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Abstract: Force sensors on climbing robots give important information to the robot control system,
however, off-the-shelf sensors can be both heavy and bulky. We investigate the optimisation of a
lightweight integrated force sensor made of piezoelectric material for the multi-limbed climbing
robot MAGNETO. We focus on three design objectives for this piezoelectric component. The first is
to develop a lightweight component with minimal compliance that can be embedded in the foot of
the climbing robot. The second objective is to ensure that the component has sensing capability to
replace the off-the-shelf force sensor. Finally, the component should be robust for a range of climbing
configurations. To this end, we focus on a compliance minimisation problem with constrained voltage
and volume fraction. We present structurally optimised designs that satisfy the three main design
criteria and improve upon baseline results from a reference component. Our computational study
demonstrates that the optimisation of embedded robotic components with piezoelectric sensing is
worthy of future investigation.

Keywords: structural optimisation; piezoelectric sensor; climbing robot

1. Introduction

Topology optimisation of macroscopic components has been applied to a wide array of
industries including mechanical, civil, aerospace and biomedical engineering [1,2]. Recently,
topology optimisation has been successfully applied to the design of robot components
with an emphasis on weight reduction [3–5]. Other robotic applications include grippers
(e.g., [6]), soft robotics (e.g., [7]), or a combination of the two (e.g., [8,9]). The importance of
topology optimisation in the field of robotics is partly due to the requirement for mobile
robots to be as light as possible. In particular, for climbing robots, weight reduction is key
to increase payload.

The ability to sense the robot’s state and surrounding environment is also key to the
design and control of robots. The use of piezoelectric materials as sensors is common
(e.g., [10–13]) and more recently force direction and location sensing has been achieved
through the use of designed piezoelectric materials [14]. There is also a growing body of
research relating to the topology optimisation of piezoelectric devices and components.
The majority of this work relates to optimising piezoelectric actuators or energy harvesting
devices [6,15–26]. The design of piezoelectric sensors has also been considered, particularly
the design of layered piezoelectric sensors with a view to optimising their dynamic vibration
response [20,23,27]. Zheng et al. [28] also considered the design of a two-dimensional
cantilever force sensor.

To date, the research establishes the potential of topology optimisation to obtain
improved designs for piezoelectric components, leading us to consider the optimal design
of a force-sensing piezoelectric component for a robotic application. In particular, we
focus on applying topology optimisation to a specific robot component that requires multi-
functional sensing and structural capabilities. A novel aspect of our work is that we do
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not consider a layered design and instead formulate the optimisation problem in a three-
dimensional design domain. A further innovation of our approach is that we consider
an optimised architectured piezoelectric material [29] as a possible base material for the
optimisation problem.

We consider the quasi-static design of a multi-functional sensing component for the
multi-limbed climbing robot MAGNETO (Figure 1). MAGNETO, which was designed by
CSIRO (Australia) [30], is a versatile robot designed for confined spaces such as complicated
industrial structures. It uses four electromagnetised feet to climb structures as shown by
the left image of Figure 1. In climbing applications the weight of a robot significantly affects
the payload capacity. MAGNETO weighs 5.53 kg and is able to carry up to an additional
1.5 kg payload. To aid the robot, six-axis off-the-shelf force sensors are used in the limbs
to measure the contact forces and detect whether the robot has a suitable grip on the wall.
These sensors add significant weight to the design that restricts the payload capacity. As an
alternative to these sensors, we consider the computational design of custom, lightweight,
integrated force sensors made of piezoelectric material. The aim is to consider how such
components could have both a structural role and act as sensors by sending electrical
signals to the robot control system.

Figure 1. (Left): The multi-limbed climbing robot MAGNETO designed and built by CSIRO [30].
(Right): The robot’s foot with the component of interest circled in red. Images courtesy of
Data61, CSIRO.

The component that we focus on optimising is located in the foot of MAGNETO as
shown in the right image of Figure 1. We choose this component so that the voltage readings
will reflect the forces acting on the larger structure. Furthermore, since there are eight
of these components in total (two for each foot), the optimised piezoelectric components
would give eight voltage readings that could be used to better inform MAGNETO’s control
system. To benchmark our optimised designs we consider a reference component that
resembles the existing component in the right of Figure 1.

We focus on a set of three design objectives for this piezoelectric component:

1. Mechanical properties: the component should be lightweight and have low compliance
meaning that it will have a small deflection under loading.

2. Sensing capability: the component needs sensing capability to replace the off-the-shelf
force sensor in each foot. As each force sensor weighs roughly 120 g, this should not
only save weight but also provide information regarding the internal stress state of
the foot.

3. Robustness to climbing configurations: the component should be functional for at
least three actuation cases: horizontal movement, vertical movement, and inverted
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horizontal movement. These three cases correspond to the base test cases considered
in the robot’s engineering design [30].

The remainder of this paper is organised as follows. In Section 2 we detail the problem
description for our optimisation of an integrated piezoelectric force sensor for MAGNETO.
In Section 3 we complete the necessary sensitivity analysis, while Section 4 discusses the
numerical implementation. The results for both the reference component and optimised
components are presented in Section 5. The discussion is presented in Section 6 and the
concluding remarks in Section 7.

2. Methods
2.1. Design Domain

In Figure 2 we present the design domain for the piezoelectric component with the
following notation: D is the design domain, Ω is the material domain constructed from
a piezoelectric material, ΓD is the grounded electrode and zero displacement boundary,
ΓI is the boundary on which we apply the stress S for the contact force and W(θ) for the
weight of the robot at an inclination θ. We measure the voltage ϕ at the centre point x0 of
the boundary ΓI . We denote the electromagnet at the centre of the foot by M. It is important
to note the indicated poling direction of the piezoelectric material.

ΓI

ΓD

D

Ω

x

z
y

Poling

M

ϕ(x0) θ

W(θ)

S

Wall

Figure 2. An illustration of the design domain D of the component where Ω is the material domain,
ΓD is the zero Dirichlet potential and displacement boundary, ΓI is the Neumann stress boundary,
and ϕ(x0) is the voltage measured at the point x0 positioned at the centre of ΓI . It is important to
note the indicated poling direction of the piezoelectric material.

Neglecting body forces, body charge, and surface charge, we may write the governing
equations of linear piezoelectricity as
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−σij,i = 0 in Ω, (1a)

Di,i = 0 in Ω, (1b)

σij = CE
ijklεkl − ekijEk, (1c)

Di = eijkε jk + κε
ikEk, (1d)

εij =
1
2
(
ui,j + uj,i

)
, (1e)

Ei = −ϕ,i, (1f)

where σij, εij, Di, ui, Ei and ϕ are the stress tensor, strain tensor, electric displacement vector,
displacement vector, electric field vector, and electric potential, respectively, and CE

ijkl , κε
ik

and ekij are the elastic stiffness, dielectric, and piezoelectric coefficient tensors, respectively.
The boundary conditions are given by

ui = 0 on ΓD, (2a)

σijni = Sj + Wj(θ) on ΓI , (2b)

σijni = 0 on ∂Ω \ (ΓI ∪ ΓD), (2c)

ϕ = 0 on ΓD, (2d)

where Sj is the surface traction due to magnet contact and Wj(θ) is the surface traction due
to the weight of the robot under inclination θ.

