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Abstract: Ventilator-associated pneumonia is one of the most frequently encountered hospital in-
fections and is an essential issue in the healthcare field. It is usually linked to a high mortality rate
and prolonged hospitalization time. There is a lack of treatment, so alternative solutions must be
continuously sought. The endotracheal tube is an indwelling device that is a significant culprit for
ventilator-associated pneumonia because its surface can be colonized by different types of pathogens,
which generate a multispecies biofilm. In the paper, we discuss the definition of ventilator-associated
pneumonia, the economic burdens, and its outcomes. Then, we present the latest technological
solutions for endotracheal tube surfaces, such as active antimicrobial coatings, passive coatings,
and combinatorial methods, with examples from the literature. We end our analysis by identifying
the gaps existing in the present research and investigating future possibilities that can decrease
ventilator-associated pneumonia cases and improve patient comfort during treatment.

Keywords: antimicrobial coating; biofilm; endotracheal tube; ventilator-associated pneumonia

1. Introduction
1.1. General Considerations

An important problem of hospital-acquired infections or nosocomial infections is
foreseen because today’s devices made from biomaterials are much more frequently used
to stabilize the health state of critically ill or injured patients [1]. One of the most frequent
infections is considered to be ventilator-associated pneumonia (VAP). It is related to the
mechanical ventilation (MV) process and invasive tracheal intubation procedure [2–5].
Other infections encountered in hospitals are catheter-associated urinary tract infections,
central line-associated bloodstream infections, and surgical site infections [6,7]. The use of
indwelling devices generates an unwanted exposure of the human body to the external
medium and can be considered a route for exogenous and endogenous microorganism
circulation [8–11].

Ventilator-associated pneumonia can be defined as a disease that occurs at least two
days after mechanical ventilation is started and affects the pulmonary parenchyma [12,13].
Unfortunately, its first signs are very similar to those observed in other health conditions, so
early diagnosis becomes challenging. There are identified in the literature two types of VAP
with early and late onset. Alves et al. [14] considered that early-onset VAP occurs at a time
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comprising between 2 and 4 days post-intubation, and late onset develops at a time interval
higher than 5 days post-intubation [15]. In the first case, the duration of hospitalization
was estimated at a maximum of 27 days, and for late onset, this parameter was about
36 days [16–19]. In addition, the incidence rate for early onset was between 11–16%,
associated with a mortality rate of about 16–23%, while in the case of late onset, a higher
incidence rate of about 84% was identified, and a mortality rate of 44% was reported [20,21].
A study made by the International Nosocomial Infection Control Consortium stated that in
the United States of America (USA), the VAP rate was as low as 1 to about 3 episodes per
1000 ventilator days [22], while in the European Union, a rate of 18.3/1000 ventilator days
was reported [23]. In developing countries, this quantity was estimated at 22 episodes per
1000 ventilation days [24]. The main risk factors considered were the prolonged time of
MV, airway bacterial colonization, micro aspiration, the compromised immune systems
of the patients, and impaired mucociliary clearance (Figure 1) [14]. Due to the COVID-19
pandemic situation, the incidence rate of VAP in intensive care units (ICU) increased to 26
cases per 1000 ventilator days from 15.4 cases per 1000 ventilator days before COVID-19.
Still, although the worldwide pandemic seems to be ending, patients admitted to ICU
with medical treatment needing MV are at a high risk of VAP. There is a direct influence
relating to patient age, associated comorbidities such as cancer or other chronic obstructive
pulmonary diseases, longer need for MV and ICU care, and overall health, that can lead
to mortality or disability [14]. Treatments for all these exhibit high costs. Tawfig et al. [25]
and Zimlichman et al. [26] analyzed the healthcare costs associated with VAP and found
that they comprised between USD 28 and 33 billion per year in the USA, an amount that
represents about 32% of all hospital-acquired infection. In [27–29], the economic burden of
VAP in European countries was estimated between EUR 13 and 24 billion per year.
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The most common pathogens involved in biofilm formation on medical devices as-
sociated with VAP are antibiotic-sensitive bacteria such as methicillin-sensitive S. aureus,
Haemophiles influenzae, Streptococcus pneumoniae, Escherichia coli, Serratia spp., Klebsiella
pneumoniae, Proteus app, and multidrug-resistant or antibiotic-resistant bacteria such as
methicillin-resistant S. aureus, Pseudomonas aeruginosa, Enterobacter spp., Acinetobacter spp.,
and Vancomycin-resistant Enterococcus [14,30,31]. The biofilm can be defined as an aggre-
gate of different bacteria species covered in an extracellular polymeric matrix made of
carbonate-rich polymers such as cellulose or alginate and proteins such as nucleic acids or
amyloids (Figure 2) [32]. Usually, bacteria are characterized by phenotypic plasticity, which
permits them to modify their gene expression that determines a planktonic state, in which
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they float free and are subject to colonization and motility, or a sessile state with enhanced
metabolism and reproduction functions [33]. Bacteria that are in the sessile state can create
a biofilm because they have reduced motility. The first step in biofilm formation is pathogen
attachment that can be linked through macromolecules on the bacteria’s surface or inside
their systems, such as lipopolysaccharides or exopolysaccharides [34]. After some time,
the connection between bacteria and the medical device becomes stronger, and biofilm
formation begins. The bacterial interaction and number increase while the biofilm matures,
and a scaffold-like structure occurs [33,34]. The high density of cells enhances quorum
sensing, determines a decrease in cellular division, and reduces metabolic activity [35].
In the case of increased phenotypic variations between bacteria, progression or defense
actions can appear directly linked to antibiotic resistance [36]. When the cell density reaches
a certain value, some cells can leave the biofilm, changing their state into a sessile one and
exhibiting high virulence and antibiotic resistance. In some cases, these cells can again
enter a planktonic state and populate and infect other parts of the human body by initi-
ating biofilm formation in other places [37,38]. It has been proved that due to the biofilm
complexity and the multitude of bacteria species, 10–5000 times more drugs are needed to
destroy the biofilm compared to a free-living bacterial infection [39]. In clinical practice,
when indwelling medical devices are necessary to maintain or prolong the patient’s life,
attention should be devoted to hindering biofilm formation for as long as possible.
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Figure 2. Stages of complex biofilm formation on ETT surface: (a) attachment phase, in which bacteria
change their state from planktonic to sessile; (b) establishment phase characterized by secretion of
biofilm extracellular matrix; (c) development and maturement of the biofilm; (d) biofilm dispersion
and disassembly.

