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Abstract: The described research aimed to develop the properties of the conductive composite /poly(3,4-
ethylenedioxy-thiophene-poly(4-lithium styrenesulfonic acid)/chitosan-AuNPs-glutaraldehyde/
(/PEDOT-PSSLi/chit-AuNPs-GA/) and to develop an electrochemical enzyme sensor based on
this composite material and glassy carbon electrodes (GCEs). The composite was created via elec-
trochemical production of an /EDOT-PSSLi/ layer on a glassy carbon electrode (GCE). This layer
was covered with a glutaraldehyde cross-linked chitosan and doped with AuNPs. The influence
of AuNPs on the increase in the electrical conductivity of the chitosan layers and on facilitating the
oxidation of polyphenols in these layers was demonstrated. The enzymatic sensor was obtained via
immobilization of the laccase on the surface of the composite, with glutaraldehyde as the linker. The
investigation of the surface morphology of the GCE/PEDOT-PSSLi/chit-AuNPs-GA/Laccase sensor
was carried out using SEM and AFM microscopy. Using EDS and Raman spectroscopy, AuNPs
were detected in the chitosan layer and in the laccase on the surface of the sensor. Polyphenols were
determined using differential pulse voltammetry. The biosensor exhibited catalytic activity toward
the oxidation of polyphenols. It has been shown that laccase is regenerated through direct electron
transfer between the sensor and the enzyme. The results of the DPV tests showed that the developed
sensor can be used for the determination of polyphenols. The peak current was linearly proportional
to the concentrations of catechol in the range of 2–90 µM, with a limit of detection (LOD) of 1.7 µM;
to those of caffeic acid in the range of 2–90 µM, LOD = 1.9 µM; and to those of gallic acid in the range
2–18 µM, LOD = 1.7 µM. Finally, the research conducted in order to determine gallic acid in a natural
sample, for which white wine was used, was described.

Keywords: PEDOT; chitosan; Au nanoparticles; laccase; immobilization; electrochemical biosensor;
differential pulse voltammetry; SEM; AFM; Raman

1. Introduction

Sensors and biosensors are among the most interesting tools of modern analytical
chemistry. The essence of the proper operation of sensors is to design them for the needs
of specific analyses. This requires the use of a variety of materials and, sometimes, the
development of new materials to play a specific role in the operation of the sensor as a
whole. In the described research, a new type of composite, which combines the conductive
PEDOT-PSSLi layer with a chitosan layer, was developed.

Chitosan is a substance of natural origin. It is a polysaccharide that is obtained through
the partial deacetylation of chitin. It is characterized by a very high level of biocompatibility.
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Chitosan is a substance used in medicines and may safely come into direct contact with
the body, e.g., some materials made with chitosan are used to stop bleeding and as burn
dressings [1,2]. This feature is very desirable in systems that are designed to work with
natural samples because they increase the durability of the sensor and, at the same time,
have no negative impact on the tested sample. Moreover, chitosan is characterized by
its excellent film-forming ability and good mechanical strength. Although chitosan is a
non-conductive biomaterial, it can be used together with conductive polymers, such as
polyaniline [3,4], polypyrrole [5,6], and PEDOT [7–9], and polymer/chitosan coatings can
be used in the construction of sensors with electrochemical detection. Very often, in the
developed sensors, solid electrodes such as Au, Pt, or various types of carbon are used, and
they are modified with layers of conductive polymers.

In many applications, the properties of PEDOT turned out to be better than those of
polypyrrole and polythiophene. Krosa et al. [10] proved in their studies that polypyrrole
can only be used as a biosensor component for a very short time, while PEDOT, in the
same applications, turned out to be a component that was suitable for continuous use.
According to the authors, this was due to the fact that PEDOT has greater electrochemical
stability than polypyrrole. In the case of systems containing biochemical objects, it is very
important that PEDOT has low toxicity in comparison to, for example, polyaniline, whose
degradation products are carcinogenic [11]. PEDOT doped with polystyrene sulfonic acid
salts is also very widely used. It is a material in which the anions doping the conductive
polymer are permanently bound to the PEDOT layer, which increases the durability of the
entire system and does not allow for a complete reduction of the PEDOT. In the described
tests, glassy carbon electrodes (GCEs), modified with the PEDOT-PSSLi layer, were used.
This type of material was previously used to modify platinum and GCE electrodes [12,13]
and as a basis for the construction of enzymatic sensors [14,15].

In order to change its electrical properties, the chitosan was doped with AuNPs,
which allowed us to obtain conductivity in the entire layer. In addition, AuNPs were
used for the direct oxidation of laccase on the sensor surface. Gold nanoparticles are
materials characterized by very good electrical conductivity and a very high degree of
biocompatibility; AuNP suspensions are used in various medical therapies. The sizes of
gold nanoparticles depend on the method of their synthesis. In the described research,
nanoparticles synthesized via reaction with sodium borohydride were used [16]. As a
result of this reaction, nanoparticle suspensions with sizes of 3–5 nm were obtained. The
disadvantage of chitosan layers is their susceptibility to dissolution in aqueous solutions,
which reduces the durability of sensors based on this material. In order to eliminate this
drawback, the chitosan layer was modified through cross-linking with glutaraldehyde,
which made the layer resistant to dissolution.

