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Abstract: The fundamental mechanisms of ultrafast demagnetization and magnetization recovery
processes in ferromagnetic materials remain incompletely understood. The investigation of different
dynamic features which depend on various physical quantities requires a more systematic approach.
Here, the femtosecond laser-induced demagnetization and recovery dynamics in L10-Fe0.5Pt0.5

alloy film are studied by utilizing time-resolved magneto-optical Kerr measurements, focusing
on their dependences of excitation fluence and ambient temperature over broad ranges. Ultrafast
demagnetization dominated by Elliott-Yafet spin-flip scattering, and two-step magnetization recovery
processes are found to be involved in all observations. The fast recovery time corresponding to spin–
lattice relaxation is much shorter than that of many ferromagnets and increase with excitation fluence.
These can be ascribed to the strong spin–orbit coupling (SOC) demonstrated in FePt and the reduction
of transient magnetic anisotropy, respectively. Surprisingly, the demagnetization time exhibits no
discernible correlation with ambient temperature. Two competitive factors are proposed to account
for this phenomenon. On the other hand, the spin–lattice relaxation accelerates as temperature
decreases due to enhanced SOC at lower ambient temperature. A semiquantitative analysis is given
to get a visualized understanding. These results offer a comprehensive understanding of the dynamic
characteristics of ultrafast demagnetization and recovery processes in iron-based materials with
strong SOC, highlighting the potential for regulating the magnetization recovery process through
temperature and laser fluence adjustments.

Keywords: magnetization dynamics; alloy films; ultrafast demagnetization; temperature dependence;
magneto-optical Kerr effect

1. Introduction

Ever since the discovery of ultrafast demagnetization phenomenon excited by fem-
tosecond laser pulses in nickel thin film [1], the study of magneto-optical interactions has
become an exciting frontier area due to its scientific significance and potential applications
in high-speed magnetic and spintronic devices technology [2]. Specifically, the dynamic
characteristics of laser-induced ultrafast demagnetization and magnetization recovery
processes in diverse material systems and the underlying physical mechanisms have at-
tracted much attention [3–14]. However, despite numerous experimental and theoretical
studies [15–22], there are still ongoing debates surrounding the mechanism of ultrafast
demagnetization.

Time-resolved magneto-optical Kerr (TR-MOKE) technology has been proven to be a
powerful tool for investigating magnetization dynamics. A prominent study by Roth et al.

Materials 2023, 16, 5086. https://doi.org/10.3390/ma16145086 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16145086
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-5151-6053
https://doi.org/10.3390/ma16145086
https://www.mdpi.com/journal/materials
http://www.mdpi.com/1996-1944/16/14/5086?type=check_update&version=3


Materials 2023, 16, 5086 2 of 9

using this technology demonstrated that increasing the excitation light intensity or elevating
the ambient temperature can induce a transition from one-step to two-step demagnetization
process in nickel, which is consistent with the expectation based on the Elliott-Yafet (EY)
type electron–phonon scattering mechanism [23]. By combining photoemission spectro-
scopies and TR-MOKE measurements across a wide range of excitation fluence, You et al.
revealed the mechanism behind the ultrafast magnetic phase transition [24]. Atxitia the-
oretically demonstrated that a high magnetic field combined with elevated temperature
can speed up the ultrafast magnetization dynamics [25]. These studies indicate that mod-
ifications in experimental parameters, such as ambient temperature, excitation fluence,
and external magnetic field, can lead to distinct magnetization dynamics even within the
same material system, and thus help to provide further insight into the relative dynamic
mechanisms. However, there is a lack of relevant comprehensive research, particularly
with regards to the temperature-dependent demagnetization and recovery dynamics in
various materials.

FePt with a L10 phase exhibits exceptionally strong magnetocrystalline anisotropy and
high Curie temperature, rendering it an optimal material for ultrahigh-density thermal-
assisted magnetic recording [26,27]. Therefore, investigation on its ultrafast magnetization
dynamics is of great significance. Additionally, the strong spin–orbit coupling (SOC) in
this material [28,29] can facilitate the exploration of the impact of strong SOC on ultrafast
demagnetization and magnetization recovery processes.