1.2. Endotracheal Tube a Life-Saving Medical Device with Negative Impact on Patient Health

Mechanical ventilation requires using endotracheal tubes (ETTs) for the patient intu-
bation procedure. Hashemi et al. [40] estimated that annually about 50 million patients
undergo intubation with ETTs for a short time during surgery or for a longer period if
they have a severe illness and their breathing ability is lost. Since ETTs are considered
life-saving medical devices, they are also a platform that is beneficial for biofilm formation.
Usually, EETs are made of non-degradable and highly biocompatible polymers such as
polyvinyl chloride (PVC) or poly(dimethylsiloxane) (PDMS), but other materials such
as silicone, rubber, or metal can be involved [41]. In Figure 3 is presented the standard
anatomy of an endotracheal tube. It contains a marking of length expressed in centimeters
that helps the clinicians to introduce the tube inside the human body and carefully control
its movements. Also, a continuous radiopaque marking is embedded along the tube length
to permit X-ray identification in the chest area and to estimate the appropriate depth of the
medical device [42–44]. Usually, the ETT is introduced on the right side of the laryngoscope.
It has a bevel, which determines a high-quality visualization of the zone ahead of the tube
and offers easier passage through the vocal cords. Murphy’s eye is a hole positioned in
opposition to the bevel to permit the gas passage if the tube tip is obstructed. Almost all
the ETT models exhibit a cuff and an inflatable balloon at the end of the tube. It generates a
seal against the trachea wall and prevents fluid and secretions from leaking into the lungs
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and gas from leaking around the tube material. The cuff is linked to a pilot balloon placed
outside the patient’s body and acts as a reservoir to reduce minor variations in cuff pressure.
Attached to this balloon, a one-way valve can be observed that prevents gas from escaping
the cuff. A standard adapter is always used in order to permit the addition of different
anesthesia or respiratory equipment [41].
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Endotracheal tubes are directly linked to infections of the lungs because they are prone
to tracheobronchial colonization by permitting the free passage of bacteria from the stomach,
oropharynx, and sinuses [45]. ETTs hinder swallowing or coughing, which clear the mucus
and stop the micro-organisms’ movement to the lower respiratory tract [46]. As a direct
consequence, the medical devices are contaminated, and biofilm formation in the outer and
inner lumens of the tube becomes possible. The most frequently encountered sources of VAP
are considered to be aspiration, secretions above the ETT cuff, and intubation procedure
due to contamination of equipment. In some cases, as described in Section 1.1., portions
of the formed biofilm can dislodge and be introduced directly into the patient’s lungs,
leading to VAP [47]. Another complication of ETT use is that during the tube insertion, a
certain pressure is exerted onto the trachea and larynx, and foreign body responses such as
inflammation or local irritation may be observed. In some cases, unwanted post-extubation
obstructions occur [3].

The airway anatomy of pediatric patients is different from the adult respiratory tract.
Firstly, the head of a child is larger in comparison with body size, exhibiting a prominent
occiput, a fact that can determine airway obstruction because the neck is flexed when the
young patient lies on a flat surface [48,49]. Secondly, the mandible is shorter, the tongue is
larger, and prominent tonsils and adenoids are present in the case of preschoolers [50]. All
the factors mentioned above have an important influence on reducing the upper airway
space, which can make mask ventilation or laryngoscopy difficult. If hypnotic or anaesthetic
drugs are used, a loss of upper airway muscle tone can appear, and the risk of upper
airway obstruction increases. Another anatomical difference is that the hypopharynx has a
narrow width and reduced height since the larynx is higher in the neck, and sometimes the
mandible is positioned in line with the upper glottic structures [48]. Vocal cords are not
placed at 90◦ to the trachea, and the intubation procedure must be conducted carefully. The
children’s epiglottis is U-shaped, and the trachea’s flexible cartilaginous rings can obstruct
negative pressure ventilation [51]. The CDC and Healthcare Infection Control Practices
Advisory Committee recommend an ETT with a dorsal lumen to permit the easy drainage
of orotracheal and respiratory secretions [52]. However, uncuffed ETTs usually used in
neonates generate an increased risk of VAP since cuffed ETTs are linked to a decreased
necessity of ETT changes and post-extubation stridor but increase the number of days with
mechanical ventilation [53–55].
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VAP is a serious life-threatening condition which can lead to sepsis [56,57], organ
damage, and endotoxin-driven inflammation [58]. In the case of old or newborn patients,
delirium or brain inflammation can occur. In order to prevent VAP occurring, some
management guidelines have been established. These include reduced duration of MV
procedure concomitantly with a decreased dose of sedation drugs, treatment of pressure
ulcers, prophylaxis of venous thrombosis, and a semi-recumbent body position [12]. If
these procedures are applied during the first five days of MV, they show high efficiency
only in the case of early-onset VAP [59,60]. As we have underlined before, VAP cases
are polymicrobial infections, and they require dedicated treatment. Unfortunately, in
most cases, due to the plethora of species involved in biofilm formation, the treatment is
nonspecific and inefficient, being directly linked to a high mortality rate.

Many researchers consider VAP prevention much more important than its treatment,
and adequate approaches are continuously sought. One proposed solution consists of ETT
surface modification to promote antibacterial properties. In some cases, active materials
with antibacterial properties were applied onto the ETT surface, which permitted a direct
link between them and the dangerous bacteria. Other authors investigated passive surface
modifications by changing the topography of the surface to a nanostructured and super-
hydrophobic one, hindering in this way bacterial adhesion. Other researchers considered
metal coatings, surfactants, antimicrobial peptides, or photodynamic therapies important
in VAP prevention.

In this review paper, we summarize some of the most frequently used techniques
for adapting the surface of ETTs to inhibit bacterial colonization and biofilm formation
and reduce the number of patients with VAP in ICUs. There is a lack of products with
antibacterial properties on the market that have received FDA approval. We found only
one manufacturer Bard Medical Division (Covington, GA, USA) that produces Agento® I.C.
ETT made from PVC and uses silver ions to interrupt the cellular functions of the bacteria
to prevent biofilm formation [61,62], and three other producers (Sharklet Technologies
Sharklet® ETT—main material PVC with the textured surface [63]; Bactiguard Holding
AB Bactiguard® Infection protection (BIP) ETT—main material PVC with noble metal
coating Ag-Pd-Au [64]; N8 Medical CerashieldTM ETT—main material PVC with synthetic
antimicrobial peptide Ceragenin [40]) that are seeking FDA approval. We consider it very
important to develop new solutions for ETT manufacturing, considering the life-threatening
conditions related to VAP.

2. Modern Technological Advances in Antimicrobial Coatings for ETTs

As previously mentioned, the literature includes descriptions of active technologies
that kill the bacteria and microbes on the medical device surface, passive solutions that mod-
ify the implant surface and composition to obtain a surface inadequate for micro-organism
adhesion, and combinatorial approaches that endow the ETTs with active antimicrobial or
passive antifouling properties. Antimicrobial coatings are considered an innovative way to
solve the problem of biofilm formation on the ETT surface. In the following sections, we
review the most frequently used technologies in clinical and pre-clinical practice.

2.1. Active Antimicrobial Coatings

Active antimicrobial coatings include the use of antiseptics or antibiotics incorporated
in coatings, ionic or covalently bonded with a polymeric matrix [65,66]. Other approaches
involve coatings of noble metal inserted in or coated on polymeric surfaces [67]. Some
metallic materials or their oxides, such as silver (Ag), selenium (Se), silver oxide (Ag2O),
titanium dioxide (TiO2), iron oxides (Fe2O3, Fe3O4), zinc oxide (ZnO), and copper oxide
(CuO), have bactericidal properties and can be used as nanoparticles or ions if the bulk
metal is considered unsafe regarding its increased toxicity for in vivo applications [3,68–72].
Lately, due to advances in the nanotechnology domain, there has been a growing interest in
ZnO and Ag2O coatings due to their excellent antimicrobial activity [67,73,74]. Attention
has been devoted to ZnO nanoparticles because of their compatibility with the human
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body and increased bactericidal effects on Gram-negative and Gram-positive bacteria.
Azam et al. [75] compared the antimicrobial efficiency of CuO, Fe2O3, and ZnO against
E. coli, P. aeruginosa, S. aureus, and B. subtilis. They concluded that ZnO nanoparticles
exhibited the most pronounced antibacterial effect and Fe2O3 nanoparticles had the lowest
antibacterial activity. In [76], it was shown that Ag nanoparticles presented important
antibacterial activity even though they were used in very low concentrations, while ZnO
nanoparticles’ efficiency depended on surface area and concentration. If ZnO nanoparticles
are used in higher concentrations and larger surface, they provide increased antibacterial
efficiency in comparison with Ag nanoparticles [67]. Some toxic effects characterize TiO2
nanoparticles, and these are usually used in combination with biopolymers. They exhibit a
moderate antibacterial impact, but in some cases, they have proved to be efficient due to
formation of reactive oxidative species, which have the potential to damage the specific
DNA of the bacteria [77,78].