The inclusion of the variable θ allows us to consider multiple loads in computation-
ally designing the piezoelectric component. Three values of the angle θ correspond to
configurations of the robot that are of particular interest:

• θ = −π/2: the robot is on a horizontal surface;
• θ = 0: the robot is on a vertical surface; and
• θ = π/2: the robot is upside down on horizontal surface.

Figure 3 shows an illustration of these configurations. For a robot of mass m under
gravitational acceleration g we can write the vector W(θ) ≡W j(θ) as

W(θ) = − mg
8 Area(ΓI)

 cos θ
0

− sin θ

, (3)

where the division by eight accounts for both the number of feet and the number of
designed components on each foot.

Horizontal Vertical Inverted Horizontal

Figure 3. The climbing configurations considered in the optimisation problem where horizontal,
vertical, and inverted horizontal correspond to θ = −π/2, θ = 0, and θ = π/2, respectively.

2.2. Optimisation Problem

In this subsection we describe our optimisation problem and how it relates to the
design objectives outlined in the Introduction (Section 1). We define two functionals of
interest that will appear in our optimisation problem. For each functional we consider
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various inclinations θ = θα of the robot where α = 1, . . . , m. While the mathematical
development below is general, for the computational results we use the three loading
angles {θα}3

α=1 = {−π/2, 0, π/2} (as in Figure 3).
The first functional of interest is the classical compliance functional

Cα(u(α)) =
∫

ΓI

(S + W(θα)) · u(α) dΓ, (4)

where u(α) is the displacement solution to the state equations for θ = θα. The second
functional of interest is the voltage ϕ measured at the point x0 on ΓI :

J(ϕ(α)) =
∫

ΓI

ϕ(α)δ(x− x0)dΓ, (5)

where δ(x) is the Dirac Delta function and ϕ(α) is the electric potential solution to the state
equations with θ = θα.

We define our optimisation problem as minimisation of the weighted sum of compli-
ance objectives for each inclination θα subject to a constraint on the volume and weighted
sum of voltages, and subject to the state equations. Mathematically this is written as:

minimise
ρe

m

∑
α=1

aαCα(u(α))

subject to V(ρe) ≤ Vmax,
m

∑
α=1

bα J(ϕ(α)) ≤ ϕmin,

h(ρe) = lα(ρe), ∀α = 1, . . . , m,

(6)

where ρe is the vector of element densities that are our design variables, aα and bα are
weightings for the multi-load objectives and constraints, respectively, V(ρe) is the vol-
ume fraction, Vmax is the maximum volume fraction, ϕmin is the minimum voltage, and
h(ρe) = lα(ρe) represents the weak form for each loading angle. Care needs to be taken
with the direction of the inequality for the voltage constraint because the sign of the voltage
can change depending on the poling direction of the piezoelectric material. In our formula-
tion the poling is in the positive z direction and the voltages measured at x0 are negative.
The weak form can be written as follows:

Weak Form 1. For a loading angle θα, find (u(α), ϕ(α)) ∈ V ×Q such that

auu

(
CE

ijkl , u(α), v
)
− auϕ

(
eijk, ϕ(α), v

)
= Cα(v), ∀v ∈ V

aϕu

(
eijk, u(α), q

)
+ aϕϕ

(
κε

ik, ϕ(α), q
)
= 0, ∀q ∈ Q

where Q = {q ∈ H1(Ω) : q = 0 on ΓD}, V = {v ∈ [H1(Ω)]3 : v = 0 on ΓD}, and

auu

(
CE

ijkl , u, v
)
=
∫

Ω
CE

ijklεkl(u)εij(v)dΩ, (7)

auϕ

(
eijk, ϕ, v

)
=
∫

Ω
ekijEk(ϕ)εij(v)dΩ, (8)

aϕu

(
eijk, u, q

)
=
∫

Ω
eijkε jk(u)Ei(q)dΩ, (9)

aϕϕ(κ
ε
ik, ϕ, q) =

∫
Ω

κε
ikEk(ϕ)Ei(q)dΩ. (10)

We briefly discuss how the optimisation problem in Equation (6) reflects the design
objectives for the piezoelectric component. The requirement of low compliance is reflected
in the objective functional that is a linear combination of the compliance of the piezoelectric
component for the different loading angles. A low weight is ensured via the constraint
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on the volume of material used. The sensing capability is included via the required
minimum voltage under a linear combination of different load angles. Finally, inclusion
of several loading angles in both the compliance and voltage functionals that appear
in the optimisation problem reflects the need for the robot to be functional in several
configurations.

3. Sensitivity Analysis

In this section we determine the sensitivity of the compliance and voltage functionals
with respect to changes in the element densities ρe that describe the material domain Ω. For
this analysis we utilise the standard adjoint approach. The general outline of the adjoint
approach for piezoelectricity has been presented by (Wegert [31], Chapter 3). We note that
the sensitivity of the voltage functional is needed to impose the constraint on the weighted
sum of voltages that appears in our optimisation problem, while the weighted sum of
compliances appears in the optimisation objective. To simplify the notation in this section
we consider a single inclination θ for both the compliance and voltage functionals. The
necessary sensitivities for the optimisation objective and constraint that involve several
inclinations is easily obtained via linearity.

3.1. Compliance

First we consider the single inclination compliance functional

C(u) =
∫

ΓI

f · u(ρe)dΓ,

where f = S + W(θ). Suppose we let Λ ∈ V and M1 ∈ Q be adjoint functions defined at a
fixed ρe. Starting with C(u), we subtract the first equation in Weak Form 1 with Λ1 in place
of v and add the second equation in Weak Form 1 with M1 in place of q:

C(u) =
∫

ΓI

f · u dΓ− auu

(
CE

ijkl , u, Λ1

)
+ auϕ

(
eijk, ϕ, Λ1

)
+ C(Λ1)

+ aϕu

(
eijk, u, M1

)
+ aϕϕ(κ

ε
ik, ϕ, M1). (11)

Differentiating then gives

C′(u) =
∫

ΓI

f · ∂u
∂ρe

dΓ− auu

(
CE

ijkl ,
∂u
∂ρe

, Λ1

)
+ auϕ

(
eijk,

∂ϕ

∂ρe
, Λ1

)
+ aϕu

(
eijk,

∂u
∂ρe

, M1

)
+ aϕϕ

(
κε

ik,
∂ϕ

∂ρe
, M1

)
− auu

(
∂CE

ijkl

∂ρe
, u, Λ1

)
+ auϕ

(
∂eijk

∂ρe
, ϕ, Λ1

)
+ aϕu

(
∂eijk

∂ρe
, u, M1

)
+ aϕϕ

(
∂κε

ik
∂ρe

, ϕ, M1

)
. (12)

Setting the first two lines to zero to remove terms that are difficult to compute gives
weak form equations for Λ1 and M1:

Weak Form 2. Find (Λ1, M1) ∈ V ×Q such that

auu

(
CE

ijkl , Λ1, v
)
− auϕ

(
eijk, M1, v

)
= C(v), ∀v ∈ V

aϕu

(
eijk, Λ1, q

)
+ aϕϕ(κ

ε
ik, M1, q) = 0, ∀q ∈ Q.

