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Abstract: Colloidal quantum dots (QDs) have emerged as promising candidates for optoelectronic
devices. In particular, quantum dot light-emitting devices (QLEDs) utilizing QDs as the emission
layer offer advantages in terms of simplified fabrication processes. However, the use of poly(3,4-
ethylenedioxythiophene):poly(styrene-sulfonate) as a hole injection layer (HIL) in QLEDs presents
limitations due to its acidic and hygroscopic nature. In this study, NiO/ZnS core–shell nanostructures
as an alternative HIL were studied. The ZnS shell on NiO nanoparticles effectively suppresses the
exciton quenching process and regulates charge transfer in QLEDs. The fabricated QLEDs with
NiO/ZnS HIL demonstrate high luminance and current efficiency, highlighting the potential of
NiO/ZnS as an inorganic material for highly stable all-inorganic QLEDs.
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1. Introduction

Colloidal quantum dots (QDs) are semiconductor particles that exist in nanoscale
colloidal form. QDs exhibit a unique property known as the quantum confinement effect,
which enables the precise control of the emission wavelength. QDs are highly suitable for
various optoelectronic devices owing to their excellent color purity, high internal quantum
efficiency, and solution processability [1,2]. Quantum dot light-emitting devices (QLEDs) do
not require a vacuum system to form the emission layer (EML), simplifying the fabrication
process. Therefore, QDs are gaining considerable attention for future applications in display
technology. Using cadmium (Cd)-based QDs, the external quantum efficiencies (EQE) of
red, green, and blue devices exhibited 30.9, 23.9, and 19.8%, respectively [3–5]. However,
due to the toxicity of Cd, eco-friendly QD materials are recently gaining attention for
consumer display electronics. In 2019 and 2020, Jang et al. achieved an EQE of 21.4 and
20.2% with red indium phosphide- and blue zinc selenide-based QDs, respectively [6,7].

In standard QLED structures, a large hole injection barrier exists between the indium tin
oxide (ITO) electrode and the hole transport layer (HTL). Poly(3,4-ethylenedioxythiophene):
poly(styrene-sulfonate) (PEDOT:PSS) exhibits excellent electrical conductivity, optical trans-
parency, and a high work function, which are tremendous advantages for effective hole
injection. However, practical applications of PEDOT:PSS are limited because of its acidic
and hygroscopic nature, which can corrode the ITO layer [8]. Therefore, chemically stable
inorganic materials that can replace PEDOT:PSS are required to improve the efficiency and
stability of QLEDs. Several studies have been performed to investigate metal oxides such
as CuO, MoOx, and V2O5 as hole injection layers (HILs) for QLEDs [9–11]. However, the
performance of these QLEDs did not match that of devices with PEDOT:PSS as the HIL.

Nickel oxide (NiO) is an intrinsic p-type semiconductor and has excellent hole injection
and electron blocking capabilities due to its deep valence-band maximum (VBM) and
wide bandgap [12,13]. Therefore, NiO-based HTLs have been used for various solar cells
replacing degrading organic materials [14–16]. However, only a limited number of studies
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on electroluminescence (EL) devices with NiO have been reported [17,18]. In this study,
we further applied a ZnS shell to NiO as a core–shell structure for use as a HIL in QLEDs.
The ZnS shell on NiO stabilized the surface defects of the core and controlled the charge
transfer in the QD. Zinc Sulfide (ZnS) shells were successfully formed on NiO nanoparticles
(NPs) using a sol–gel method. Additionally, various optical and structural properties
of NiO/ZnS were investigated to confirm its stability as a HIL for QLEDs. The devices
using NiO/ZnS thin films as the HIL of the QLEDs exhibited peak luminance and EQE of
4068.5 cd/m2, 1.23%, respectively. These results demonstrate that NiO/ZnS is a promising
alternative inorganic material for HIL and could facilitate the fabrication of highly stable
all-inorganic QLEDs.

2. Materials and Methods
2.1. Synthesis of NiO/ZnS Core–Shell Nanostructure

A schematic of the synthesis of the NiO/ZnS nanostructures is shown in Figure 1.
The NiO solution was prepared by dispersing 0.3 g of NiO NPs (Sigma Aldrich, St. Louis,
MO, USA) in ethanol. After the pH was adjusted to 10 using ammonium hydroxide, a
solution of 0.1 M Na2S in ethanol was added dropwise to the NiO solution. After stirring
at 60 ◦C for 2, 3, or 4 h, a solution of 0.05 M ZnCl2 in ethanol was added dropwise into the
resultant mixed solution and stirred for half the previous stirring time. The product was
then washed with deionized water and dried at 80 ◦C.
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Figure 1. Schematic of the synthesis of NiO/ZnS nanostructures.