2.1.1. Antimicrobial Metal Coatings

One of the most used frequently metal coatings that exhibit antibacterial properties
is silver. Silver has been investigated for at least 30 years and was successfully applied
to urinary catheters. Now it is being investigated as a coating for ETTs, and because it
has succeeded in numerous clinical trials, it has now been commercialized [62,79]. Its
action mechanism is based on ionic bindings formed between metal and bacteria cells by
increasing the cell permeability, facilitating cell membrane penetration, changing protein
activity, and inducing oxidative damage [3]. Many studies reported in the literature have
analyzed the antibacterial effects of silver alloys’, silver-based compounds, or nanoparticles
when applied as coatings for ETTs. Bechtold et al. [80] synthesized silver nanoparticles
(AgNPs) to be used as a biocidal agent in polyurethane coating. They tested the antimicro-
bial efficiency and activity of the coating according to JIS Z 2801:2000 [81] against E. coli
(ATCC 8739) and S. aureus (ATCC 6538). An antimicrobial activity equal to 2.72 and 3.03 in
terms of average numbers of viable cells of S. aureus (40 CFU/mL) and E. coli (270 CFU/mL)
was reported for the silver nanoparticle system. It was concluded that a positive impact
was achieved regarding resistance and protection against bacteria. Cruz-Pacheco et al. [82]
prepared a coating of polyetheretherketone film with silver nanoparticles and tested its
antibacterial activity against E. coli, Serratia marcescens, and Bacillus licheniformis. The an-
tibacterial activity of silver nanoparticles deposited in PEEK films varied as a function
of silver nanoparticle concentration and the number of layers. Maximum values were
achieved for PEEK with a 0.12 mol/L Ag NP concentration applied in two layers as follows:
2.7 ± 0.3 (E. coli), 1.2 ± 0.3 (S. marcescens), and 1 ± 0.2 (B. licheniformis). It was observed
that the concentration of silver is very important for the bacteria’s cellular replication. Der-
akhshi et al. [83] developed an innovative antibacterial platform based on shape-selective
silver nanostructures decorated with amine-functionalized graphene. They noticed that
the triangular shape of AgNPs exhibited the highest antibacterial activity against E. coli
and S. aureus with inhibition of 100% for E. coli and 70% in the case of S. aureus at a triangle
concentration of 1000 µg/mL. Zhang et al. [84] made an antibacterial coating based on
waterborne polyurethane containing silver nanoparticles dispersed in it. An antibacterial
rate of 99.99% against E. coli and 87.5% against S. aureus was found. It was concluded
that addition of silver determined a very high antibacterial rate and exhibited important
antibacterial properties.

Lethongkam et al. [85] investigated a novel polyamide/silver nanoparticle composite
coating for a commercially available ETT by testing its inhibitory effects against different
species of bacteria, including C. albicans, P. aeruginosa, K. pneumoniae, MRSA, S. aureus with
the help of an in vitro growth model. They concluded that the coated ETTs exhibited high
power in reducing microbial adhesion and planktonic growth in mixed and single-species
cultures. Additionally, the inhibition of biofilm formation was noticed after 72 h in the
case of S. aureus and P. aeruginosa, with broad-spectrum activity against Gram-negative
and Gram-positive bacteria. The time–kill study showed a decrease of over 99% in viable
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cells of P. aeruginosa within 2 h of incubation. In the case of S. aureus, the bacteriostatic
effect of the coated ETT reduced by 99.9% the number of viable bacteria cells after 24 h.
Figure 4 presents the fact that pathogens highly colonized the uncoated ETTs after one
day of incubation. Large amounts of P. aeruginosa colonization were observed (Figure 4a),
and grapelike colonies of S. aureus indicated the biofilm formation process (Figure 4b).
Olson et al. [86] studied the antibacterial influence of silver ions on a commercial ETT
using a dog animal model. The in vivo study proved that the modified ETT was efficient
against P. aeruginosa. Also, reduced lung inflammation was reported due to a delay of
about a day and a half in bacterial colonization of the ETT. The authors concluded that
the coating made an important contribution to the decrease in attached bacterial numbers.
Loo et al. [87] analyzed an innovative coating for ETTs comprised of silver nanoparticle–
polyvinyl alcohol hydrogels with anti-biofilm activity. They investigated its efficiency
on P. aeruginosa and S. aureus using in vitro models and observed a decrease in biofilm
formation for the two bacteria species, and no toxicity was reported against lung cells.
Jiang et al. [88] used a silver–silicon dioxide coating on a polyethylene ETT and studied its
antibacterial properties based on two in vivo models (golden hamster and rabbit). They
observed that in the first animal model, no oral mucosa irritation occurred (Figure 5) since,
for the rabbit animal model, no pyrogenic effects were detected. It was concluded that the
coating was highly biocompatible with the red blood cells.
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In 2015, a noble metal alloy (NMA) made from silver–gold–palladium was developed
by Bactiguard® Infection Protection (BIP) to be used as an antibacterial coating for ETTs.
Björling et al. [64] performed a randomized clinical evaluation study on this type of coating
applied on ETTs, involving 20 patients, in whom BIP ETTs were used. The results were
compared to those obtained for 10 patients that were intubated with standard ETTs. Minor
differences between the control and BIP ETT groups were noticed. Two patients exhibited
dry mouth and cough, but no mucosal damage was reported after a bronchoscopy was
performed for all the patients in the clinical trial. Short-term intubation of 5 h was chosen,
and a low level of bacterial colonization with normal flora was put in evidence in both
cases. The main conclusion of the study was that the BIP ETT was very well tolerated by
the patients during a short intubation time. Damas et al. [89] conducted a multi-center,
randomized, double-blind study on 323 patients, of whom 168 were included in the NMA-
coated group and 155 in the control group. It was observed that VAP occurred in the
cases of 18 patients from the control group. The Cox proportional hazards regression
method was applied and proved that a delay in VAP occurrence was present in the case
of the NMA-coated group. Also, the clinical trial evidenced that the number of antibiotic
days was decreased for the NMA-coated group with a value of about 59%. By analyzing
tracheal colonization, bacterial occurrence was observed in the cases of 34% of patients
from the control group and 30% in the NMA-coated group. The clinical trial concluded
that NMA-coated ETTs are a good candidate for FDA approval. Tincu et al. [90] made a



Materials 2023, 16, 5034 9 of 28

randomized controlled trial on 180 patients in a coma state induced by drug abuse who
needed MV for a period longer than 48 h. The number of patients was divided into a control
group receiving standard ETTs and another group using NMA-ETTs. They found that VAP
incidence was 43.16% for the control group and 27.83% for the NMA-coated group. They
concluded that in the case of NMA-coated ETT, VAP incidence was reduced concomitantly
with days of ventilation.