This is exactly the weak form for our state equations (c.f., Weak Form 1). The problem
is therefore self-adjoint with Λ1 = u and M1 = ϕ, and the sensitivity of the compliance is
given by
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C′(u) = −auu

(
∂CE

ijkl

∂ρe
, u, u

)
+ aϕu

(
∂eijk

∂ρe
, u, ϕ

)
+ auϕ

(
∂eijk

∂ρe
, ϕ, u

)
+ aϕϕ

(
∂κε

ik
∂ρe

, ϕ, ϕ

)
. (13)

In FE notation this is written as

∂C
∂ρe

= −Ue ∂Ke
uu

∂ρe
Ue + Ue ∂Ke

uϕ

∂ρe
Φe + Φe ∂Ke

ϕu

∂ρe
Ue + Φe ∂Ke

ϕϕ

∂ρe
Φe (14)

where Ke
uu, Ke

uφ, Ke
φu and Ke

φφ are the element stiffness matrices for each bi-linear form and
Ue and Φe are the FE element solution vectors.

3.2. Voltage

Next we consider the single inclination voltage functional

J(ϕ) =
∫

ΓI

ϕδ(x− x0)dΓ, (15)

where δ(x) is the Dirac Delta function.
Suppose we let Λ2 ∈ V and M2 ∈ Q be adjoint functions defined at a fixed ρe. Similar

to the above, starting with J(u) we add the first equation in Weak Form 1 with Λ2 in place
of v and subtract the second equation in Weak Form 1 with M2 in place of q:

J(ϕ) =
∫

ΓI

ϕδ(x− x0)dΓ + auu

(
CE

ijkl , u, Λ2

)
− auϕ

(
eijk, ϕ, Λ2

)
− C(Λ2)

− aϕu

(
eijk, u, M2

)
− aϕϕ(κ

ε
ik, ϕ, M2). (16)

Differentiating gives

J′(ϕ) =
∫

ΓI

∂ϕ

∂ρe
δ(x− x0)dΓ + auu

(
CE

ijkl ,
∂u
∂ρe

, Λ2

)
− auϕ

(
eijk,

∂ϕ

∂ρe
, Λ2

)
− aϕu

(
eijk,

∂u
∂ρe

, M2

)
− aϕϕ

(
κε

ik,
∂ϕ

∂ρe
, M2

)
+ auu

(
∂CE

ijkl

∂ρe
, u, Λ2

)
− auϕ

(
∂eijk

∂ρe
, ϕ, Λ2

)
− aϕu

(
∂eijk

∂ρe
, u, M2

)
− aϕϕ

(
∂κε

ik
∂ρe

, ϕ, M2

)
. (17)

Setting the first two lines to zero gives a weak form for the adjoint functions Λ2 and M2:

Weak Form 3. Find (Λ2, M2) ∈ V ×Q such that

auu

(
CE

ijkl , Λ2, v
)
− auϕ

(
eijk, M2, v

)
= 0, ∀v ∈ V

aϕu

(
eijk, Λ2, q

)
+ aϕϕ(κ

ε
ik, M2, q) = J(q), ∀q ∈ Q.

Solving this weak form for the adjoint functions Λ2 and M2 allows us to calculate the
sensitivity of J(ϕ) as

J′(ϕ) = auu

(
∂CE

ijkl

∂ρe
, u, Λ2

)
− aϕu

(
∂eijk

∂ρe
, u, M2

)
− auϕ

(
∂eijk

∂ρe
, ϕ, Λ2

)
− aϕϕ

(
∂κε

ik
∂ρe

, ϕ, M2

)
. (18)
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In FE notation this is written as

∂J
∂ρe

= Ue ∂Ke
uu

∂ρe
Λe −Ue ∂Ke

uϕ

∂ρe
Me −Φe ∂Ke

ϕu

∂ρe
Λe −Φe ∂Ke

ϕϕ

∂ρe
Me (19)

where Ke
uu, Ke

uφ, Ke
φu, Ke

φφ, Ue and Φe are as previously, and Λe and Me are the element
FE vectors associated with Λ2 and M2, respectively. It should be noted that this result
matches [28] up to notation and agrees with finite difference calculations.

4. Numerical Implementation
4.1. Design Parameters

We take the size of the design domain D to be 25 mm, 10 mm, and 25 mm for the x, y,
and z directions, respectively. This is approximately the size of the existing component on
MAGNETO. We let the boundary ΓI have length 6.25 mm in the z direction and span the
domain in the y direction. Likewise, the boundary ΓD is taken to have length 6.25 mm in
the x direction and span the domain in the y direction.

For the Neumann boundary conditions on ΓI we take W(θ) as defined in Equation (3)
with m = 5.53 kg and g = 9.81 m/s2. The contact stress S is chosen to be given by
S = −2|W|(0, 0, 1) where |W| is the magnitude of W(θ), which is independent of θ. The
coefficient of two on the contact stress is chosen so that the robot can withstand actuation
failure where only two legs are connected to a horizontal wall.

We use three loading angles {θα}3
α=1 = {−π/2, 0, π/2} as mentioned previously. The

weighting aα on the compliance objective is taken to be aα = { 1
3 , 1

3 , 1
3}, meaning that our

objective is the average compliance from the three configurations. The weighting on the
sum of voltages is similarly chosen to be bα = { 1

3 , 1
3 , 1

3}. We require that the average voltage
should be less than ϕmin = −137 volts. This value is chosen based on the average voltage
result for a reference component as discussed further below (Section 5.1). We consider two
values for the maximum volume fraction and solve the optimisation problem for both of
the cases Vmax = 0.5 and Vmax = 0.35.

4.2. Base Materials

We consider two different base materials for solving the optimisation problem. The first
is z-poled PZT-5A, which has been used for previous piezoelectric optimisation work [29,32].
The material PZT-5A has a density of 7.8 g/cm3. The piezoelectric coefficients for this
material are given in Voigt notation by (e.g., [32])

[CE,0
pq ] =



12.04 7.52 7.51 0.0 0.0 0.0
7.52 12.04 7.51 0.0 0.0 0.0
7.51 7.51 11.09 0.0 0.0 0.0

0.0 0.0 0.0 2.1 0.0 0.0
0.0 0.0 0.0 0.0 2.1 0.0
0.0 0.0 0.0 0.0 0.0 2.3

× 1010 (N/m2), (20)

[e0
ip] =

 0.0 0.0 0.0 0.0 12.3 0.0
0.0 0.0 0.0 12.3 0.0 0.0
−5.4 −5.4 15.8 0.0 0.0 0.0

 (C/m2), (21)

[κε,0
ij ] =

4.78 0.0 0.0
0.0 4.78 0.0
0.0 0.0 7.35

× 10−9 (F/m). (22)

We also consider a periodic piezoelectric material that was optimised for a linear
combination of stiffness and piezoelectric properties in earlier work [29]. Specifically, we
use the open-cell optimised material with the highest bulk modulus and a volume fraction
of 50% presented in Wegert et al. [29].