It is known from the literature reports that chitosan is very suitable for immobilizing
biomolecules on its surface [11–19]. Chitosan molecules contain amino groups and carboxyl
groups in their structure. As a result, it is possible to immobilize various biological objects,
such as enzymes, to one or the other functional group by forming a covalent bond. It is
one of the most frequently used polymers of natural origin in biosensors [17,20,21]. In the
described research, the authors decided to immobilize laccase by linking the amino groups
of the enzyme and the amino groups of chitosan, using glutaraldehyde as a linker. The use
of glutaraldehyde enabled the formation of covalent bonds between laccase and chitosan.
Compared to traditional chromatographic methods, electroanalytical techniques based on
oxidation–reduction reactions have many advantages, such as simplicity, low cost, high
stability and sensitivity, fast response, and excellent repeatability [22,23]. If electrochemical
sensors are used for electroanalytical methods, it is possible to obtain analytical techniques
for which preliminary sample preparation will not be necessary. This allows us to design
systems that will be promising analytical tools for the analysis of real samples.
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The purpose of the research was to develop a conductive electrode material based on
chitosan, which could be the basis for the production of an electrochemical sensor with an
immobilized enzyme. The enzyme chosen to be immobilized was laccase, which was bound
to the substrate through the formation of a covalent bond. This method of immobilization is
the most effective because it eliminates the problem of leaching the enzyme from the layer.
Glutaraldehyde was used to cross-link the structure of the chitosan layer, which increased
its durability, and AuNPs were used to increase the electrical conductivity of the chitosan
layer. In the first stage of the research, the focus was on obtaining a composite material
that would ensure the best electrochemical properties and the possibility of attaching an
enzyme molecule. In the second stage of the research, a method for laccase immobilization
on the surface of the composite material, using glutaraldehyde, was developed. The
electrochemical properties were characterized with cyclic voltammetry in ferricyanides
solutions. The electrocatalytic oxidation of polyphenols was tested using a sensor in
catechol solutions. The obtained materials were characterized using SEM, EDS, Raman
spectroscopy, and cyclic voltammetry. The last stage involved tests for the determination of
selected polyphenols in aqueous solutions, in order to investigate the possibility of their
use in electroanalysis. The possibility of the determination of polyphenols in a natural
sample, for which white wine was used, was also presented.

2. Materials and Methods

All of the chemical reagents were analytically pure and were used without further
purification. Laccase, 3,4-ethylenedioxy-thiophene, catechol, caffeic acid, gallic acid, and
Rhodanine were supplied by Sigma-Aldrich (St. Louis, MO, USA). Chitosan was obtained
from Across Organic (Geel, Belgium) and HAuCl4·3H2O was obtained from AlfaAesar
(Kandel, Germany). The 25% solution of glutaraldehyde, potassium ferrocyanide, sodium
chloride, citric acid, trisodium citrate, potassium chloride, acetic acid, disodium hydrogen
orthophosphate dodecahydrate (Na2HPO4·12H2O), potassium dihydrogen orthophos-
phate, and sodium hydroxide were supplied by POCH Gliwice. All of the solutions were
prepared just before use, with water purified using the Millipore (Milli-Q) system. Laccase
was stored at 4 ◦C.

Instrumentation
The measuring equipment comprised a PAR 273A potentiostat (EG&G Princeton

Applied Research Company, Princeton, NJ, USA) and a computer with CorrWare 2.9 and
CorrView 2.9 software (Scribner Associates, Inc. Southern Pines, NC, USA). All of the
electrochemical measurements were carried out in a three-electrode cell. A modified glassy
carbon electrode was used as a working electrode, a saturated calomel electrode (SCE) was
used as a reference electrode, and a platinum mesh was used as a counter electrode. The
morphology of sensors was investigated using an Atomic Force Microscope (DIMENSION
ICON ScanAsyst, BRUKER, Billerica, MA, USA). The measurements were taken using the
scanning probe TESPA-New 09 in tapping mode. The surface morphology was also investi-
gated with electron microscopy using a High-Resolution Scanning Electron Microscope
(HR-SEM, FEI Nova NanoSEM 450, Hillsboro, OR, USA) equipped with a CBS detector for
the detection of backscattered electrons. The chemical composition analysis was performed
using the energy-dispersive spectrometer (EDS, EDAX/AMETEK, Materials Analysis
Division, Model Octane Super, Mahwah, NJ, USA). A WITec alpha 300 RSA+ confocal
microscope was used to record Raman spectra. The configuration of the experimental setup
was as follows: the diameter of fiber, 50 µm for 532 nm, a monochromator Acton-SP-2300i,
and a CCD camera Andor Newton DU970-UVB-353 for 532 nm. The excitation line was
focused on the sample through a 40× dry objective (Nikon, objective type CFI Plan Fluor C
ELWD DIC-M, numerical aperture (NA) of 0.60 and a 3.6–2.8 mm working distance). The
laser excitation power was 10 mW at 532 nm for pure components (laccase and chitosan),
and 2.7 mW for samples deposited on the electrodes, with an integration time of 0.5 s and
10 accumulations. Data acquisition and processing were performed using WITec Project
Plus software ver. 4.1. The cosmic rays were removed from each Raman spectrum (model:
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filter size, 2; dynamic factor, 10), and for the smoothing procedure, the Savitzky–Golay
method was also implemented (model: order, 4; derivative, 0). The baseline corrections of
Raman spectra were performed using WITec Project Plus and OriginPro.