Other antimicrobial metal coatings include zinc-based [91–93], selenium-based [94],
and titanium-based [95,96]. Their main attributes and recent literature studies are presented
in Table 1.

Table 1. Antimicrobial metal coatings that do not contain silver used on ETTs in in vitro or
in vivo studies.

Antimicrobial
Metal Coating

Coating
Characteristics

Base Mate-
rial/Antimicrobial

feature

In Vitro/In Vivo
Study Remarks Ref.

Zinc oxide (ZnO)

ZnO exhibits antimicrobial
properties. Usually, ZnO

nanoparticles are used due to low
manufacturing costs, high

surface-to-volume ratio, and
enhanced stability. ZnO has high
efficiency against Gram-positive

and Gram-negative bacteria.

PVC/ZnO-
nanoparticles

(NPs)

In vitro
(S. aureus)

Through the incorporation of ZnO
NPs into PVC material, a reduction

of biofilm formation by 55% was
noticed after 72 h.

Seil et al. [91]

PVC/ZnO NPs In vitro
(S. aureus)

A reduction of 87% in biofilm
formation was reported after 24 h.

An increase in the NPs’
concentration was linked to a high

surface energy and roughness
exhibiting a beneficial effect on

bacteria reduction. The lower ZnO
NP diameter led to increased

antibacterial activity.

Geilich and
Webster [92]

Commercially
available coated and
uncoated ZnO NPs

In vivo
(male BALB/c

mice)

The animal models were exposed to
endotracheal instillation with one

dose (5 µg/mouse), and pulmonary
inflammation was noticed. After a

month of weekly exposure, a higher
immune response was obtained in
the case of uncoated nanoparticles.

Zhang et al. [93]

Selenium (Se)
Se NPs exhibit antioxidant,

anti-oncological, and antibacterial
properties [14]

PVC medical
grade/Se NPs

In vitro
(S. aureus)

A reduction of 80% was observed in
the bacterial colonization process.

The biofilm formation was reduced
in comparison with
a silver-coated ETT.

Tran and
Webster [94]

Titanium dioxide
(TiO2) combined

with
photodynamic

therapy

Photodynamic therapy is based on
a photosensitizer material, which

can be activated at a given
wavelength of light. It generates an

active component that has
antibacterial properties. TiO2 is

chemically inert, stable, and
exhibits photocatalytic properties
by generating reactive oxidative

species (ROS) when it is exposed to
a wavelength of 385 nm [97]. TiO2 is
efficient against both Gram-positive

and Gram-negative bacteria.

Commercial ETT
from PVC/TiO2 NPs

(N-doped and
commercially

available standard
anatase)

In vitro
(S. aureus and
P. aeruginosa)

In the case of light absence, no
antimicrobial effects were observed.

For fluorescent light irradiation,
both types of coating exhibited

almost the same effects on P.
aeruginosa, and N-doped

nanoparticles proved to be more
efficient against S. aureus

Caratto et al. [95]

PVC medical
grade/iodine

modified TiO2 NPs

In vitro
(E. coli) and

in vivo
(pig model)

The modified TiO2 NPs presented
photocatalytic antibacterial effects
under visible light application. A
decrease in bacterial attachment

and biofilm formation was reported
after 72 h. Reduced inflammation of

the lungs was noticed in MV pigs
after 72 h.

Deng et al. [96]

2.1.2. Antimicrobial Coatings Based on Biocide Impregnation

One of the oldest techniques in antimicrobial approaches consists of incorporating
biocidal substances into the polymer before the medical device manufacture [98]. Some
interesting studies are presented in the literature. Researchers investigated the in vitro
behavior of biocidal application in the case of ETTs. The most frequently used substances
include gendine, which can be prepared as a combination between chlorhexidine and
gentian violet [99], used alone or combined with gardine. The latter mentioned biocidal
is obtained from chlorhexidine and an antiseptic dye [100]. Other studies reported the
use of chlorhexidine [101], hexetidine [102], essential oils (i.e., clove oil, eugenol) [103],
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and coatings that mimic the human body’s defense mechanisms such as nitric oxide (NO)-
releasing PVC coatings [104].

Raad et al. [100] investigated the effects of two antiseptic substances, gendine and
gardine, used as coatings for ETTs. The authors compared their findings with those
obtained from silver-coated ETTs and analyzed the prevention of biofilm colonization.
They performed in vitro studies on S. aureus (MRSA), P. aeruginosa, A. baumanii, C. albicans,
E. cloacae, and K. pneumoniae. Based on scanning electron microscopy investigations, biofilm
formation was not reported in the cases of gardine and gendine-coated ETTs compared
with the silver-coated tubes that presented bacteria on their surface. It was concluded that
the biocide coatings completely inhibited MRSA, Gram-negative bacteria, and C. albicans
adherence, and they proved more efficient than silver-coated samples. Furthermore, the
antimicrobial activity against the MRSA pathogen was prolonged for 2 weeks (Figure 6).
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Figure 6. Antimicrobial efficiency of silver-, gardine-, and gendine-coated ETTs. The in vitro adher-
ence of MRSA (Methicillin-resistant S. aureus), PS (P. aeruginosa), and An (A. baumannii) was studied.
After one day, the biofilm cells were dispersed by sonication in neutralizing and non-neutralizing
solutions: (A) neutralizing solutions: p = 0.005 uncoated ETT vs. silver-coated ETT, p = 0.003 un-
coated ETT vs. gardine-coated ETT (for An p = 0.01), p = 0.003 uncoated ETT vs. gendine-coated
ETT, p < 0.003 for silver-coated ETT vs. gendine-coated ETT (for An p = 0.01); (B) non-neutralizing
solutions: p < 0.01 uncoated ETT vs. silver-coated ETT, p = 0.003 uncoated ETT vs. gardine-coated
ETT (for MRSA p = 0.004), p = 0.003 silver-coated ETT vs. gardine-coated ETT (for An p = 0.18) [100].
Reprinted from [100] Copyright (2023), with permission from Elsevier.

Chaiban et al. [99] developed a rapid ETT impregnation method based on instant
dipping of the device into gendine (GND). The antibacterial activity was investigated
in vitro, and strains such as MRSA, P. aeruginosa, E. coli, and C. parapsilosis were included.
The cuff of the ETTs was completely coated with GND. It was shown that GND-ETT samples
provided high antibacterial properties against MRSA, P. aeruginosa, and E. coli, exhibiting a
prolonged antimicrobial effect extended to 3 weeks. This period is important because an
ETT remains inserted into the patient’s body for no longer than 3 weeks. It was concluded
that the GND coating was highly efficient in VAP prevention. Jones et al. [102] performed a
physiochemical characterization of hexetidine-impregnated ETT and tested its efficiency
against S. aureus and P. aeruginosa. They increased the concentration of hexetidine between
1% and 10% (w/w) and observed a decrease in the surface hydrophobicity correlated
with an increased micro rugosity. All the samples exhibited good antibacterial properties
correlated with increased resistance to microbial adherence. It was noticed that the 1% (w/w)
hexetidine sample was characterized by the best balance between antibacterial resistance
and physiochemical properties and offered a viable solution for reducing the numbers
of patients suffering VAP. Venkateswaran et al. [103] used a nanocapsule that slowly
released a naturally antimicrobial substance entrapped in a network, representing an
innovative coating for ETTs. The nanocapsule was manufactured from poly(lauryl acrylate)
and contained eugenol (4-allyl-2-methoxyphenol). The capsule inhibited the growth of
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K. pneumoniae and MRSA and was entrapped in a polymeric coating that released the
active substance. It was proved that essential oils are an effective way to fight against
biofilm formation.