Materials 2023, 16, 5076 9 of 20

Figure 4 shows the layout of this optimised base material. We choose this particular
base cell for its potential manufacturability; closed-cell materials cannot be created via
additive manufacturing. We ascribe the material properties of PZT-5A to the solid phase of
this optimised base cell. The density of the optimised material is therefore 3.9 g/cm3 and
its effective material constants are given by

[CE,0
pq ] =



4.365 2.284 0.4357 0.0 0.0 0.0
2.284 4.365 0.4357 0.0 0.0 0.0

0.4357 0.4357 0.7867 0.0 0.0 0.0
0.0 0.0 0.0 0.1721 0.0 0.0
0.0 0.0 0.0 0.0 0.1721 0.0
0.0 0.0 0.0 0.0 0.0 1.003

× 1010 (N/m2), (23)

[e0
ip] =

 0.0 0.0 0.0 0.0 0.8596 0.0
0.0 0.0 0.0 0.8596 0.0 0.0

−0.07159 −0.07159 2.585 0.0 0.0 0.0

 (C/m2), (24)

[κε,0
ij ] =

5.059 0.0 0.0
0.0 5.059 0.0
0.0 0.0 1.077

× 10−9 (F/m). (25)

z

x

y

Figure 4. Open-cell optimised material with a volume fraction of 50%. The right image shows the
same material where the centre of the base cell has been shifted by half the base cell edge length along
each coordinate direction, enabling another view of the same microstructure.

Considering both the solid and optimised PZT-5A base materials for the optimisation
problem allows us to computationally explore the potential benefits of using architectured
open-cell piezoelectric materials.

4.3. Discretisation and Finite Element Method

We discretise the design domain into 40× 10× 40 linear hexahedral finite elements
that are 0.625 mm × 1.0 mm × 0.625 mm in size and are each assigned a density ρe. This
number of elements provides significant design freedom while keeping computational costs
at a manageable level. In particular, design freedom is needed in the x and z directions,
and less so in the y direction. We note that the number of finite element calculations is
significant; at each iteration of the optimisation algorithm two finite element solutions are
required for each inclination θα. One of these solves Weak Form 1, while the other solves
Weak Form 3 that arises in solving for the adjoint functions that are needed to compute
the sensitivity of the measured voltage. The initial element density ρe for each element is
chosen to be uniform at the required volume fraction.



Materials 2023, 16, 5076 10 of 20

For the finite element and sensitivity calculations we use the finite element package
Gridap that is written in the programming language Julia [33]. The power of Gridap comes
from its generality and syntax: it is able to solve a wide range of PDEs using syntax that
corresponds very closely with the mathematical notation. We solve the resulting linear
systems using an incomplete LU preconditioned conjugate gradient method with a drop
tolerance of 4 for the preconditioner and a relative tolerance of 10−13 for the solver. It is
important to stress that although the minimal residual method (MINRES) preconditioned
with an incomplete Cholesky decomposition should theoretically be more efficient, we
have found that conjugate gradient with an incomplete LU preconditioner is more efficient
for a GPU implementation.

4.4. Topology Optimisation Algorithm

The topology optimisation algorithm used for the optimisation of the piezoelectric
component is similar to that described previously by the authors for the design of periodic
piezoelectric materials [29]. In the below we outline key details of the approach, some
of which differ from our earlier work due to the piezoelectric component optimisation
problem we are solving in the current paper.

Topology optimisation is achieved via the Solid Isotropic Material with Penalisation
(SIMP) method [1], where the design variables are the density ρe ∈ [0, 1] of each element
within the design domain. The SIMP material law for the piezoelectric material tensors
within each element are given by

CE
ijkl(ρe) = ρ

pC
e CE,0

ijkl (26)

eijk(ρe) = ρ
pe
e e0

ijk (27)

κij(ρe) = ρ
pκ
e κε,0

ij . (28)

Here CE,0
ijkl , e0

ijk and κε,0
ij are the piezoelectric tensors of the appropriate base material

(either solid PZT-5A or optimised PZT-5A as described above), and pC, pe and pκ are the
penalisation exponents assosicated with each material property tensor. As described in
our earlier work [29], the penalisation exponents for the SIMP method with piezoelectric
materials must be chosen carefully. We use the appropriate values

pC = 4, pe = 5 and pκ = 5. (29)

Even with these appropriate penalisation exponents, optimised designs contain in-
termediate densities. This issue is addressed via a post-processing optimisation problem,
where after 300 iterations of the optimisation algorithm the penalty term

W(ρe) =
∫

Ω
4ρe(1− ρe)dΩ (30)

is added to the optimisation objective. If the change between subsequent iterations is less
than 0.5% and intermediate densities are still present, the post-processing optimisation
problem is restarted with a larger coefficient of this penalty term until no intermediate
densities are present. This process is as described previously [29] and effectively removes
intermediate density elements.

Filtering of sensitivities using the standard mesh-independence filter [1] is employed
with a filter radius of 1.5 elements. Such a filter is needed to prevent checkerboarding due to
our compliance optimisation objective. We use the method of moving asymptotes (MMA)
optimiser [34,35] where the magnitude of the objective and constraints are scaled during the
optimisation process so that they are of similar size. The element density design variables
have minimum value 10−7, maximum value 1.0, and the following MMA parameters are
used move: 0.1, asyinit: 0.1 and asyincr: 1.0. These are relatively conservative choices
that prevent the optimiser from too aggressively adding or removing material [29,35].
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5. Results

In the following we give computational results for a reference component and subse-
quently present our optimisation results.

5.1. Reference Component

We briefly present and discuss the computational results for a reference component
made of the two base materials described above (Section 4.2) along with the standard
three-dimensional printing material acrylonitrile butadiene styrene (ABS). These results
will be useful for comparison with our optimisation results. The geometry of this reference
component is chosen to approximate the existing component (right image of Figure 1) and
its discretised domain is visualised in Figure 5.

x

z
y

Figure 5. A visualisation of the reference component that is compared to the optimisation results.
The volume fraction of the reference component is 0.4681.

ABS has a density of 1.1 g/cm3. The elastic stiffness tensor for the ABS material in
Voigt notation is given by

[Cpq] =



0.4245 0.2493 0.2493 0.0 0.0 0.0
0.2493 0.4245 0.2493 0.0 0.0 0.0
0.2493 0.2493 0.4245 0.0 0.0 0.0

0.0 0.0 0.0 0.08759 0.0 0.0
0.0 0.0 0.0 0.0 0.08759 0.0
0.0 0.0 0.0 0.0 0.0 0.08759

× 1010 (N/m2), (31)

which is generated via a Young’s modulus and Poisson’s ratio of E = 2.4 GPa and ν = 0.37,
respectively [36]. ABS does not have piezoelectric properties. The purpose of this computa-
tion is to enable comparison of the compliance and weight of the reference and optimised
piezoelectric components with the approximate compliance and weight of the existing part.
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Table 1 details the mass, compliance and voltage for the reference component for each
base material and inclinations of −π/2, 0 and π/2. The data in Table 1 indicate that both
the compliance and voltage of the reference component are much smaller when the robot is
upside down. This is due to the fact that the stresses acting on ΓI are in opposite directions
and somewhat cancel in this configuration (see Figure 2). Figure 6 shows the reference
component compliance and voltage for each base material and a range of inclination angles
between −π/2 and π/2.