Synthesis of gold nanoparticles (AuNPs)
The synthesis of gold nanoparticles (AuNPs) was carried out by mixing 30 mL of

distilled water, 1.8 mL of 0.0025 M Au (III), and 1.5 mg of sodium borohydride NaBH4 [16].
During preparation and reaction, the solution was continuously stirred on a magnetic stirrer
at room temperature. The reaction product was a violet–blue suspension of gold nanoparti-
cles. The SEM image of the obtained gold nanoparticles and the histogram describing the
size of the nanoparticles are shown in Figure S1 of the Supplementary Materials.

Preparation of composite layers for GCE/PEDOT-PSSLi/chitosan-AuNPs-GA/
The following procedure was used for the modification of the glassy carbon electrode.

The first stage involved cleaning the working electrode surface. The glassy carbon electrode
was carefully polished with an aqueous alumina slurry (0.5 µm) on a microcloth pad, and
then thoroughly washed with double-distilled water.

(a) The layer of GCE/PEDOT-PSSLi was obtained by means of potentiostatic electrol-
ysis at potential E = 1 V and time t = 20 s. The polymerization solution contained
0.002 mol/dm3 EDOT and 0.1 mol/dm3 PSSLi. This procedure was described in
previous publications [12,14].

(b) For the layer of GCE/PEDOT-PSSLi/chitosan-AuNPs-GA, a solution containing
0.5 mL of AuNP suspension, 0.25 mL of 1% chitosan solution (in 0.05 M acetic acid),
and 5 µL of 2.5% glutaraldehyde solution was prepared. The solution was stirred on
a magnetic stirrer, and then 7 µL of the obtained solution was taken and spotted on
the surface of the GCE/PEDOT-PSSLi electrode. The electrode was left for 1 h at the
room temperature.

Preparation of the GCE/PEDOT-PSSLi/chitosan-AuNPs-GA/laccase sensor
A solution containing 12 mg laccase and 30 µL of 2.5% glutaraldehyde solution

in 1 mL phosphate–citrate buffer (pH = 5.0) was prepared. The GCE/PEDOT-PSSLi
(chitosan-AuNPs-GA) electrode was immersed in this solution and left for 3 h at 4 ◦C.
Then, the electrode was rinsed with PBS solution and distilled water in order to remove the
unbound enzyme.

Due to the durability of the coating, the sensor must not be allowed to dry completely;
therefore, the prepared electrode was stored at 4 ◦C and immersed in a small amount
of phosphate–citrate buffer (pH = 5.0). This method of storing the sensors ensured their
stability for 30 days, with a signal drop of no more than 10%.

3. Results

Figure 1 shows AFM microscopy images for the GCE/Chit-GA, GCE/Chit-AuNPs-GA,
and GCE/Chit-AuNPs-GA/laccase layers. Table 1 shows the roughness parameter values
calculated for these surfaces. The differences between the layers of chitosan and those of
chitosan doped with AuNPs are slight. The effect of doping with gold nanoparticles on the
morphology of the chitosan surface was small: their addition caused a slight smoothing
of the chitosan’s surface. Small differences in the morphology of both layers may result
from the fact that the AuNP doping takes place in the entire volume of the chitosan layer
and not only on the surface of this layer. The next image shows clear differences in the
surface structure, caused by the immobilization of the enzyme. This is confirmed by a clear
increase in the surface roughness value (Table 1). This image also shows that the surface of
the sensor is evenly coated with the enzyme.
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Figure 1. AFM microscopy images for (A) GCE/PEDOT-PSSLi/Chit-GA, (B) GCE/PEDOT-PSSLi/
Chit-AuNPs-GA, and (C) GCE/PEDOT-PSSLi/Chit-AuNPs-GA/Laccase.

Table 1. The roughness parameters for the surfaces of the investigated materials.