Homeyer et al. [104] incorporated the nitric oxide (NO) donor S-nitroso-N-
acetylpenicillamine (SNAP) into a PVC ETT. Controlled NO release from the SNAP
was ensured for 7 days without altering the mechanical properties of ETT. It is well
known that SNAP is sensitive to heat exposure. The coating efficacity was tested against
P. aeruginosa. For the study, it was considered that 23 ◦C is an adequate temperature
for device storage. A reduction in P. aeruginosa by 93% in comparison with the control
sample was noticed at 24 h. The authors concluded that future long-term bacteria studies
and in vivo investigations are necessary to validate the antibacterial effect of nitric oxide,
although they performed in vitro investigations, which proved its efficiency.

2.1.3. Bio-Inspired Antimicrobial Coatings

Antimicrobial peptides (AMPs) have been used to generate a surface similar to human
tissue and reduce biofilm formation on ETTs. AMPs are polyamino acids with broad-
spectrum antimicrobial activity based on amphipathic structures and positively charged
elements that bind to the cell membranes, which are negatively charged [105,106]. Recently,
AMP coatings with asiolossin-III were applied on ETTs and shown to inhibit bacterial
adhesion to the tube surface, exhibiting a low cytotoxic effect on cell lines [107]. Also, new
types of compounds have been developed, the so-called ceragenins comprising a cholic acid
group coupled with amine groups. These chemical substances do not contain peptides and
are characterized by a longer half-life inside the human body. Other advantages exhibited
by ceragenins are their low-cost preparation method [108] and their important antimicrobial
activity against a large range of pathogens such as MRSA [109], P. aeruginosa [110], and
C. albicans resistant to fluconazole [111].

A novel approach consists of bacteriophage coatings that exhibit the advantages of
decreased risk to the human microbiota, self-replication in the body cells, and an efficient
method of manufacture [112]. Other investigated coatings are based on biosurfactants
such as lecithin, cholesterol, and sphingophasine [113]. These substances have increased
emulsifying activity [114] and have proved to be very efficient against bacteria.

In Table 2 are summarized some studies found in the literature regarding bio-inspired
antimicrobial coatings [115,116].

Table 2. Bio-inspired antimicrobial coatings that do not contain silver used on PVC ETTs.

Antimicrobial
Compound Pathogen Test Type Remarks Ref.

Lasioglossin-III S. epidermis,
S. pneumoniae In vitro

The design of a peptide-eluting tube based on a
PLGA matrix with a continuous release of

Lasioglossin-III proved to be efficient against
planktonic bacterial development. There were no
reported side effects on epithelial and fibroblast

cell lines.

Aronson et al. [107]

Ceragenin CSA-131

C. auris,
K. pneumoniae,

C. albicans,
P. aeruginosa, MRSA

In vitro,
in vivo

The biofilm did not appear in the first 16 days.
There was no reported multispecies biofilm
formation for up to 3 days. In the pig animal

model, no damages were observed to the trachea
and lungs.

Hashemi et al. [40]

Sphingosine
S. aureus,

P. aeruginosa,
A. baumanii

In vitro,
in vivo

In vitro efficacy against biofilm formation.
In vivo tests evidenced the absence of

inflammation and prevention of bacteria film.
Seitz et al. [113]

Phages MDR
P. aeruginosa In vitro

The phage-coated samples were characterized by
reduced bacterial colonization by a maximum of

3.2 log compared with uncoated samples.
Amankwah et al. [115]

Lecithin and
cholesterol

S. aureus,
P. aeruginosa In vitro After 8h, a decrease of 90% in biofilm formation

was reported. Jones et al. [116]
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2.2. Passive Coatings

The surface of the medical device plays an important role in managing microbial
adhesion. Properties such as roughness, topography, elemental composition, wettability,
and surface free energy could be properly modified to inhibit pathogen attachment [117]. It
was reported in the literature that surfaces characterized by moderate wettability are more
prone to permit bacterial attachment, while highly hydrophilic or hydrophobic surfaces
inhibit this phenomenon [118,119]. Increased surface energy (SFE) is beneficial to bacterial
adhesion. Harnett et al. [120] showed that the polar component of the SFE promoted cell
development and proliferation if its value was higher than 15 mNm−1. On the other hand,
the authors demonstrated that in the case of a reduced value for the SFE polar component
of about 5 mNm−1 or lower, cell spreading was reduced. It is well known that a large
surface with significant roughness is favorable to microbial attachment, since one with
smooth topography exhibits biofouling properties. Yuan et al. [117] demonstrated that a
superhydrophobic surface with a contact angle (CA) higher than 150◦ was highly resistant
to bacterial attachment. They prepared samples with increased roughness and low SFE,
where air became entrapped between rough features when a liquid drop came into contact
with the surface. These air zones reduced the adhesion force and the contact area between
the material and biofilm.

Only a few passive approaches were found in the literature that included nanomodi-
fied, hydrophilic/hydrophobic, and micropatterned surfaces.

2.2.1. Nanomodified Surfaces

Today, nanotechnology’s involvement in treating bacterial infections is an important
topic of research. Conventional biomaterials do not exhibit nanoscale roughness. In order to
influence the bacteria’s behavior, it is necessary to have surface roughness at the nanometer
level to interfere with small parts. Durmus et al. [121] combined the antibacterial effect
of ETT surface nano-roughness with sugar metabolites such as fructose and noticed a
decrease in planktonic S. aureus bacteria number by analyzing it in solution or in the biofilm
which was formed on an ETT. They concluded that this engineered surface combined with
fructose in the absence of an antibiotic substance could be successfully used to reduce
biofilm formation and additionally to prevent the growth of antibiotic-resistant bacteria. In
Figure 7 are presented atomic force microscopy (AFM) micrographs that put in evidence
distinct topographies for control surfaces, in comparison with nano-rough surfaces created
using the Rhizopus arrhizus lipase.

Machado et al. [122] modified the surfaces of ETTs by soaking the medical devices in a
fungal lipase (Rhizopus arrhisus). To test the efficiency of the nanometer surface, they used
a dynamic airway-condition medium and investigated the concentration and location of
bacterial growth on the ETT for 24 h. Their experiments revealed a 1.5 log reduction in the
number of S. aureus, and the paper’s main conclusion was that the nanomodified surface
exhibited increased antibacterial activity in comparison with the conventional ETT because
the lipase etching suppressed the pathogen growth by generating a nano-rough surface that
proved to be a cheap solution for clinicians to fight against VAP. In other studies [123,124]
the same solution of using ETTs etched with Rhizopus arrhizus was involved in testing the
beneficial effect of the nanostructured surface on P. aeruginosa, using an in vitro model
of the pediatric airway ventilated for 24 h or classical cytotoxicity tests. A reduction of
2.7 log [123] and about 40% [124] on the modified ETT surface was reported. The authors
concluded again that this type of surface modification is efficient against one of the most
dangerous pathogens found in hospitals.