Table 1. Reference component computational results for ABS, PZT-5A, and the open-cell optimised
material made of PZT-5A. The results give the compliance and voltage for each inclination θ of
−π/2, 0 and π/2, along with the average for all three configurations. We also give the computed
mass of the reference component for each base material.

Material θ Compliance (µNm) Voltage (V)

ABS −π/2 2287 0
3.218 g 0 2047 0

π/2 254.1 0
Avg: 1529 0

PZT-5A −π/2 87.24 −208.2
22.82 g 0 79.25 −133.4

π/2 9.694 −69.41
Avg: 58.73 −137.0

Optimised (Open) −π/2 959.9 −909.5
11.41 g 0 856.7 −597.8

π/2 106.6 −303.2
Avg: 641.1 −603.5

Figure 6. Compliance and voltage computational results for the reference component. The results are
given for three base materials: ABS; PZT-5A; and the open-cell optimised material made of PZT-5A.
The compliance and voltage are shown for a number of angles in addition to the angles of −π/2, 0,
and π/2 that will be considered in our optimisation problem.

5.2. Optimised Components

In this section we present our computational results for topology optimised compo-
nents with PZT-5A and the open-cell optimised PZT-5A as base materials. As mentioned
previously, we consider three configurations via the inclination angles −π/2, 0, and π/2
included in the optimisation problem and we consider two maximum volume fractions for
each base material, Vmax = 0.5 and Vmax = 0.35.

In Figure 7 we present the optimisation history for optimisation of the piezoelec-
tric component with solid PZT-5A as the base material and a required volume fraction
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Vmax = 0.5. We see that the optimisation algorithm performs in a similar manner to previ-
ously published work [29]. In particular, the explicit post-processing optimisation problem
to remove intermediate densities from the optimised design works effectively. Furthermore,
we find that the penalisation exponents of 4, 5 and 5 on the stiffness, piezoelectric and
dielectric tensors is suitable [29].

The four topology optimised designs with the two different base materials and
two maximum volume fractions are presented in Figure 8. We summarise the mass,
compliance and voltage computational results for the optimised designs in Table 2.
Figure 9 presents the compliance and voltage results for a range of angles in addition to
the angles of −π/2, 0, and π/2 that were explicitly included in the optimisation problem.
We give data for these additional angles to assess the suitability of the component for
multi-functional applications.

Figure 7. Optimisation history for the PZT-5A component with maximum volume fraction Vmax = 0.5.
The upper left subplot shows average compliance, the upper right shows volume fraction, the lower
left shows average voltage and the lower right shows the number of intermediate density elements.
The horizontal black dotted lines show the threshold for the volume fraction and voltage constraint in
the upper right and lower left subplots, respectively. The red dotted line in each subplot indicates the
iteration at which the post-processing starts and the optimisation objective subsequently explicitly
penalises intermediate densities.

It is important to emphasise that in Figure 8c,d the solid phase is constructed from
the optimised open-cell base material. To emphasise this we give a visualisation of the
Vmax = 0.5 multi-scale topology optimised piezoelectric component from Figure 8c in
Figure 10.
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x

z
y

(a) (b)

(c) (d)

Figure 8. Visualisations of the four topology optimised piezoelectric components. (a) Base material
PZT-5A with maximum volume fraction 0.5. (b) Base material PZT-5A with maximum volume
fraction 0.35. (c) Open-cell optimised PZT-5A base material with maximum volume fraction 0.5.
(d) Open-cell optimised PZT-5A base material with maximum volume fraction 0.35. The images
visualise the presence or absence of base material and we emphasise that the open-cell optimised
microstructure (Figure 4) appears where the base material is visualised in (c,d). The coordinate
directions indicated at top left apply to all sub-figures.

Figure 9. Compliance and voltage computational results for the optimised components presented in
Figure 8. The compliance and voltage are shown for a number of angles in addition to the angles of
−π/2, 0, and π/2 that were considered in our optimisation problem.
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Table 2. Computational mass, compliance and voltage results for the four topology optimised
piezoelectric components presented in Figure 8. The four components have solid PZT-5A and the
open-cell optimised PZT-5A as base materials at maximum volume fractions of 0.5 and 0.35.

Case θ Compliance (µNm) Voltage (V)

PZT-5A −π/2 43.59 −296.1
Vmax = 0.5 0 43.33 −199.8

23.80 g π/2 4.844 −98.71
Avg: 30.59 −198.21

Optimised (Open) −π/2 427.1 −1561
Vmax = 0.5 0 414.4 −1037

11.93 g π/2 47.45 −520.4
Avg: 296.3 −1039

PZT-5A −π/2 52.59 −482.8
Vmax = 0.35 0 52.79 −321.2

16.84 g π/2 5.843 −160.9
Avg: 37.07 −321.7

Optimised (Open) −π/2 510.1 −2544
Vmax = 0.35 0 495.4 −1675

8.372 g π/2 56.68 −848.1
Avg: 354.0 −1689

x

z
y

Figure 10. A visualisation of the topology optimised multi-scale piezoelectric component correspond-
ing to Figure 8c and showing the open-cell optimised base material.

5.3. Volume Minimised Component

In this section we consider one additional optimisation problem where we minimise
the volume of the piezoelectric component while constraining the average compliance and
voltage for the three robot configurations. Such a volume minimised design would have
low mass and provide a good voltage response. The optimisation problem we consider is:
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minimise
ρe

V(ρe)

subject to
m

∑
α=1

aαCα(u(α)) ≤ Cmax,

m

∑
α=1

bα J(ϕ(α)) ≤ ϕmin,

h(ρe) = lα(ρe), ∀α = 1, . . . , m,

(32)

where Cmax is the upper bound on the weighted sum of the compliance values, other
variables are as described previously, and the base material is choosen to be PZT-5A.

We solve this topology optimisation problem with a compliance constraint of
Cmax = 50 µNm. This Cmax value is slightly smaller than the average compliance cal-
culated for the reference component with PZT-5A as the base material. We choose a slightly
lower value for the compliance constraint than that of the reference component because a
higher computational resolution is required to effectively explore lower volume fraction
designs. In Figure 11 and Table 3 we present the results for this volume minimisation
problem. The volume fraction of the optimised design is 0.295.

x

z
y

Figure 11. Visualisation of a topology optimised piezoelectric component with minimised volume.
The base material is PZT-5A and volume minimisation is subject to constraints on the average
compliance and voltage for the three inclination angles of −π/2, 0 and π/2. This optimisation result
has volume fraction 0.295 and properties as in Table 3.

