steps,
of greater increments used for the iterations, achieved as part of the optimization of the
methodology.

4.3. Comparison between Experimental and Simulation Data

The simulation results compared to the experimental data for GITT steps 1 to 47 are
illustrated in Figure 14.

Materials 2023, 16, x FOR PEER REVIEW 18 of 25 
 

 

 
Figure 14. Comparison simulation and experimental data for GITT steps from 1 to 47. 

Overall, a good agreement was found between the simulated (green) and the experi-
mental (blue) curves. This highlights the capability of the developed physics-informed 
algorithm to steer and allow the electrochemical P2D model to simulate and extract Ds 
and k values for all 47 GITT titration steps. 

4.4. Accuracy of the Simulation Compared to the Experimental Data 
Figure 15a,b illustrates the Root Mean Square Error (RMSE) values associated with 

steps 1 to 25 and 26 to 47, respectively. 

Figure 14. Comparison simulation and experimental data for GITT steps from 1 to 47.



Materials 2023, 16, 5146 18 of 24

Overall, a good agreement was found between the simulated (green) and the exper-
imental (blue) curves. This highlights the capability of the developed physics-informed
algorithm to steer and allow the electrochemical P2D model to simulate and extract Ds and
k values for all 47 GITT titration steps.

4.4. Accuracy of the Simulation Compared to the Experimental Data

Figure 15a,b illustrates the Root Mean Square Error (RMSE) values associated with
steps 1 to 25 and 26 to 47, respectively.
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The accuracy of the simulation results for each of the 47 GITT steps is quantified with
the calculation of the RMSE. The latter quantifies the deviation of the results from the
simulation of each GITT step, implementing the corresponding final extracted Ds and k
values, compared to the experimental data. Overall, an average value of 3.3 mV RMSE
is determined, discarding outlier steps 23, 46, and 47. Around 70% of the GITT steps
exhibit an RMSE below this average value. This means that for most of the GITT steps, the
simulations implementing the respective final corresponding Ds and k parameter values do
not deviate more than 3.3 mV from the experimental data.

In Figure 15, the RMSE values associated with the steps in the middle, 23, and at the
end, 46 and 47, of the GITT characterization are shown to be relatively high. This is due to
the fact that causes of nonlinearities are not captured in the framework of the P2D modeling
and its assumptions used in this work. The high RMSE values associated with the last GITT
steps 46 and 47 are in line with the sudden and unexpected increase in the reaction rate
constant k in Figure 11b for these steps.

4.5. Implementation of Ds and k Profiles in the Case of Constant Current Discharge Simulation

The extracted Ds and k profiles in Figure 16 are now implemented in the model to
simulate a C/20 constant current discharge of the NVPF positive electrode at 25 ◦C. For
implementation in the model, the reaction rate constant profile was fitted with a third-order
polynomial. Due to the high RMSE values associated with the simulations of GITT steps
46 and 47 in Figure 15, their associated reaction rate constant values were not taken into
consideration. Figure 16a shows the simulation results compared to the experimental data.
An RMSE equal to 32 mV is calculated, which confirms the good agreement observed
between the simulation and the experimental results.
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Figure 16b illustrates the Incremental Capacity or dQdV curves associated with both
simulation and experimental results. Overall, the peaks of both curves are well aligned with
each other. A total of five peaks can be distinguished for the experimental data, whereas
four peaks are defined for the simulation. In particular, no peak in the dQdV curve of
the simulation is seen to correspond to the last one observed in the dQdV curve of the
experimental data. This might originate from the rather flat behavior in this region of the
Open Circuit Potential characteristic curve used as input in the model.
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The existence of peaks in dQdV curves indicates phase transitions in electrode materi-
als [52]. A correspondence can be made between the locations of the peaks of the dQdV
curves in Figure 16b and the existing plateaus in the profile of Ds in Figure 11a. This verifies
the assumption that the occurrence of these plateaus in the profile of Ds is related to phase
transitions in the NVPF electrode material.

5. Conclusions

With this work, an innovative and efficient methodology is developed for the determi-
nation of the solid-state diffusion coefficient in electrode materials with phase transitions
for which the assumption of applying the well-known formula from the work of Weppner
et al. is not satisfied.

This methodology is defined by the implementation of a k-means machine learning
screening of Galvanostatic Intermittent Titration Technique (GITT) steps, whose outcomes
feed a physics-informed algorithm, the latter involving a pseudo-two-dimensional (P2D)
electrochemical model for carrying out the numerical simulations.