Other types of solutions such as controlling the mechanical roughness and the use of
polishing techniques resulting in a random texturized surface roughness have not been
extensively investigated and much more research must be conducted in this direction.
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2.2.2. Hydrophilic/Hydrophobic Surface Characteristics

The relationships established between material surface and pathogens are governed
by the surface charge/hydrophobic attributes that are important in the development
of biofouling of medical devices. Triandafillu et al. [125] investigated the adhesion of
P. aeruginosa strains to oxygen-plasma-treated (O2 plasma-treated) PVC endotracheal tubes
compared with commercial devices. After the O2 plasma treatment, the surface became
hydrophilic and a reduced adherent bacteria number of 70% was observed. In the case of
liquid water, the CA for the curved PVC was about 86.7◦; for flattened PVC, it was equal
to 85.5◦, and in the case of O2 plasma-treated PVC, it was found to have a value of 10.2◦.
Regarding surface roughness, the maximum value was obtained in the case of curved PVC
(129 nm), followed by O2 plasma-treated PVC (125 nm) and flattened PVC (72.8 nm). The
authors concluded that the surface modifications that included hydrophilization of the PVC
based on oxygen-plasma treatment are an efficient way to decrease the initial adhesion of
bacteria. Unfortunately, this treatment did not provide sufficient power to inhibit biofilm
formation completely. For future research, the authors proposed a combined strategy
between surface modification and bactericidal or anti-microbial agents. Loo et al. [126]
modified the PVC surfaces of medical devices based on a combination of non-solvents,
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such as ethanol and methanol, and a solvent (tetrahydrofuran). Initially, the surfaces of
the commercial devices had a CA of about 80◦. The methanol-treated samples exhibited
a more hydrophilic character (CA between 78–102◦ when the methanol concentration
varied from 15% to 35% (v/v)) in comparison with the ethanol-treated PVC (CA between
73–150◦ as a function of ethanol concentration increase from 15% to 35% (v/v)) (Figure 8).
Two important surface modifications were noticed in the case of the non-solvent treatments:
the material surface became porous with different pore shapes and sizes and presented a
much more hydrophobic character compared with the untreated samples. The antibacterial
effect of the surface modifications was tested against P. aeruginosa, and microcolonies
were present at 24 h of incubation. The authors concluded that this surface treatment
induced a delay in the bacteria colonization process from 18 h (untreated samples) to 24 h
(surface-treated samples).
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Figure 8. SEM images of PVC samples: (A) unmodified PVC; ethanol/methanol-modified PVC
(B,F) 15% (v/v); (C,G) 20% (v/v); (D,H) 25% (v/v); (E,I) 35% (v/v). Inserts indicate the CA for each
surface, and the bar represents 10 µm [126]. Reprinted from [126]. Copyright (2023), with permission
from Elsevier.

The studies mentioned above demonstrate that surfaces with increased hydrophobicity
are beneficial in delaying biofilm formation for a maximum of 24 h, being useful for patients
that do not need an increased duration of artificial ventilation.

2.2.3. Micropatterned Surface Modifications

Micropatterning technology has been used in manufacturing well-defined and repro-
ducible microstructures with unique geometry [127]. In this direction, an innovative ETT
surface called Sharklet® was developed based on photolithography. This design mimics
the placoid scales that characterize shark skin.

Mann et al. [63] investigated the effect of micropatterned endotracheal tubes to reduce
secretion-related lumen occlusion. The authors developed in vitro and in vivo models
that simulated all the clinical manifestations present in patients with ETT occlusion. The
Sharklet® micropatterned ETT was investigated regarding its ability to reduce the accumu-
lation of airway mucus and bacterial biofilm in comparison with commercially available
PVC ETTs (airway patency—ETTs made by Medline Industries, Inc., Mundelein, IL and
preclinical testing—ETTs from MallinckrodtTM, Medtronic, Mineapolis, MN) and Agento®

I.C. silver-coated PVC ETTs. The Sharklet® micropatterned tubes were made through injec-
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tion molding from Pellethane 2363-90AE thermoplastic polyurethane (TPU, Lubrizol). The
in vitro biofilm model was based on a drip flow reactor that generated biofilm formation
with P. aeruginosa. It was observed that the Sharklet® ETT reduced the biofilm formation
by 71% in comparison with the silver-coated ETT, which had 65% reduction. The other
study consisted of model analysis of airway patency; after 48 h, the micropatterned surface
ETT exhibited a mucus weight decrease of about 86%, 72%, and 69% in the distal, middle,
and proximal sections. It was noticed that for mucus localized in the lumen, additional
steps such as suctioning were necessary. These maneuvers are dangerous because biofilm
detachment becomes possible. The in vivo airway patency model involved animal models
such as five female Dorset sheep (24 kg) (two in the control group and three in the treatment
group). After one day of intubation, the mucus accumulation was reduced by 61% volume
for Sharklet® ETTs in comparison with commercially available ETTs.

May et al. [128] evaluated the Sharklet® surface effect regarding its antiadhesive
characteristics against P. aeruginosa (multiple strains ATCC10197, ATCC9027, PA14∆bif A),
K. pneumoniae, MRSA, A. baumannii, and E. coli. The laboratory-developed strain of P. aerug-
inosa (PA14∆bif A) with ∆bif A mutation produced exopolysaccharide in a high amount
and rapidly determined the medical device’s colonization and biofilm formation [129].
Micro-patterned and un-patterned control samples were immersed in inoculum with about
107 CFU/mL at room temperature for an incubation time of 1 to 4 h as a function of
used the bacteria species’ ability to form a colony. The cell density on the control samples
was kept constant, with an average value between 2.5 to 6 logs. It was noticed that in
all the cases, the bacterial adhesion was reduced by 96–99.9% for the Sharklet® surface.
Supplementary, these samples were immersed for 4 days in a medium that contained
the laboratory-modified strain of P. aeruginosa and MRSA that facilitated biofilm growth.
Reductions of 67% in MRSA and 52% in P. aeruginosa biofilm volume were noticed for the
micropatterned surface (Figure 9).
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Figure 9. The micropatterned surface efficiency was tested against MRSA and P. aeruginosa in com-
parison with unpatterned ETT. MRSA and PA14∆bif A strains were characterized by 67% (p = 0.123)
and 52% (p = 0.05) median reduction in biofilm compared with the control sample. In the case of
P. aeruginosa (ATCC 9027) strain, robust biofilm formation was not observed [128]. Figure is licensed
under CC-BY 2.0.

Both presented studies put in evidence the efficiency of Sharklet® micropatterning
against different types of pathogens, even in the case of those that are very proliferative
in biofilm formation. There are just a few studies in the literature that investigate the
micropatterned surface effects, and much more research, including in vivo studies, must
be carried out to gain a clear image of the antibacterial properties of this innovative design.
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2.3. Combinatorial Materials

The most important combinatorial materials have active/antibacterial and passive/
antibiofouling properties. They are appropriate for the design of new ETT materials
because they permit the reduction of drug dose, prevent bacterial attachment and the
emergence of drug resistance, and, finally but not least, are characterized by high biocom-
patibility [130,131]. In Table 3 are presented a selection of the most representative studies
found in the literature regarding the active and passive combinatorial strategies.