2.2. Synthesis of Green-Emitting QDs

Green-emitting CdZnSeS/ZnS QDs were prepared using the synthesis procedure
described in the previous publication [19]. Briefly, Cd oxide and Zn oxide were placed
with oleic acid (OA) in a three-neck flask and heated to 150 ◦C with N2 flowing. Then,
1-octadecene (ODE) was added and heated to 310 ◦C. Subsequently, a Se+S stock solution
in trioctylphosphine (TOP) was swiftly injected into the mixture, and the reaction of the
composition-gradient CdZnSeS core was carried out at 310 ◦C. For a successive ZnS shelling,
Zn acetate dihydrate dissolved in OA and ODE was rapidly put to the above reactor and
the reaction was held at 270 ◦C. Then, S dissolved in TOP was added dropwise, followed
by the ZnS reaction at that temperature. The resulting green-emitting CdZnSeS/ZnS QDs
were repeatedly purified via centrifugation with a solvent/non-solvent combination.
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2.3. Fabrication of QLEDs

For device fabrication, ITO-coated glass substrates were first cleaned via ultrasoni-
cation with isopropyl alcohol and deionized water. Before the deposition of the HIL, the
substrates were cleaned using UV–ozone treatment for 15 min to generate a hydrophilic
surface. Subsequently, NiO/ZnS in ethanol (25 mg/mL) was spin-coated on the substrate
as the HIL at 3000 rpm for 60 s, and then annealed in air at 70 ◦C. The coated substrates were
then transferred to an N2-filled glove box for spin-coating the poly[(9,9-dioctylfluorenyl-
2,7-diyl)-co-(4,4′-(N-(4-sec-butylphenyl)diphenylamine)] (TFB) and QD layers. The TFB
layer was spin-coated at 2000 rpm for 35 s using an 8 mg/mL solution in chlorobenzene,
and then baked at 150 ◦C for 30 min. Thereafter, a suspension of CdZnSeS/ZnS QDs in
hexane (10 mg/mL) was spin-coated at 2000 rpm for 20 s. To deposit the electron transport
layer and cathode, the substrates were transferred into a thermal evaporator and TPBi
(40 nm), LiF (1 nm), and Al (100 nm) layers were thermally deposited sequentially under
a base pressure of 5 × 10−6 Pa. Finally, the devices were immediately encapsulated in
glass by using an ultraviolet sealant in the glove box. For comparison, a reference device
was prepared using the same fabrication process with the NiO precursor as the HIL under
identical conditions.

2.4. Characterization

The crystal phases of the NiO/ZnS nanostructures were analyzed using an X-ray
diffractometer (MiniFlex2, Rigaku, Tokyo, Japan). High-resolution transmission electron
microscopy (TEM) was used to measure the particle sizes of NiO/ZnS nanostructures and
QDs (JEM-2100F, JEOL, Tokyo, Japan). X-ray photoelectron spectroscopy (XPS; Nexsa,
Thermo Fisher Scientific, Waltham, MA, USA) was used to analyze the chemical composi-
tion of NiO/ZnS. The photoluminescence (PL) spectra of the QDs on various HILs were
collected by a PL spectrophotometer (PS-PLEU-X1420, PSI, Yongin, Republic of Korea).
The EL spectra of the QLEDs were measured using a spectroradiometer (CS 2000, Minolta,
Osaka, Japan), while the current density–voltage–luminance (J–V–L) characteristics were
obtained simultaneously by connecting the spectroradiometer to a source meter (Keithley
2400, Keithley, Cleveland, OH, USA). All measurements were carried out under ambient
conditions.

3. Results and Discussion

The CdZnSeS as a core was first synthesized through a hot injection method and were
further used to produce CdZnSeS/ZnS QDs by consecutively over-coating with additional
ZnS shell. As a result, this CdZnSeS/ZnS QDs with a core/shell structure dramatically
improve the photoluminescence quantum yield [20]. Figure 2 shows highly efficient
green-emitting CdZnSeS/ZnS QDs, with an average size, emission peak wavelength, and
full-width-at-half-maximum of 12.0, 515, and 19.4 nm, respectively.
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Figure 3 shows the X-ray diffraction (XRD) patterns of the NiO/ZnS nanostructures
after different reaction times. When the synthesis was performed in the presence of Na2S
and ZnCl2, all the diffraction peaks of the ZnS shell were well indexed to the cubic zinc
blende structure (ICSD #98-005-2223). The XRD pattern (Figure 3a) presents peaks at
2θ = 28.70◦, 47.75◦, and 56.67◦ corresponding to the (111), (220), and (311) crystal planes
of ZnS, respectively. As the reaction time increased, the intensity of the ZnS diffraction
peaks decreased significantly and new peaks corresponding hexagonal wurtzite zinc oxide
(ZnO) (ICSD #98-005-7478) appeared in the NiO/ZnS nanostructure. This indicates that
ZnO covers the shallow surface of the ZnS shell as reaction time increases. After a reaction
time of 4 h, ZnO was the dominant component in the shell. The reduced ZnS peak also
indicates that ZnO was formed on the outside of the shell. Figure S1 shows a TEM image
of NiO/ZnS nanostructures, from which their average diameter was determined to be
approximately 9.5 nm.
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To further investigate the chemical state of the NiO/ZnS nanostructure according to
the reaction time, the S 2p XPS spectra of NiO/ZnS are shown in Figure 4. The spectra
contain two isolated bands centered at 167.4 and 161.6 eV, which can be attributed to the S–
O and S–Zn bonds, respectively [21]. The intensity of the XPS peak corresponding to S–Zn
decreased with increasing reaction time, whereas that corresponding to S–O increased. The
transformation of the initial ZnS layer into ZnO is attributed to the adsorption of hydroxyl
species on the surface, which induces changes in the chemical composition and structure
of ZnS over time [22]. As a result of the decomposition of the ZnS layer with increasing
reaction time, sulfoxides (SOx), in addition to ZnO, were formed, as confirmed by the
XPS analysis.