Table 3. Computational mass, compliance and voltage results for the volume minimised piezoelectric
component presented in Figure 11. The component has solid PZT-5A as the base material and a
volume fraction of 0.295.

Mass θ Compliance (µNm) Voltage (V)

14.38 g −π/2 59.83 −597.0
0 61.40 −399.7

π/2 6.647 −199.0
Avg: 42.62 −398.6

6. Discussion

In this section we discuss the properties of our presented optimised piezoelectric
components in comparison to the reference component and reflect on the design objectives
described in the Introduction. We summarise the main design objectives as follows:

• Mechanical properties: lightweight and low compliance.
• Sensing capability: piezoelectric sensing capability.
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• Robustness to climbing configurations: functional for inclination angles θ of −π/2, 0,
and π/2.

Focussing first on the mass of the reference and optimised components, we see that
the reference component with ABS as the base material is the lightest of the presented com-
ponents with a mass of 3.218 g (see Table 1). The open-pore microstructure of the optimised
base material results in a smaller mass for the reference and optimised components with
this base material compared to solid PZT-5A (see Tables 1 and 2). The optimised piezoelec-
tric component with solid PZT-5A base material and Vmax = 0.50 has the largest mass of all
presented components (23.80 g, see Table 2). While this mass is significantly larger than
that of the existing ABS part, we emphasise the purpose of the optimised piezoelectric com-
ponents is to enable replacement of the off-the-shelf force sensor currently included within
each foot of MAGNETO. These force sensors have a mass of 120 g, meaning that removing
the force sensor and using an optimised PZT-5A design at 50% volume fraction would
achieve a weight saving of around 60% compared to the force sensor when accounting
for two optimised components per foot. This significant potential for saving weight was
achieved by including a constraint on the volume fraction within the optimisation problem.

The relatively low Young’s modulus of ABS results in a high compliance for the ABS
reference component. It is clear from the left plot of Figure 6 that using PZT-5A solid
material or PZT-5A open-cell optimised base material significantly reduces the compliance
of the reference component compared to ABS. Our optimised designs using PZT-5A and
the optimised open-cell material improve upon the compliance of the reference component
with the same base material significantly (see Tables 1 and 2). This reduction in compliance
is possible even with the low volume fraction optimised components (Vmax = 0.35): despite
the lower volume fraction, optimisation of the compliance objective exploits the available
design freedom to improve the compliance compared to the reference component.

Piezoelectric sensing capability of the optimised components was achieved by impos-
ing an inequality constraint on the average voltage ϕ(x0) measured for the inclinations
−π/2, 0 and π/2. The constraint value was chosen to be the average voltage for the incli-
nations −π/2, 0 and π/2 for the reference component with PZT-5A as the base material
(−137 volts, see Table 1). All of the optimised components improved upon this average
voltage significantly (see Table 2). The average voltage improvement was more than 40%
in the case of PZT-5A with Vmax = 0.50 and more than 650% in the case of the open-cell
optimised PZT-5A material with Vmax = 0.50. The increase in the voltage for both cases
is likely due to the thin rods of material in the optimised components that connect the
load-bearing boundary ΓI to the rest of the structure. This is evident in all four designs
presented in Figure 8. The Vmax = 0.35 optimised components perform even better than
the Vmax = 0.50 components in terms of voltage sensitivity. This is clear from the values
in Table 2 and also exemplified in the right hand plot in Figure 9. These voltage results
suggest that the optimised piezoelectric components have the potential to replace the
heavy off-the-shelf force sensors in each foot of MAGNETO, however additional research
is required to determine the effective sensing range of these components.

The optimised piezoelectric components need to be robust to a range of climbing
configurations, and particularly for the inclination angles θ of −π/2, 0, and π/2 that relate
to the three actuation cases of horizontal movement, vertical movement, and inverted
horizontal movement. Comparing the values in Tables 1 and 2 show that the optimised
piezoelectric components give compliance and voltage results that are better than the
reference configuration results for the same base material for all three optimised inclination
angles and both maximum volume fractions. Figures 6 and 9 show the compliance and
voltage for several additional inclination angles. We see that all components follow a
similar pattern of higher compliance and voltage sensitivity for inclination angles in the
range −π/2 ≤ θ ≤ 0. This occurs due to the significant cancellation of the two stresses
acting on Γl in inverted configurations (0 < θ < π/2). Overall, the optimised components
have robust behaviour for a variety of loading configurations.



Materials 2023, 16, 5076 18 of 20

We considered one additional topology optimisation problem where we minimised
the volume of the component while constraining the average compliance and voltage to be
similar to the PZT-5A reference component. The optimised design presented in Figure 11
and the corresponding values in Table 3 again demonstrate improved voltage and weight
compared to the other presented configurations with PZT-5A as the base material. The
design has a volume fraction of 0.295, and corresponding mass of 14.38 g. Designs with
even lower volume fraction could potentially be achieved with a higher resolution for the
design domain and would require additional computational resources. We note that in
general it can be difficult to choose an appropriate constraint value for the compliance if
there is no reference configuration.

The above discussion demonstrates that our optimised piezoelectric components
satisfy all three design criteria. However, there are clear trade-offs that would need to
be considered to choose a single best design. For example, using the optimised open-cell
base material gives a significant improvement in potential sensing capability and would be
lighter in weight compared to a design using solid PZT-5A as the base material. However,
an open-cell design would also be more compliant, more difficult to manufacture, and may
not have the mechanical strength needed for use in the robotic application. Experimental
research including building of prototypes would be needed to evaluate these other aspects
of each of the designs. It would also be possible to further enhance the component’s sensing
capability by considering the poling direction of piezoelectric base material as a design
variable. This idea is closely related to the consideration of material orientation when using
anisotropic base materials, e.g., [37]. Material orientation is typically considered using
either a discrete [38] or continuous [39] set of orientations. This could be considered in
future work.

Finally, while our work has focussed on the computational analysis of possible piezo-
electric component designs, we briefly discuss manufacturability. Recent research has
demonstrated the successful additive manufacture of piezoelectric materials [14]. Such
technology would enable the manufacture of our optimised designs with PZT-5A as the
base material. The manufacturing technique proposed by Cui et al. [14] could also be
applied to the construction of our designs utilising the open-cell optimised base mate-
rial. Experimental research would be needed to evaluate the mechanical and piezoelectric
properties of such prototypes and their reliability for extended use.

7. Conclusions

In this paper we have considered the computational design of a multi-functional,
lightweight, integrated piezoelectric force sensor for the foot of a climbing robot. We
consider the average compliance and measured voltage of the designed component for
three robot configurations. The design problem is formulated in three dimensions, without
restriction to two dimensions or a layered structure. Furthermore, we consider both a solid
base material and the use of an architectured piezoelectric material as the base material
in the optimisation problem. Our optimised designs provide improved compliance and
piezoelectric sensing capability compared to a reference design. The designs would reduce
robot weight and increase payload capacity if they can replace existing off-the-shelf force
sensors. Overall, we have demonstrated the successful computational optimisation of
three-dimensional integrated piezoelectric sensing components for a climbing robot. Such
components are worthy of future experimental investigation.