GCE/PEDOT-
PSSLi/Chit-GA

GCE/PEDOT-
PSSLi/Chit-AuNPs-GA

GCE/PEDOT-PSSLi/Chit-AuNPs-GA
/Laccase

Image Z Range [nm] 2.22 1.84 2.89
Image Surface Area [nm2] 11,266 11,357 12,010
Image Projected Surface Area [nm2] 10,000 10,000 10,000
Surface extension coefficient 1.1266 1.1357 1.2010
Image Surface Area Difference 12.7 13.6 20.1
Image Rq [nm] 0.264 0.188 0.447
Image Ra [nm] 0.202 0.146 0.361
Image Rmax [nm] 2.22 1.84 2.89

Rq—Quadratic mean, or root mean square average of profile height deviations from the mean line. Ra—Average,
or arithmetic average of profile height deviations from the mean line. R max—The Maximum Roughness Depth is
the greatest single roughness depth within the evaluation length.

The surface morphology was also investigated using electron microscopy SEM with
a CBS detector for the detection of backscattered electrons. The use of the CBS detector
allowed us to obtain the “Z-contrast image”, which is directly related to the atomic numbers
of the elements that are the components of the material. Hence, the CBS detector was very
useful for both the surface morphology investigation and the confirmation of the presence
of metallic nanoparticles as a dispersed phase in the material matrix. The CBS detects
more signals from atoms with higher atomic numbers (AuNPs), and these elements can
be seen as brighter spots/areas in the resulting image (Figure 2B,C) compared with the
matrix material (Figure 2A), which has a darker color in the image. An analysis of the
HR-SEM images revealed the presence of AuNPs homogenously distributed within the
material (Figure 2B,C). The EDS analysis confirmed the presence of AuNPs in the sensors as
peaks characteristic of Au, at Lα = 9.712 eV and M = 2.120 eV (Figure 2B,C). The small EDS
signals from Au were caused by the small size of single AuNPs, and the fact that they are
embedded in the matrix. However, the EDS composition analysis and the CBS morphology
images confirmed the presence and homogenous distribution of AuNPs in the sensors.
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Figure 2. SEM images with EDS spectra of chitosan layers containing AuNPs: (A) GCE/PEDOT-
PSSLi/Chit-GA, (B) GCE/PEDOT-PSSLi/Chit-AuNPs-GA, and (C) GCE/PEDOT-PSSLi/Chit-
AuNPs-GA/Laccase.

In order to confirm the presence of laccase on the electrode, we performed a Raman
spectroscopy analysis. Raman spectroscopy is a non-destructive analytical technique in
which inelastically scattered light is used to obtain information about the vibrational energy
modes of the analyzed samples. Figure 3 shows the Raman spectra of reference chemical
compounds (laccase and chitosan) and chemicals deposited on the electrodes: without
(sample A) and with (sample B) laccase. Characteristic Raman bands, at 482, 580, 853, 935,
1121, 1350, 1337, 1386, 1456, and 2906 cm−1, correspond to laccase. A detailed inspection
of Figure 3 demonstrates that the most significant Raman bands attributed to laccase are
present in the Raman spectrum of the electrode with that enzyme. Broad Raman bands,
observed in sample A at 1350 and 1590 cm−1, correspond to amorphous carbon sp2 (D-band)
and amorphous carbon sp3 (G-band) [24], respectively.
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(sample B) laccase.

Laccase is the enzyme that shows the highest activity at pH = 5 [25,26]. Polyphenols,
on the other hand, are compounds whose electrochemical oxidation reactions depend on
the pH of the environment. Voltammetric curves of catechol in phosphate–citrate buffer
solutions at pH values of 4, 5, 6, 7, and 8 are shown in Figure 4. Analogous curves for gallic
acid and caffeic acid are provided in the Supplementary Materials (Figures S2 and S3).
Based on these data, a phosphate–citrate buffer environment with pH = 5 was adopted for
further research. In order to confirm the validity of this assumption, DPV measurements
were performed, using a laccase sensor for solutions of catechol in phosphate–citrate buffers
at pH values of 4, 5, 6, 7, and 8. Figure 5 shows the dependence of the peak current on pH.
As can be seen, the highest peak currents were observed in the solutions when pH = 5.
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 Figure 4. Voltammetric curves obtained on GCE in a solution of catechol C = 0.001 M in phosphate–
citrate buffer for different pH values (v = 200 mV/s). pH = 4.0 (black), pH = 5.0 (red), pH = 6.0 (green),
pH = 7.0 (blue), and pH = 8.0 (cyan).
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Figure 5. The effect of pH on the response of the GCE/PEDOT-PSSLi/Chit-AuNPs-GA/laccase
sensor in catechol solutions 0.001 M in phosphate–citrate buffer. Dependences of the current peak
on pH.

In addition to the pH value, other parameters of the sensor manufacturing process
were also optimized. The thickness of the produced chitosan layer was optimized by
determining the volume of the chitosan solution applied to the electrode. Too-thick layers
peeled off after drying and fell off of the substrate. Moreover, thick layers of non-conductive
chitosan deteriorated the electrochemical properties of the electrode. The application of
chitosan solution drops in different volumes on the surface of the electrode was tested.
Droplets of 4, 5, 6, 7 and 8 µL were applied. The layers prepared by applying 7 µL of
chitosan solution to the electrode (electrode diameter 3 mm) produced the best results and
were used for further studies. Droplets of less than 7 µL did not cover the entire electrode.
On the other hand, droplets of more than 7 µL formed thicker layers of lower conductivity,
with a tendency to exfoliate.