In the present work, we study the femtosecond laser-induced demagnetization and
recovery dynamics in L10-Fe0.5Pt0.5 alloy film utilizing TR-MOKE measurements, varying
the excitation fluence and ambient temperature over broad ranges. We demonstrate that
the ultrafast demagnetization process is dominated by E-Y scattering, and two-step mag-
netization recovery processes are involved in all observations. The spin–lattice relaxation
time is found to be much shorter than that of many ferromagnets and increases with excita-
tion fluence, whereas the demagnetization time does not show any discernible correlation
with ambient temperature. We present explanations for these phenomena and offer a
semiquantitative analysis to facilitate comprehension. Our findings offer a comprehensive
understanding of the dynamic characteristics of ultrafast demagnetization and recovery
processes in iron-based materials with strong SOC.

2. Materials and Experimental Methods
2.1. Sample Preparation and Characterization

The sample is a single-layer L10-Fe0.5Pt0.5 film with thickness of 11.9 nm. The film
was epitaxially grown on a 5 × 5 mm2 (La,Sr)(Al,Ta)O3 (LSAT) substrate using magnetron
sputtering in a uniform DC field at a temperature of 400 ◦C. After the deposition process, the
film was annealed at a temperature of 750 ◦C under vacuum conditions (2.7× 10−8 Torr). The
presence of diffraction peaks of FePt (001) and (002) at 2θ = 24.3◦ and 2θ = 49.4◦, respectively,
confirm the formation of a face-centered tetragonal (fct) L10-FePt phase [30–32], while the
extra peaks correspond to LAST substrate as shown in Figure 1.

2.2. TR-MOKE Measurement

The TR-MOKE setup depicted in Figure 2 was employed to investigate the ultrafast
magnetization dynamics. The linearly polarized laser pulses with a central wavelength of
800 nm and a duration of 60 fs were generated at a repetition rate of 1 kHz by a Ti:sapphire
amplifier. The laser beam was split into pump and probe pulses with the ratio of pump-
to-probe at power of 40. The sample was placed in a superconductivity magnet. The
temperature of the sample could be adjusted within a range of 1.5–300 K, and the external
magnetic field was applied within a range of ±8kOe. The pump pulses were normally
incident and focused to a spot of ~150 µm diameter on the sample surface, while the probe
pulses were incident at a small angle and focused to a spot of ~75 µm diameter on the
sample surface. The polar Kerr rotation of the probe pulses reflected from the sample
surface was measured by a balanced optical bridge combined with a lock-in amplifier. The
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transient Kerr rotation, ∆θ(t), is defined as the difference between Kerr rotation angles of
the probe reflected from sample after and before pumping the sample, i.e., ∆θ(t) = θ(t) − θ0,
where θ(t) denotes the Kerr rotation at a delay time t, while θ0 is the initial Kerr rotation
before pumping. ∆θ(t) is approximatively proportional to the magnetization change at t.
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and probe pulses controlled by a motorized translation stage on the pump optical path.

3. Results and Discussion
3.1. Hysteresis Loops and Coercivity

The Kerr hysteresis loops of L10-FePt alloy film were first measured under a variable
magnetic field applied perpendicularly to the film plane and plotted in Figure 3a. The
normalized out-of-plane hysteresis loops present nearly square and centric-symmetric
shapes at all temperatures, which reveal that the sample has a strong perpendicular mag-
netic anisotropy. In addition, the coercivity of the films decreases from ~3.12 kOe at 1.6 K
to ~2.15 kOe at 300 K as shown in Figure 3b, indicating an enhancement in magnetic
anisotropy with the decrease in the ambient temperature [33,34]. According to the Heisen-
berg model [28,35], magnetic anisotropy is originated from SOC. Therefore, the temperature
dependence of hysteresis loops indicates that the SOC strength of L10-FePt film increases
with decreasing ambient temperature.
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3.2. Fluence-Dependent Dynamics

We measured the laser-induced demagnetization and magnetization recovery dynam-
ics under a saturation field of 8 kOe and different pump fluences. Figure 4a,b show the
fluence-dependent magnetization dynamics of FePt at 1.6 K and 300 K, respectively. The
temporal traces of FePt at both ambient temperatures exhibit ultrafast demagnetization,
followed by two magnetization recovery processes as the excitation fluence varies from 0.60
to 3.98 mJ/cm2. The ultrafast demagnetization of 3d ferromagnetic materials was generally
attributed to the E-Y spin-flip scattering [8,23]. The rapid magnetization recovery is likely a
result of spin–lattice relaxation [1,5], and the slow magnetization recovery attributed to the
heat diffusion from the sample into the substrate and surroundings [36].
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To understand the observed dynamic behaviors, it is necessary to extract the time
constants of the magnetization processes. A phenomenological model including demag-
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netization processes and two magnetization recovery processes is proposed here, and
written as:

F = C(t)
⊗{

ε(t) · Am

[
1− exp

(
− t

τm

)]
·
[

As−lexp
(
− t

τs−l

)
+ (1− As−l)· exp

(
− t

τd

)]}
(1)

where the first square bracket term describes the dynamics of ultrafast demagnetization
with an amplitude Am and a time constant τm. The second square bracket term describes
the dynamics of fast and slow magnetization recovery with a fast recovery amplitude As−l
and two time-constants τs−l and τd. The function ε(t) represents a step function, while
C(t) stands for the cross-correlation function of pump and probe pulses, approximately
assumed to be a Gaussian function. The symbol ⊗ denotes the convolution operation.

The magnetization dynamics of FePt alloys at 1.6 K and 300 K can be fitted well
with Equation (1), as colored solid lines shown in Figure 4a and 4b, respectively. The
three extracted parameters, τm, τs−l, and τd as a function of pump fluence are plotted in
Figure 4c,d by the scattered points. Compared to Figure 4a,b, the fluence dependence
trends of the three time-constants do not show significant changes with temperature. The
ultrafast demagnetization processes at both temperatures present time constants (τm) of
approximately 200 fs, without obvious dependence of pump fluence, differing from what
would be expected via the electron–phonon-mediated spin-flip scattering [8,23,29]. It
should be noted that the increased demagnetization rates by increasing pump fluences
here were maintained within a small variation range, which was insufficient to cause a
significant decrease in spin-flip probability. Specifically, the demagnetization rates range
only from 0.03 to 0.17 at 300 K and from 0.01 to 0.06 at 1.6 K.

The value of τs−l for L10-FePt film here was determined to fall within 2 ps as shown
in Figure 4c,d, being much shorter than that for lots of ferromagnets. We can attribute this
result to the large SOC strength in L10-Fe0.5Pt0.5, because stronger spin–orbit interaction
evidently leads to faster spin–lattice relaxation [29]. Additionally, at both 1.6 K and 300 K,
τs−l increases with increasing excitation fluence, ranging within 0.4–1.2 ps and 0.7–1.4 ps,
respectively. τs−l is related to the magnetic anisotropy as:

τs−l = 1/
[

AθD |Ea|2
]

(2)

where AθD is a factor reflecting the accessible phonon population and Ea is the magnetic
anisotropy energy [34]. The increase of pump fluence increases the agitations of spins,
leading to more reduction of the transient Ea. Since this process should be much faster than
the phonon generation, the transient change of AθD can be neglected for this time interval.
In other words, the slower spin–lattice relaxation observed at higher excitation fluence is
mainly attributed to the weakening of transient magnetic anisotropy.

Moreover, it is noteworthy that the τs−l at 300 K is longer than that at 1.6 K for all
excitation fluences, suggesting that the larger SOC strength at lower temperature accelerates
the spin–lattice relaxation in FePt film. We will further analyze this important results in the
following parts.

We did not observe significant pump fluence dependence on the time constant of slow
magnetization recovery(τd) at both 1.6 K and 300 K. This is reasonable because the pump
fluence used in our experiment is not strong enough to raise the equilibrium temperature
of the sample and substrate significantly. Therefore, the transfer of thermal energy between
the sample and the substrate basically remains unchanged in our experiment.

3.3. Temperature-Dependent Dynamics

To further confirm the above finding about demagnetization and magnetization recov-
ery at the two different temperatures, we studied the magnetization dynamics of FePt alloys
with the same excitation fluence and different ambient temperature ranging from 1.6 K
to 300 K, as shown in Figure 5a. All dynamic traces exhibit an ultrafast demagnetization
process, as well as fast and slow magnetization recovery processes as mentioned above. It
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is worth noting that the maximum amplitude of demagnetization slightly increases from
0.069 to 0.094 as the ambient temperature rises, being consistent with previous reports [23].
We globally fit the temperature-dependent dynamics using Equation (1), as shown by the
solid lines in Figure 5a. τm, τs-l, and τd are extracted and shown in Figure 5b.
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The value of τm is surprisingly found to remain almost unchanged around ~200 fs. This
can be explained by the combined influence of two factors i.e., electron–phonon scattering
and SOC, in the temperature-dependent dynamics of ultrafast demagnetization. The
increase in electron–phonon scattering with rising ambient temperature leads to a longer
demagnetization time, whereas the weaker SOC of FePt alloys at higher temperatures
leads to faster demagnetization. These two factors counteract each other, resulting in no
noticeable temperature dependence of τm.