Author Contributions: Conceptualization, Z.J.W., A.P.R., T.B. and V.J.C.; methodology, Z.J.W. and
V.J.C.; software, Z.J.W.; validation, Z.J.W.; formal analysis, Z.J.W.; investigation, Z.J.W.; resources,
A.P.R., T.B. and V.J.C.; data curation, Z.J.W.; writing—original draft preparation, Z.J.W.; writing—
review and editing, Z.J.W. and V.J.C.; visualization, Z.J.W.; supervision, A.P.R., T.B. and V.J.C.; project
administration, A.P.R., T.B. and V.J.C.; funding acquisition, A.P.R., T.B. and V.J.C. All authors have
read and agreed to the published version of the manuscript.



Materials 2023, 16, 5076 19 of 20

Funding: This research was funded by the Australian Research Council, grant number DP220102759.
The first author was supported by an Australian Government Research Training Program Scholarship
and this support is gratefully acknowledged. The APC was funded by DP220102759.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Important data are contained within the article. Additional data may
be available upon reasonable request to the corresponding author.

Acknowledgments: Computational resources used in this work were provided by the eResearch
Office, Queensland University of Technology. The authors thank J. Pinskier for providing useful
feedback on an earlier version of the manuscript. The authors also thank the anonymous reviewers
for their constructive comments that have helped to improve the published manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

1. Bendsøe, M.; Sigmund, O. Topology Optimization Theory, Methods, and Applications, 2nd ed.; Springer: Berlin/Heidelberg,
Germany, 2004. [CrossRef]

2. Deaton, J.; Grandhi, R. A survey of structural and multidisciplinary continuum topology optimization: Post 2000. Struct.
Multidiscip. Optim. 2013, 49, 1–38. [CrossRef]

3. Wildman, R.; Gaynor, A. 11—Topology optimization for robotics applications. In Robotic Systems and Autonomous Platforms; Walsh,
S.M., Strano, M.S., Eds.; Woodhead Publishing: Duxford, UK, 2019; pp. 251–292. [CrossRef]

4. Kim, B.J.; Yun, D.K.; Lee, S.H.; Jang, G.W. Topology optimization of industrial robots for system-level stiffness maximization by
using part-level metamodels. Struct. Multidiscip. Optim. 2016, 54, 1061–1071. [CrossRef]

5. Sha, L.; Lin, A.; Zhao, X.; Kuang, S. A topology optimization method of robot lightweight design based on the finite element
model of assembly and its applications. Sci. Prog. 2020, 103, 0036850420936482. [CrossRef]

6. Homayouni-Amlashi, A.; Schlinquer, T.; Mohand-Ousaid, A.; Rakotondrabe, M. 2D topology optimization MATLAB codes for
piezoelectric actuators and energy harvesters. Struct. Multidiscip. Optim. 2020, 63, 983–1014. [CrossRef]

7. Tian, J.; Zhao, X.; Gu, X.D.; Chen, S. Designing Ferromagnetic Soft Robots (FerroSoRo) with Level-Set-Based Multiphysics
Topology Optimization. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris,
France, 31 May–31 August 2020; pp. 10067–10074. [CrossRef]

8. Liu, Y.; Wang, M.Y. Topology design of a conforming gripper with distributed compliance via a level set method. In Proceedings
of the 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), Bali, Indonesia, 5–10 December 2014;
pp. 2191–2196. [CrossRef]

9. Wang, R.; Zhang, X.; Zhu, B.; Zhang, H.; Chen, B.; Wang, H. Topology optimization of a cable-driven soft robotic gripper. Struct.
Multidiscip. Optim. 2020, 62, 2749–2763. [CrossRef]

10. Wang, Y.R.; Zheng, J.M.; Ren, G.Y.; Zhang, P.H.; Xu, C. A flexible piezoelectric force sensor based on PVDF fabrics. Smart Mater.
Struct. 2011, 20, 045009. [CrossRef]

11. Curry, E.J.; Ke, K.; Chorsi, M.T.; Wrobel, K.S.; Miller, A.N.; Patel, A.; Kim, I.; Feng, J.; Yue, L.; Wu, Q.; et al. Biodegradable
Piezoelectric Force Sensor. Proc. Natl. Acad. Sci. USA 2018, 115, 909–914. [CrossRef]

12. Zhang, Z.H.; Kan, J.W.; Yu, X.C.; Wang, S.Y.; Ma, J.J.; Cao, Z.X. Sensitivity enhancement of piezoelectric force sensors by using
multiple piezoelectric effects. AIP Adv. 2016, 6, 075320. [CrossRef]

13. Chopra, I. Review of State of Art of Smart Structures and Integrated Systems. AIAA J. 2002, 40, 2145–2187. [CrossRef]
14. Cui, H.; Hensleigh, R.; Yao, D.; Maurya, D.; Kumar, P.; Kang, M.G.; Priya, S.; Zheng, X. Three-dimensional printing of piezoelectric

materials with designed anisotropy and directional response. Nat. Mater. 2019, 18, 234–241. [CrossRef]
15. Kögl, M.; Silva, E.C.N. Topology optimization of smart structures: Design of piezoelectric plate and shell actuators. Smart Mater.

Struct. 2005, 14, 387–399. [CrossRef]
16. Kang, Z.; Tong, L. Topology optimization-based distribution design of actuation voltage in static shape control of plates. Comput.

Struct. 2008, 86, 1885–1893. [CrossRef]
17. Zheng, B.; Chang, C.J.; Gea, H.C. Topology optimization of energy harvesting devices using piezoelectric materials. Struct.

Multidiscip. Optim. 2009, 38, 17–23. [CrossRef]
18. Kang, Z.; Wang, X. Topology optimization of bending actuators with multilayer piezoelectric material. Smart Mater. Struct. 2010,

19, 075018. [CrossRef]
19. Gonçalves, J.F.; De Leon, D.M.; Perondi, E.A. Simultaneous optimization of piezoelectric actuator topology and polarization.