As a result, Ds and k parameter values were successfully extracted in this order for each
of the 47 steps of the GITT characterization data during the discharge of an NVPF electrode.
The Na+ diffusion coefficient and the reaction rate constant throughout the sodiation of the
electrode were determined to vary between 9× 10−18 and 6.8× 10−16 m2·s−1 and between
2.7× 10−14 and 1.5× 10−12 m2.5·mol−0.5·s−1, respectively.

This innovative methodology presents for the first time the successful application of
unsupervised machine learning via k-means clustering for the clustering of GITT steps
according to their characteristics in terms of voltage. Based on this, all the steps could be
further categorized as being “flat” or “sloping”.

This methodology also proved to be efficient. An average number of only eight
iterations is sufficient to extract both Ds and k associated with a GITT step. This achieves
a significant reduction in the number of iterations required and hence speeds up the
extraction process of the parameters, as compared to the existing literature. For most of the
GITT steps, that is, 67% of them, the number of iterations needed to extract the reaction rate
constant k value is higher than what is needed to extract the diffusion coefficient Ds value.

In addition, as part of this methodology, the whole duration of each GITT step should
not be simulated anymore and hence can simply be restricted to the current response and a
small part of the relaxation response. For the longest steps, only 15% of their experimental
duration has to be simulated.

When comparing the simulation of the GITT steps to their experimental data, an
average Root Mean Square Error (RMSE) of 3.3 mV is determined. Most of the steps, that
is, 70% of them, do not exhibit more than the average value of 3.3 mV deviation between
the simulated and the experimental data.

The extracted Ds and k profiles were further implemented for the simulation of
C/20 constant current discharge of the NVPF electrode. An overall alignment of the
peaks in both Incremental Capacity curves and a 32 mV RMSE demonstrate the good agree-
ment observed between the simulation and the experimental results. A correspondence
can be made between the locations of the peaks of the dQdV curves and the existence of
plateaus in the profile of the diffusion coefficient Ds. Hence, this verifies the assumption
that the occurrence of these plateaus in the profile of Ds is related to phase transitions in
the NVPF electrode material.

Considering that this methodology and its physics-informed algorithm only rely on
“if” and “else” statements, no particular module/toolbox is required. This enables its
replication and implementation for electrochemical models written in any programming
language and makes it generically applicable.
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Appendix A

Appendix A.1. Abbreviations

The abbreviations in Table A1 are used in this work.

Table A1. Abbreviations.

Abbreviation Full Name

CC Constant Current
CV Constant Voltage
CV Cyclic Voltammetry
dQdV Incremental Capacity
EIS Electrochemical Impedance Spectroscopy
GITT Galvanostatic Intermittent Titration Technique
HCC Half-coin cell
LIB Lithium-ion battery
NVPF Sodium vanadium fluorophosphate, Na3V2(PO4)2F3
OCP Open Circuit Potential
P2D Pseudo-two-dimensional
PSD Particle Size Distribution
RMSE Root Mean Square Error
SIB Sodium-ion battery
WCSS Within-Cluster Sum-of-Squares
XRD X-ray diffraction

Appendix A.2. Subscripts and Superscripts

The subscripts and superscripts in Table A2 are used in this work.

Table A2. Subscripts and superscripts.

Symbol Name

a Anodic
A Area
c Cathodic
e Electrolyte
eff Effective
max Maximum
S Steady State
s Solid
surf Surface

Appendix A.3. Greek and Roman Letters

The subscripts and superscripts in Table A3 are used in this work.
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Table A3. Greek and Roman letters.

Symbol Name Units

α Charge transfer coefficient [-]
as Specific interfacial area [m−1]
c Concentration of ions (Na+ or Li+) [mol·m−3]
D Diffusion coefficient [m2·s−1]
ε Volume fraction [-]
F Faraday constant [C·mol−1]
i0 Exchange current density [A·m−2]
j Transfer current per unit volume [A·m−3]
κ Ionic conductivity [S·m−1]
k Reaction rate constant [m2.5·mol−0.5·s−1]
η Overpotential V
Φ Electric potential [V]

r Radial coordinate along the radius of the
electrode-active material particles [m]

R Ideal gas constant [J·mol−1·K−1]
σ Electrical conductivity [S·m−1]
τ Pulse duration [s]
t+ Transference number of ions (Na+ or Li+) [-]
T Temperature [K]
U Open Circuit Potential [V]
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