Table 3. Combinatorial active/antibacterial and passive/anti-biofouling materials for commercially
available ETTs.

Main idea of the
Combinatorial Strategy

Antimicrobial
Compound Pathogen TEST TYPE Remarks Ref.

Metabolites such as
fructose can enhance the

antibiotics’ efficiency.

Surface with
nanometric

characteristics obtained
after a combination of a

fungal lipase
and fructose.

S. aureus In vitro

The nanoscale surface features obtained
under the action of a fungal lipase

determined a 45% decrease in S. aureus
attachment after 24 h exposure. Soaking
the unmodified surface ETT in fructose
generated a 38% reduction. When the

two strategies were combined, a decrease
of about 60% in S. aureus attachment

was reported.

Dumus et al. [121]

Natural polymer chitosan
(CS), already used in the
wound dressing domain,

has a good interaction
with metallic ions
and nanoparticles.

CS-Ag nanoparticles @
polyacrylamide—
gelatin composite

S. aureus,
P. aeruginosa

In vitro
(broncho-lung

system); in vivo
(pig model)

The complex nanocomposite coating
exhibited important antibacterial

properties during in vitro and in vivo tests.
A reduction of 97% in lumen occlusion due

to artificial mucus was observed.
Antibiofouling characteristics were noticed

due to reduced lumen occlusion. High
biocompatibility of the coating evidenced

by in vitro tests with fibroblasts

Wang et al. [132]

Zeolites are substances
that are characterized by

cavities and channels.
They can trap metallic

ions with
antibacterial properties.

Zeolites with copper
ions (CuZ) and

D-Tyrosine (D-Tyr)
solution.

MDR
A. baumannii In vitro

A reduction of 14% in immobilized cells
was noticed after 24 h. The impregnation

of composite system CuZ with D-Tyr
(CuZ-Tyr) based on a synergistic effect

proved to have an important
antibacterial effect.

Milenković et al.
[133]

Zeolites with
micronized silver

(Ag-NZ) and D-Tyr.

MDR
A. baumannii In vitro

The Ag-NZ composites (1–15 wt.% Ag-NZ)
were characterized by a decrease of up to

70% (4.4 log CFU) of immobilized
pathogen compared with commercially

available PVC. The samples Ag-NZ coated
with D-Tyr (Ag-NZ-Tyr) exhibited a 100%
bactericidal effect consisting of a 6.9 log

CFU reduction against immobilized
bacterial cells.

Milenković et al.
[134]

Curcumin has
an important

photodynamic effect.

Curcumin
combined with

photodynamic action.

S. aureus,
P. aeruginosa,

E. coli
In vitro

Reductions of 95% (S. aureus), 72% (E. coli),
and 73% (P. aeruginosa) in biofilm
formation were noticed under the

combined action of light and
curcumin-functionalized ETT. The coating
was still active after 6 light applications at

a time interval of 24 h for 6 days. A
pathogen decrease of 24% was reported.

Zangirolami et al.
[135]

Hydrogel entrapped with
nebulized drugs has

antimicrobial and
antibacterial effects.

Hydrogels made of hy-
droxyethylmethacrylate

(HEMA): methacrylic
acid (MAA)

combined with
nebulized gentamicin.

S. aureus,
P. aeruginosa In vitro

The most efficient combination was
gentamicin-containing HEMA: MAA

hydrogel. Another good combination was
the 70:30 HEMA: MAA copolymer that
presented a persistent effect against the
tested pathogens at more than 20 days.

Jones et al. [136]

Antibacterial combined
effect between

chlorhexidine (CHX) and
silver carbonate.

CHX and silver-based
compound.

A. baumannii,
methicilin-
resistant S.

aureus MRSA,
S.aureus,

P. aeruginosa,
Enterobacter

aerogenes

In vitro

The antiseptic-impregnated ETTs exhibited
a reduced possibility of bacterial pathogen
colonization compared with commercial
ETTs. A reduction of 4–6 log of pathogen

colonization of ETT after 5 days
was reported.

Pacheco-Fowler
et al. [101]

Combination of titanium
dioxide (TiO2) and silver.

Silver, TiO2, and
innovative metallic

alloy Degussa

S. aureus,
P. aeruginosa In vitro

No positive effect was reported against S.
aureus. Regarding P. aeruginosa, the silver
combined with TiO2 reduced film growth

after 24 h, while the combination of
Degussa and TiO2 presented a diminution

of pathogen growth after 48 h.

Tarquinio et al.
[137]
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It can be concluded that combinatorial active/antibacterial and passive/anti-biofouling
materials are an effective way to fight against different pathogens responsible for VAP. If
these strategies are adopted soon, the burden of the health system regarding intubated
patients will be much reduced.

2.4. Potential Side Effects and Disadvantages of Antibacterial Coatings

It is well known that simple antimicrobial coatings such as enzymes, phages, an-
timicrobial peptides (AMPs), nitric oxide (NO), liposomes, and photoactivators can be
characterized by a delamination process on the ETT surface [67]. So, as a direct consequence,
new active antimicrobial coatings were developed, but unfortunately these solutions exhibit
side effects. An innovative approach described in previous chapters consists of AgNPs’
inclusion into ETT coatings. However, the cytotoxicity related to AgNP deposition in the
vital organs of patients is a serious concern. The main mechanisms that are linked to the
cytotoxicity of silver-based nanoparticles are metal ion release that dissolves the cells and
causes metal overload, which activates reactive oxygen species (ROS) [138,139]. Usually,
the toxicity of AgNPs is related to their size and preparation method. Today, preferred
methods are bio-mediated synthesis [140,141] or other solutions such as the coating of ETTs
with a thin layer of noble metal alloy (NMA), which releases a small number of ions and
provides so-called Bactiguard infection protection (BIP). Other studies have considered the
antibacterial effect of silver nitrate (AgNO3) and its related side effects. Maki et al. [142]
observed that AgNO3 was linked to chemical burns or skin irritations in patients that were
treated with silver-nitrate-coated catheters. When using silver nitrate in combination with
ETTs, it is important to establish the silver nitrate administration time and concentration
to assess its potential toxicity. Pacheco-Fowler et al. [101] recommend an efficient concen-
tration of silver nitrate solution between 0.1% and 1% applied to the inner surface of the
ETT for 30 min to 2 h. The potential toxicity of AgNO3 is generally related to skin and
respiratory tract damage [143]. Al-Sayed et al. [143] used an AgNO3 solution with different
concentrations between 0.019% and 0.185% with different pH. It was found that samples
with concentrations of 0.034% and pH of 7, 0.185% and pH of 8, and 0.019% and pH of 5 had
an important antibacterial effect by reducing the microbial count of E. coli from 12 CFU/µL
to 5, 7, and 3 CFU/µL, respectively, while the sample with 0.185% concentration and pH of
8.5 did not inhibit the bacterial growth.

Selenium (Se) is another metal that can be incorporated into or coated on the PVC sur-
face. It behaves as an efficient antimicrobial agent, but if used as nanoparticles, it promotes
intracellular ROS in amounts directly related to the particle diameter [144]. As previously
mentioned, ZnO NPs are considered less toxic than other metals or oxides and are a viable
alternative to AgNPs, although they are also associated with ROS induction [145]. Photo-
dynamic therapy and activation of TiO2 conduct to the electron holes production, a fact
that is detrimental to bacterial ROS [97].