In the next stage, the influence of gold nanoparticles on the electrochemical properties
of the chitosan layers was investigated. The amount of the AuNP mixture added to the
chitosan solution was optimized. The addition of AuNPs was intended to increase the
electrical conductivity of the layer and improve its electrochemical properties. Too much
AuNP suspension added to the chitosan solution diluted it, and, as a result, a too-thin
chitosan layer formed. On the other hand, the layer obtained from a solution with a smaller
amount of AuNPs demonstrated worse electrical conductivity. The assumed optimal
composition contained 0.5 mL of AuNP suspension, 0.25 mL of 1% chitosan solution, and
5 µL of 2.5% glutaraldehyde solution. The effect caused by the addition of nanoparticles
was assessed using the measurements from cyclic voltammetry of the tested electrodes in
solutions of ferricyanides. For this purpose, voltammetric measurements were performed
for the following three sensors: GCE/PEDOT-PSSLi, GCE/PEDOT-PSSLi/Chit-GA, and
GCE/PEDOT-PSSLi/Chit-AuNPs-GA.

All measurements were carried out in solutions of ferrocyanide, at a concentration
of 0.002 M in 2 M KCl (Figure 6). Both peak currents and differences in peak potential
were evaluated. In the case of the first, the GCE/PEDOT-PSSLi sensor, the peak potential
difference was 76 mV, and the peaks were symmetrical and well-formed. In the case of the
GCE/PEDOT-PSSLi/Chit-GA sensor, the chitosan layer without the addition of nanoparti-
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cles worsened the properties of the electrode. The currents were very low, and the difference
in peak potential was 119 mV. This is understandable because the PEDOT-PSSLi layer pro-
vides better conductivity and facilitates redox processes, while chitosan cross-linked via
glutaraldehyde is an insulator and will deteriorate the properties of the electrode.
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and GCE/Chit-AuNPs-GA (blue).

For the GCE/PEDOT-PSSLi/Chit-AuNPs-GA sensor, the highest current values were
obtained, the difference in peak potential was 83 mV, and the peaks were symmetrical and
well-shaped. This proves that the addition of gold nanoparticles increased the conductivity
of the chitosan layer.

Thus, it can be concluded that the doping of the chitosan layer with gold nanoparticles
significantly increased the conductivity of the layer and, at the same time, the presence of
AuNPs allowed for a rapid charge exchange through the interface of the solution/chitosan
doped with AuNPs.

The volume of glutaraldehyde solution added to the mixture of AuNPS and chi-
tosan was optimized. Glutaraldehyde cross-links the chitosan layer by binding amino
groups, but using too much aldehyde will block all amino groups, which will prevent the
immobilization of the enzyme at the next stage of work. The level of saturation of the
chitosan layer with glutaraldehyde was assessed using the immobilization of laccase on
the prepared layers. The research began with the addition of 240 µL of 2.5% solution of
glutaraldehyde to the mixture of AuNPs with chitosan. This amount completely saturated
all amino groups in chitosan and prevented enzyme immobilization. In the next tests, the
amount of glutaraldehyde was reduced successively to 120, 60, and 30 µL, until a layer with
immobilized laccase was obtained. For the volumes of 60 and 30 µL, the oxidation current
of polyphenols was obtained. This means that, after using such volumes of glutaraldehyde,
free amino groups, which are capable of binding to the enzyme, remained in the chitosan
structure. We decided to use 30 µL of 2.5% glutaraldehyde solution for the cross-linking of
chitosan layers.

In the last stage of sensor development, the amount of immobilized enzyme was opti-
mized. The results were evaluated on the basis of measurements of cyclic voltammetry of
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the sensor in the catechol solution. The enzyme was immobilized from solutions containing
3.0, 6.0, 9.0, and 12 mg laccase/1 mL solution. The peak current grew with the increasing
amount of immobilized enzyme, up to a layer obtained from a solution of 12 mg laccase/
1 mL phosphate–citrate buffer (pH = 5.0). The layers obtained from solutions with a higher
amount of laccase yielded a peak current of a similar value, but they dissolved more easily.