Struct. Multidiscip. Optim. 2018, 58, 1139–1154. [CrossRef]

http://doi.org/10.1007/978-3-662-05086-6
http://dx.doi.org/10.1007/s00158-013-0956-z
http://dx.doi.org/10.1016/B978-0-08-102260-3.00011-1
http://dx.doi.org/10.1007/s00158-016-1446-x
http://dx.doi.org/10.1177/0036850420936482
http://dx.doi.org/10.1007/s00158-020-02726-w
http://dx.doi.org/10.1109/ICRA40945.2020.9197457
http://dx.doi.org/10.1109/ROBIO.2014.7090662
http://dx.doi.org/10.1007/s00158-020-02619-y
http://dx.doi.org/10.1088/0964-1726/20/4/045009
http://dx.doi.org/10.1073/pnas.1710874115
http://dx.doi.org/10.1063/1.4960212
http://dx.doi.org/10.2514/2.1561
http://dx.doi.org/10.1038/s41563-018-0268-1
http://dx.doi.org/10.1088/0964-1726/14/2/013
http://dx.doi.org/10.1016/j.compstruc.2008.03.002
http://dx.doi.org/10.1007/s00158-008-0265-0
http://dx.doi.org/10.1088/0964-1726/19/7/075018
http://dx.doi.org/10.1007/s00158-018-1957-8


Materials 2023, 16, 5076 20 of 20

20. Guzmán, D.G.; Silva, E.C.N.; Rubio, W.M. Topology optimization of piezoelectric sensor and actuator layers for active vibration
control. Smart Mater. Struct. 2020, 29, 085009. [CrossRef]

21. He, M.; Zhang, X.; Dos Santos Fernandez, L.; Molter, A.; Xia, L.; Shi, T. Multi-material topology optimization of piezoelectric
composite structures for energy harvesting. Compos. Struct. 2021, 265, 113783. [CrossRef]

22. Moretti, M.; Silva, E.C.N. Topology optimization of piezoelectric bi-material actuators with velocity feedback control. Front.
Mech. Eng. 2019, 14, 190–200. [CrossRef]

23. Nakasone, P.H.; Kiyono, C.Y.; Silva, E.C.N. Design of piezoelectric sensors, actuators, and energy harvesting devices using
topology optimization. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace
Systems, San Diego, CA, USA, 9–13 March 2008; Volume 6932, p. 69322W. [CrossRef]

24. Schlinquer, T.; Homayouni-Amlashi, A.; Rakotondrabe, M.; Mohand-Ousaid, A. Design of Piezoelectric Actuators By Optimizing
the Electrodes Topology. IEEE Robot. Autom. Lett. 2021, 6, 72–79. [CrossRef]

25. Zhang, X.; Takezawa, A.; Kang, Z. Topology optimization of piezoelectric smart structures for minimum energy consumption
under active control. Struct. Multidiscip. Optim. 2018, 58, 185–199. [CrossRef]

26. Homayouni-Amlashi, A.; Mohand-Ousaid, A.; Rakotondrabe, M. Topology optimization of 2DOF piezoelectric plate energy
harvester under external in-plane force. J. Micro-Bio Robot. 2020, 16, 65–77. [CrossRef]

27. Zhang, X.; Kang, Z. Dynamic topology optimization of piezoelectric structures with active control for reducing transient response.
Comput. Methods Appl. Mech. Eng. 2014, 281, 200–219. [CrossRef]

28. Zheng, B.; Lu, C.; Huang, H.Z. Topology Optimization of Piezoelectric Force Sensor. In Proceedings of the 2008 International
Conference on Apperceiving Computing and Intelligence Analysis, Chengdu, China, 13–15 December 2008; pp. 132–136.
[CrossRef]

29. Wegert, Z.J.; Roberts, A.P.; Challis, V.J. Multi-objective structural optimisation of piezoelectric materials. Int. J. Solids Struct. 2022,
248, 111666. [CrossRef]

30. Bandyopadhyay, T.; Steindl, R.; Talbot, F.; Kottege, N.; Dungavell, R.; Wood, B.; Barker, J.; Hoehn, K.; Elfes, A. Magneto: A
Versatile Multi-Limbed Inspection Robot. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 2253–2260. [CrossRef]

31. Wegert, Z.J. Analysis and Optimisation of Periodic Piezoelectric Materials. Master’s Thesis, Queensland University of Technology,
Brisbane, Australia , 2022.

32. Silva, E.C.N.; Fonseca, J.S.O.; De Espinosa, F.M.; Crumm, A.T.; Brady, G.A.; Halloran, J.W.; Kikuchi, N. Design of Piezocomposite
Materials and Piezoelectric Transducers Using Topology Optimization—Part I. Arch. Comput. Methods Eng. 1999, 6, 117–182.
[CrossRef]

33. Badia, S.; Verdugo, F. Gridap: An extensible Finite Element toolbox in Julia. J. Open Source Softw. 2020, 5, 2520. [CrossRef]
34. Svanberg, K. The method of moving asymptotes—A new method for structural optimization. Int. J. Numer. Methods Eng. 1987,

24, 359–373. [CrossRef]
35. Svanberg, K. MMA and GCMMA—Two Methods for Nonlinear Optimization. 2007. Available online: https://people.kth.se/

~krille/mmagcmma.pdf (accessed on 6 July 2023 ).
36. Zou, R.; Xia, Y.; Liu, S.; Hu, P.; Hou, W.; Hu, Q.; Shan, C. Isotropic and anisotropic elasticity and yielding of 3D printed material.

Compos. Part B Eng. 2016, 99, 506–513. [CrossRef]
37. Zhang, P.; Liu, J.; To, A.C. Role of anisotropic properties on topology optimization of additive manufactured load bearing

structures. Scr. Mater. 2017, 135, 148–152. [CrossRef]
38. Stegmann, J.; Lund, E. Discrete material optimization of general composite shell structures. Int. J. Numer. Methods Eng. 2005,

62, 2009–2027. [CrossRef]
39. Nomura, T.; Dede, E.M.; Lee, J.; Yamasaki, S.; Matsumori, T.; Kawamoto, A.; Kikuchi, N. General topology optimization method

with continuous and discrete orientation design using isoparametric projection. Int. J. Numer. Methods Eng. 2015, 101, 571–605.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/1361-665X/ab9061
http://dx.doi.org/10.1016/j.compstruct.2021.113783
http://dx.doi.org/10.1007/s11465-019-0537-y
http://dx.doi.org/10.1117/12.776357
http://dx.doi.org/10.1109/LRA.2020.3030561
http://dx.doi.org/10.1007/s00158-017-1886-y
http://dx.doi.org/10.1007/s12213-020-00129-0
http://dx.doi.org/10.1016/j.cma.2014.08.011
http://dx.doi.org/10.1109/ICACIA.2008.4769989
http://dx.doi.org/10.1016/j.ijsolstr.2022.111666
http://dx.doi.org/10.1109/IROS.2018.8593891
http://dx.doi.org/10.1007/bf02736183
http://dx.doi.org/10.21105/joss.02520
http://dx.doi.org/10.1002/nme.1620240207
https://people.kth.se/~krille/mmagcmma.pdf
https://people.kth.se/~krille/mmagcmma.pdf
http://dx.doi.org/10.1016/j.compositesb.2016.06.009
http://dx.doi.org/10.1016/j.scriptamat.2016.10.021
http://dx.doi.org/10.1002/nme.1259
http://dx.doi.org/10.1002/nme.4799

	Introduction
	Methods
	Design Domain
	Optimisation Problem

	Sensitivity Analysis
	Compliance
	Voltage

	Numerical Implementation
	Design Parameters
	Base Materials
	Discretisation and Finite Element Method
	Topology Optimisation Algorithm

	Results
	Reference Component
	Optimised Components
	Volume Minimised Component

	Discussion
	Conclusions
	References