Figure 5 presents the optoelectronic characteristics of the QLEDs with NiO/ZnS
(reaction time: 2 h) and NiO/(ZnS/ZnO) (reaction time: 4 h) as the HIL. Devices with
NiO without the ZnS shells were also fabricated to compare their properties. The QLEDs
consisted of patterned ITO/HIL (NiO/ZnS, NiO/(ZnS/ZnO) or NiO)/TFB/QDs/TPBi/Al
(Inset of Figure 4a). The QLED structure was designed to achieve an efficient carrier
injection and charge balance in the QD EML. Generally, holes are difficult to transport to
QD EML because of the large injection barrier between the VBM of the inorganic HTL
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and the QD layer. Since the highest occupied molecular orbital level of TFB is located
between the VBM of NiO/ZnS and QDs, it is utilized as the HTL to reduce the energy
barrier between them in this standard structure. Because TFB thin films are chemically and
physically stable in nonpolar solvents, QDs can be simply spin-coated on top of the TFB
layer. As shown in Figure 5a, no parasitic peaks from the two neighboring layers (TFB and
TPBi) were observed in the EL spectra of either device, indicating that he presence of the
ZnS shell does not affect the charge balance in the EML. Interestingly, Figure 5b shows that
the devices with NiO/ZnS exhibited a lower leakage current in the ohmic region and a
similar current density above the turn-on voltage. Observing Figure 5b,c shows that the
thin ZnS shell limits the current flow in the low-voltage region but does not interfere with
the light-emitting performance of the QLEDs in the operational voltage region. Therefore,
similar results from peak luminance and EQE (5808.6 cd/m2, and 1.51% for QLEDs with
NiO and 4068.5 cd/m2, and 1.23% cd/A for QLEDs with NiO/ZnS, respectively) were
obtained. QLEDs with NiO/(ZnS/ZnO) exhibited poor performance with a high leakage
current in the ohmic region, which can disturb the balanced charge transport to EML in the
low voltage region.
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Figure 6 shows the steady PL spectra of the two samples with glass/NiO/QDs and
glass/(NiO/ZnS)/QDs structures. For the future all-inorganic devices, the exciton quench-
ing phenomenon at interfaces (inorganic materials/QDs) was investigated. The PL intensity
of the QDs decreased significantly when they were in contact with the bare NiO. This is
because the excitons are easily quenched by the interfacial charge transfer process at the
NiO/QD interface [23]. However, with the core–shell structure of NiO/ZnS, the PL in-
tensity was greatly enhanced, indicating that the quenching processes can be effectively
suppressed with the ZnS shell. This is because the lower VBM level of ZnS can effectively
block the interfacial charge (mainly holes) transfer, as shown in Figure 6b. In addition, the
ZnS shell of NiO/ZnS was the same as that of the QDs. When two adjacent materials have
the same composition and crystal structure, the number of non-radiative recombination
sites to quench excitons can be reduced at the interface [24]. Figure S2 presents the PL
spectra of glass/NiO/TFB/QDs and glass/(NiO/ZnS)/TFB/QDs structures. Because of
the strong PL peak from TFB below 450 nm, it was difficult to attribute the small difference
between the two PL peaks to the ZnS shell.

The performance of QLEDs with NiO-based HIL is not compatible with devices using
PEDOT:PSS. Therefore, the high temperature annealing (over 400 ◦C) was applied to
improve the charge transport in HIL [14,18,25]. Since that annealing can damage the ITO
electrode or other layers in the device, the deposition process of NiO/ZnS in this work was
performed below 100 ◦C despite their relative low performance.
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4. Conclusions

QDs possess unique properties that render them ideal candidates for optoelectronic
devices. QLEDs utilizing QDs as the emission layer require simplified fabrication processes
compared with vacuum-based systems. However, the practical application of PEDOT:PSS
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as a HIL is limited because of its acidic and hygroscopic nature. This study explored
NiO/ZnS with efficient hole injection and electron blocking capabilities. The synthesis
process for adding the ZnS shell to NiO was investigated based on the reaction time in a so-
phisticated manner. The resulting NiO/ZnS HIL demonstrated promising potential for use
in all-inorganic QLEDs, exhibiting a peak luminance and EQE of 4068.5 cd/m2 and 1.23%,
respectively. Furthermore, the presence of the ZnS shell suppressed exciton quenching,
leading to ameliorated PL intensity. Overall, NiO/ZnS has emerged as a viable inorganic
material for HIL in QLEDs, facilitating future advancements in display technology.
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