Another characteristic is the comparison of the voltammetric curves of the devel-
oped sensor at the subsequent stages of its production. These studies were performed
in catechol solutions (c = 0.001 M) in phosphate–citrate buffer at pH = 5. The results of
these measurements are shown in Figure 7. Measurements were made on four sensors.
Comparison showed the influence of individual sensor components on the catechol oxida-
tion reaction. The first sensor was the GCE/PEDOT-PSSLi one, for which the oxidation
peak potential is 0.214 V, and the peaks are symmetrical. The second sensor was the
GCE/PEDOT-PSSLi/Chit one. In this case, the oxidation reaction was inhibited. The peak
current was much lower, and the peak potential was shifted to about 0.680 V. This is due to
the fact that the chitosan layer effectively insulates the electrode surface. The potential of
the oxidation peak shifted to 0.675 V. The third sensor was the GCE/PEDOT-PSSLi/Chit-
AuNPs one, which differs from the previous sensor only in the addition of AuNPs to the
chitosan layer. As can be seen, this greatly improved the properties of the electrode. The
oxidation peak potential, in this case, was 0.390 V. The fourth sensor was the complete
GCE/PEDOT-PSSLi/Chit-AuNPs/Laccase system, for which the peak potential became
0.343 V, and the peak current had the highest value.
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 Figure 7. Voltammetric curves obtained in a solution of catechol C = 0.001 M (in phosphate–
citrate buffer pH = 5.0) for sensors: GCE/PEDOT-PSSLi (black), GCE/PEDOT-PSSLi/Chit (red),
GCE/PEDOT-PSSLi/Chit-AuNPs-GA (green), GCE/PEDOT-PSSLi/Chit-AuNPs-GA/laccase (blue).

The next step in the design of the sensor was to study the operation of the GCE/PEDOT-
PSSLi/Chit-AuNPs-GA system in combination with laccase as a mediator in solution.
Figure 8 shows the voltammetric curves made for the GCE/PEDOT-PSSLi/Chit-AuNPs-
GA sensor in a catechol solution, with a concentration of C = 9.09 × 10−5 mol/dm3 in a
phosphate–citrate buffer at pH = 5.0, with the addition of 3 mg laccase/1 mL (black curve)
and 6 mg/1 mL (red curve). In this case, at a constant concentration of catechol, the value
of the peak current depends on the concentration of laccase. This proves that laccase is
involved in the oxidation of catechol as a mediator.
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Figure 8. Voltammetric curves for GCE/PEDOT-PSSLi/Chit-AuNPs-GA sensors, obtained in a solu-
tion of catechol C = 9.09 E−05 M (in phosphate–citrate buffer pH = 5.0) and laccase in concentrations
of 3 mg/1 mL (black) and 6 mg/1 mL (red). v = 200 mV/s.

The last step was to test the performance of the sensor with immobilized laccase
(GCE/PEDOT-PSSLi/Chit-AuNPs-GA/laccase) with the GCE/PEDOT-PSSLi/Chit-AuNPs-
GA sensor immersed in a solution containing laccase. Immobilization of the enzyme was
carried out in a solution containing 12 mg laccase and 30 µL of 2.5% glutaraldehyde so-
lution in 1 mL phosphate–citrate buffer (pH = 5.0). The voltammetric curve obtained in
this measurement was compared with the curve obtained for the GCE/PEDOT-PSSLi/chit-
AuNPs-GA sensor in a catechol solution with a concentration of C = 9.09 × 10−5 mol/dm3

(in phosphate–citrate buffer pH = 5.0), with the addition of 3 mg/1 mL (the red curve
from Figure 9). As can be seen for the sensor with laccase immobilized on the surface, the
obtained peak current was about six times higher than that without. Such a large catalytic
effect of immobilized laccase makes the tested sensor a promising analytical tool for the
determination of polyphenols.

Using the developed sensor (GCE/PEDOT-PSSLi/chit-AuNPs-GA/Laccase), catechol
was determined using the amperometric method. The measurements were carried out
in a phosphate–citrate buffer solution (pH = 5.0) at a potential of 0.6 V for 30 s while
the solution was agitated. The amperometric curves of the measurements performed are
shown in Figure S4 of the Supplementary Materials. The measurements were made five
times, on a newly prepared sensor each time. The average values of currents from all five
measurements were taken for the analysis. The measurements were performed for the
concentration range from 1.96 × 10−5 to 9.09 × 10−5 mol/dm3. For the analysis of the
results, the values of the currents read for the time t = 25 s were used. The R2 value was
0.9958, LOD = 9.5 µmol/dm3, and the linear range was 19–90 µmol/dm3.

The next step was to determine the polyphenols catechol, gallic acid, and caffeic acid
using the DPV method. The measurements of DPV were carried out for the following
parameters: potential range from 0.0 V to 0.8 V, potential jump 2 mV, duration of the jump
0.4 s, pulse amplitude 50 mV. The DPV voltammetry curves and the caffeic acid standard
line are shown in Figure 10. The other polyphenol curves and standard lines are provided
in the Supplementary Materials (Figures S5 and S6). The measurements were performed
for the concentration range from 9.99 × 10−7 to 9.09 × 10−5 mol/dm3.
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For each of the polyphenols, the measurements were performed five times, on a
newly prepared sensor each time. Standard lines were determined from the average
values of peak currents. Standard deviations and error values were calculated. The R2