On the other hand, τd exhibits a considerable dependence on temperature (decreasing
from 405 to 143 ps), which is expected. The duration of thermal transports from FePt to
the substrate can be analyzed based on the fact that τd ∝ 1/κ [37], where FePt’s thermal
conductivity (κ) increases as temperature increases [38]. As a result, the transfer of thermal
energy from the sample to the substrate is accelerated with increasing temperature.

As shown in Figure 5b, τs−l exhibits a decreasing trend as the ambient temperature
decreases. As discussed previously, the sample at lower temperature demonstrated stronger
SOC. It is reasonable to infer that stronger SOC would accelerate the spin–lattice relaxation.
Further analysis can be carried out by considering the magnetic anisotropy, which is
positively correlated with the strength of the SOC. The Kerr loops shown in Figure 2 reveal
that the perpendicular magnetic anisotropy increases with decreasing ambient temperature.
Assuming that factors such as defects and dislocations, which would influence the pinning
sites in domain wall motion, can be neglected, the coercivity Hc and the magnetic anisotropy
energy Ea have an approximate simple relation: Hc ∝ Ea [39], which is consistent with
the report by the ferromagnetic resonance [40]. By combining this with the relationship
given by Equation (2), one can obtain a relation of τs−l ∝ AθD

−1 · Hc
−2. Note that since AθD

keeps minor variation in a wide temperature range, one can approximatively regard AθD
as a constant.

The coercivity dependence of τs−l can be fitted basically by this model, as the red
solid line shown in Figure 6, further supporting the conclusion that stronger SOC at
lower temperatures is responsible for the accelerated spin–lattice relaxation. However, a
significant fitting deviation occurs at Hc

−2 = 1.04× 10−7Oe−2 corresponding to an ambient
temperature of 1.6 K. This may be mainly attributed to two factors. Firstly, the factor AθD
will decrease sharply at extremely low ambient temperature due to phonon freezing,
resulting in the spin–lattice process slowing down. Secondly, the microscopic model of
Equation (2) may be not suitable at temperatures far below the Debye temperature [34].
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Despite this deviation, this semi-quantitative analysis provides a way to obtain a visualized
understanding of the modulation of the first-step magnetization recovery by magnetic
anisotropy or SOC strength, with varying ambient temperature.
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factors, i.e., E-Y spin-flip scattering and SOC. In contrast, the spin–lattice relaxation accel-
erates as temperature decrease due to the enhanced SOC. A semiquantitative analysis was 
performed to provide a visual understanding. Our findings contribute to a comprehensive 
insight into the dynamic characteristics of ultrafast demagnetization and recovery in iron-
based materials with strong SOC, and suggest the potential for regulating these processes 
through temperature adjustments. 
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Figure 6. Coercivity dependence of τs−l. The solid line represents the fitting by the analytical model.

4. Conclusions

We conducted a study on the femtosecond laser-induced demagnetization and recov-
ery dynamics in an L10-Fe0.5Pt0.5 alloy film through a time-resolved magneto-optical Kerr
measurement. We focused on the influence of excitation fluence and ambient temperature
on the demagnetization and recovery dynamics. Our findings demonstrate that the Elliott-
Yafet spin-flip scattering dominates the ultrafast demagnetization process, and two-step
magnetization recovery processes are involved in all observations. The spin–lattice relax-
ation time ranging within 2 ps is much shorter than that of many ferromagnets due to the
strong SOC in the material. Surprisingly, we found that the demagnetization time was not
affected by ambient temperature. This can be explained by two competitive factors, i.e., E-Y
spin-flip scattering and SOC. In contrast, the spin–lattice relaxation accelerates as tem-
perature decrease due to the enhanced SOC. A semiquantitative analysis was performed
to provide a visual understanding. Our findings contribute to a comprehensive insight
into the dynamic characteristics of ultrafast demagnetization and recovery in iron-based
materials with strong SOC, and suggest the potential for regulating these processes through
temperature adjustments.
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