coefficient, sensitivity, precision, accuracy, RSD, and recovery were calculated for the as-
says performed. The lower limit of detection (LOD) was calculated from the relationship
between the slope and the standard deviation of the intercept (LOD = sb/a). The calcu-
lated values are listed in Table 2. The presented parameters show that, in all cases, the
GCE/PEDOT-PSSLi/chit-AuNPs-GA/Laccase sensor worked adequately and was suitable
for determining polyphenols. The amperometric method showed the highest sensitivity
and allowed for the determination of catechol in higher concentration ranges, from 19
to 90 µM. DPV assays for all three polyphenols allowed for the detection of much lower
concentrations. In the case of gallic acid, it was possible to determine it in the range from 2
to 18 µmol/dm3; for higher concentrations, the dependence on the concentration was no
longer linear. The best results were obtained for the determination of catechol and caffeic
acid, for which the linear range was from 2 to 90 µmol/dm3, and the sensitivity of these
determinations was higher than that for gallic acid. The DPV voltammetry method allowed
for the determination of polyphenols in a wider concentration range, with lower LOD
values than the amperometric method. Moreover, the amperometric method is troublesome
in practical application. The measurements are less reproducible, and the operation of the
sensor for a long time, mixed with the solution, often causes much faster wear of the sensor
and, thus, the need to repeat the entire procedure anew. Very often, the layer peels off from
the substrate. When using DPV as a measurement method, the determination is performed
without mixing it with the solution and takes much less time than the amperometric mea-
surement. Sensors in this case are much more durable, which allows for longer use. Cases
of detachment of the layer from the substrate occurred sporadically. For these reasons, it
was decided to present the results of DPV measurements for all tested polyphenols, and
the amperometric method was used only for catechol.
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Table 2. Parameters for the determination of polyphenols.

Lp Polyphenol—
Method R2 Sensitivity

[A/mol/dm3]
CV
[%]

Recovery
[%]

RSD
[%]

LOD
[µM]

Linear Range
[µM]

1 Catechol—
Amperometric 0.996 0.0248 0.082 99.1 15.64 9.5 19–90

2 Catechol—DPV 0.998 0.00508 0.002 100.1 22.83 1.7 2–90
3 Caffeic acid—DPV 0.999 0.0066 0.020 108.7 5.77 1.9 2–90
4 Gallic acid—DPV 0.993 0.0039 0.111 114.7 5.80 1.7 2–18

Table 3 shows examples of electrochemical sensors with immobilized laccase. Sensors
with different types of detection are presented, both amperometric and voltammetric, as
well as sensors with DPV and SWV detection. Compared to these electrodes, the sensors
developed by us are characterized by a wide linear range of concentrations. The widest
concentration ranges were achieved for the determination of catechol and caffeic acid. For
this reason, the developed sensor may be an interesting proposal as a convenient tool for
the determination of polyphenols.

The last stage of the research was an attempt to determine gallic acid in a natural sam-
ple, for which white wine was used. The analysis was performed using the GCE/PEDOT-
PSSLi/Chit-AuNPs-GA/laccase sensor in phosphate–citrate buffer, pH = 5. This analysis
was carried out in order to estimate the accuracy of the presented biosensor. DPV measure-
ments were carried out using the standard addition method. There are DPV curves for this
measurement in the Supplementary Materials (Figure S7). Figure 11 shows the dependence
of the peak current value on the increasing amount of added gallic acid in the standard
addition method for the sensor in a white wine sample. The results for the determination of
gallic acid on the GCE/PEDOT-PSSLi/Chit-AuNPs-GA/laccase electrode were as follows.
The linear regression equation was expressed as y (A) = 5.71 × 10−8 × (µmol/dm3) +
3.24 × 10−7 (R2 = 0.997). The relative standard deviation was 0.96%, and the estimated
concentration in the sample was 5.66 µmol/dm3. The peak current measurements for each
standard addition were performed three times. The standard line was determined from the
average values of peak currents, and the results, with a confidence interval for a probability
(p) of 95%, were analyzed using linear least-square regression. After the calculations, the
content of gallic acid in the determined wine was 4.8 mg/dm3. After careful examination
of the presented results, it can be concluded that the presented biosensors may be suitable
tools for measuring the concentration of gallic acid in real samples, such as white wine.
As a reference method in selected natural samples, the spectrophotometric method for
determining the concentration of gallic acid, as described by Inoue and Hagerman [27] was
used. The idea behind this method is the reaction between rhodamine and the detected
polyphenol. The color change in the sample is assessed by measuring the absorbance at
l = 520 nm. The content of gallic acid in the determined wine was 4.8 mg/dm3. The content
of gallic acid in the wine as obtained with the reference method was 4.63 mg/dm3. The
calculated recovery for the assay performed was 103.67%.

Table 3. Examples of different electrochemical sensors with immobilized laccase for the determination
of polyphenols.

Phenolic Compound Sensor Method LOD
[µM]

Linear Range
[µM] Ref.

Caffeic acid
Rosmarinic acid

Gallic acid
graphite/ePDA-Lac amperometry

0.14
0.09
0.29

1–50
1–20

1–150
[28]

Gallic acid TvL-MWCNTs-SPEd amperometry 0.6 0.6–99.9 [29]

Catechol GCE /FYSSns-2-Lac DPV 1.6 12.5–450 [30]
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Table 3. Cont.

Phenolic Compound Sensor Method LOD
[µM]

Linear Range
[µM] Ref.

Caffeic acid
Rosmarinic acid

Gallic acid
AuSPE/laccase/Nafion amperometry

2.5
2.4

1.55

3–15
3–15
2–7

[31]

Caffeic acid
Rosmarinic acid

Au/Lacc-CS-MWCNT amperometry 0.151
0.233

0.735–10.5
0.91–112.1 [32]

Catechol (CNTs–CS) voltammetry 0.66 1.2–30 [33]

Caffeic acid Graphite/Lac amperometry 0.56 1–10 [34]

Mixtures of catechin and
caffeic acid Polyethersulfone/Lac voltammetry 0.18 12–14 [35]

Catechol PEI-AuNP-Lac SWV 0.03 0.36–11 [36]

Caffeic acid
Gallic acid

Carbon-
Sonogel/Nafion-Lac amperomtery 0.06

0.41
0.04–2.2
0.01–22 [37]

Catechol
Catechol

Gallic acid
Caffeic acid

GCE/PEDOT-
PSSLi/Chit-AuNPs-

GA/laccase

amperomtery
DPV
DPV
DPV

9.5
1.7
1.7
1.9

19–90
2–90
2–18
2–90

This
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Figure 11. The dependence of the current value on the concentration of gallic acid, obtained using
the standard addition method for the GCE/PEDOT-PSSLi/Chit-AuNPs-GA/laccase sensor in white
wine samples.

4. Conclusions

The developed sensor is a skillful combination of materials including PEDOT, chitosan,
AuNPs, and laccase. PEDOT is a modern conductive polymer ensuring fast charge ex-
change. Chitosan, as a product of natural origin, is characterized by high biocompatibility,
which is of great importance when contact with natural samples is necessary. At the same
time, chitosan enables the covalent attachment of the enzyme. On the one hand, AuNPs
are able to ensure a sufficiently high conductivity of the chitosan layers; on the other hand,
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they are also characterized by high biocompatibility. Laccase is an enzyme with a large
spectrum of specificity that works as a mediator in the reaction with the analyte. This article
described the research leading to the development of the sensor /PEDOT-polystyrene
sulfonate)/chitosan-AuNPs-glutaraldehyde/Lacasse. This sensor was designed for the
electrochemical determination of polyphenols. The method of manufacturing the sensor
was optimized. The effect of the addition of gold nanoparticles on the performance of
the sensor, including the possibility of direct oxidation of the immobilized laccase, was
described. The influence of AuNPs on the increase in the electrical conductivity of the
chitosan layers was presented. A catalytic effect from laccase was demonstrated in the
oxidation reaction of polyphenols, using a sensor with an immobilized enzyme. The de-
veloped sensor, for the electrochemical determination of catechol using the amperometric
method, was used. That sensor was used for the electrochemical determination of polyphe-
nols such as catechol, gallic acid, and caffeic acid with the DPV method. The results of
our investigations showed that the sensor can be applied for the determination of these
polyphenols. Linear proportional relationships of peak currents to the concentrations of
polyphenols were obtained. The determination of gallic acid in wine samples was also con-
ducted, demonstrating the possibility for the practical application of the developed sensor.
The sensor had a shelf life of 30 days when stored at 4 ◦C. It can therefore be concluded
that a good analytical tool for the determination of polyphenols has been obtained.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ma16145113/s1. Figure S1. (A) SEM image of gold nanoparticles
obtained in the synthesis with sodium borohydride. (B) Size distribution histogram of the obtained
AuNPs. Figure S2. Voltammetric curves obtained on GCE in a solution of gallic acid C = 0.001 M in
phosphate-citrate buffer different pH (v = 200mV/s). Figure S3. Voltammetric curves obtained on
GCE in a solution of caffeic acid C = 0.001 M in phosphate-citrate buffer different pH (v = 200mV/s).
Figure S4. (A) Amperometric curves for sensor GCE/PEDOT-PSSLi/Chit-AuNPs-GA/laccase in
solutions of catechol in phosphate-citrate buffer pH = 5.0. (B) Standard line for catechol. Figure S5.
(A) DPV voltammetry curves for catechol solutions in phosphate-citrate buffer pH = 5.0. (B) Standard
line for catechol. Figure S6. (A) DPV voltammetry curves for gallic acid solutions in phosphate-citrate
buffer pH = 5.0. (B) Standard line for gallic acid. Figure S7. DPV voltammetry curves of gallic
acid were obtained using the standard addition method for the GCE/PEDOT-PSSLi/Chit-AuNPs-
GA/laccase sensor in white wine samples.
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