As an overall conclusion related to metal oxide NPs’ toxicity, a direct link is established
between it and the crystallinity, size, surface area, and shape of the NPs [146]. Regarding
the other antimicrobial approaches’ side effects, further research must be undertaken, and
high levels of investment are needed to move the studies from in vitro and animal tests to
clinical trials and to establish exactly the toxicological concerns.

The medical industry is still using silver-based coatings applied on ETTs because
this metal is the most well-documented antibacterial material. To implement and design
new antimicrobial coatings for medical device surfaces [147], some safety-design criteria
must be met, which involve the analysis of biocompatibility, antimicrobial performance,
and potential risk of producing antimicrobial resistance (AMR),. Silver coatings were
involved in many pre-clinical and clinical trials from all the antibacterial approaches
because they were introduced on the market in the USA. Although use of silver-based
coating is limited by silver’s high costs [148], long-term stability, and toxicity that can be
linked to systemic side effects [3,138,139], it is still the method of choice for many clinicians.
Important concerns regarding the controlled release kinetics of antibiotics or antiseptics
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and the AMR-induction risks characterize other techniques such as ETT impregnation with
biocides. It was noted that where antiseptics are used, toxicity and environmental issues
are reported [149].

On the other hand, in the case of antimicrobial coatings based on natural compounds,
some limitations can be underlined: their high costs, easy degradation by proteases, and in
the case of phages, one can foresee as drawbacks their sensitivity to moisture and loss of
properties if certain external conditions are met [150]. If we consider the passive approaches,
manipulation of surface chemistry is difficult because it is based on complex protocols and
expensive technologies [151]. Due to the important drawbacks mentioned above and the
necessity of much more research in the field, silver-based coatings are the only ones that
have received medical approval to be used in human treatment.

The disadvantages of the antimicrobial approaches described in this paper are sum-
marized in Table 4.

Table 4. Main disadvantages of the antimicrobial approaches used to improve the antibacterial
efficiency of ETTs.

Antimicrobial Approach Strategy Disadvantage Selective Ref.

Active antimicrobial coatings

Antimicrobial metal coatings Toxicity of metal ions or nanoparticles;
propensity to induce bacterial resistance.

Setyawati et al. [138];
Delawal et al. [139]

Antimicrobial coatings based
on biocide impregnation

Difficult control of release kinetics of active
substances; development of antimicrobial

resistance and induced drug-resistant strains
when antibiotics are used; toxicity and

environmental problems linked to biocides in a
dose-dependent manner.

Ahonen et al. [149];
Alves et al. [14]

Bio-inspired
antimicrobial coatings

Proteolytic degradation; cytotoxicity and
hemolysis concerns regarding AMPs; high costs
of AMPs; the use of phages is characterized by

moisture sensitivity and deactivation under
certain conditions.

Alves et al. [14];
Hosseinidoust et al. [150]

Passive coatings

Nanomodified surfaces

Surface modifications are obtained through
surface chemistry manipulation, which is a

difficult process, requiring the development of
complex protocols and specific
technological methodologies.

Alves et al. [14];
Machado et al. [122]

Hydrophilic/hydrophobic
surface modification High costs when plasma treatment is involved. Jacobs et al. [151]

Micropatterned surface
modifications

Structural durability and stability;
biocompatibility, environmental concerns,

high costs.

Mann et al. [63];
May et al. [128]

Combinatorial materials Active and passive strategies Combine the disadvantages of different involved
strategies previously underlined.

Alves et al. [14];
Barnes et al. [3]

3. Conclusions and Future Directions

Nowadays, pneumonia represents the second most prevalent nosocomial infection en-
countered in hospitals, and86% of all total cases are related to mechanical ventilation. In the
United States of America, between 250,000 and 300,000 cases occur each year, representing
an incidence rate of 5 to 10 cases per 1000 hospitalized patients [152,153]. Thus, manufac-
turing innovative antifouling and antimicrobial materials must be considered an important
task. It is necessary to perform a combination of in vitro and in vivo studies to take a step
in the direction of clinical trials, which are much more complex and expensive [154,155].

It is of utmost importance to develop materials with antimicrobial and antifouling
characteristics using active or passive coatings or combinatorial methods. Much scientific
research has reported in vitro studies based on different pathogen strains such as S. aureus,
P. aeruginosa, A. baumannii, and E. coli and proved the efficiency of different proposed
solutions for ETTs (Table 5). Unfortunately, many of the studies analyzed the biocidal
characteristics of a polymeric material against only one pathogen strain. Tests showed
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that given species of P. aeruginosa exhibited an increased capability to develop biofilms.
A limitation of the existing studies could be the need to analyze the effect of materials
against a multispecies biofilm. This approach, combined with standardized cytotoxicity
and antimicrobial evaluation methods and test conditions, can be linked to a much more
realistic scenario that could make a transition to clinical trials. Van Charante et al. [156]
investigated the microbial diversity and antimicrobial susceptibility in ETT biofilms related
to mechanically ventilated COVID-19 patients. They stated that the most commonly identi-
fied pathogens were P. aeruginosa, S. epidermis, E. faecalis, K. aerogenes, and C. albicans, a fact
that justified the choice of pathogen strains present in the in vitro studies described in our
paper. Also, rarer proteobacteria such as Paracoccus yeei, Neisseria baciliformis, Neisseria spp.,
Eikelnella spp., and Aureimonas spp. were reported. The authors noticed that additionally to
well-known potential respiratory pathogens (P. aeruginosa and S. aureus), opportunistic res-
piratory strains such as Citrobacter koseri, Morganella morganii, and E. cloacae were detected
based on mass spectrometry analysis. The main conclusion of the study was that species
that are normally part of the lung microbiome were combined with conventional and rare
respiratory pathogens and led to a potential further complication of the preexistent infec-
tion. As a direct consequence, more complex in vitro studies are necessary to determine
which types of antimicrobial coatings are suitable for different multispecies biofilms.

Table 5. Main pathogen strains related to antimicrobial coatings applied on ETT surfaces.

Antimicrobial Strategy Antimicrobial Feature Pathogen Strain Selective Ref.

Active/Antimicrobial metal coatings

Ag

A. baumanii, C. albicans, K. pneumoniae, P.
aeruginosa, Enterococcus faecalis, MRSA

(methicilin-resistant S. aureus), S. aureus,
E. coli

Lethongkam et al. [85];
Loo et al. [87];
Jiang et al. [88]

NMA (Au-Ag-Pd) Enterococci spp., Neisseria spp., Haemophiles
parainfluenza, Streptococcus, Staphylococci

Björling et al. [64];
Tincu et al. [90]

ZnO, TiO2, Se S. aureus, P. aeruginosa, E. coli

Seil and Webster [91];
Caratto et al. [95];
Deng et al. [96];

Tran and Webster [94]

Active/Biocidal impregnation

Gardine and gendine, hexetidine A. baumannii, E. cloacae, C. albicans, K.
pneumoniae, MRSA, P. aeruginosa, S. aureus

Raad et al. [100];
Jones et al. [102]

Poly(lauryl acrylate)-based
nanocapsules with eugenol or clove

oil, styrylbenzene-based (BCP3)

MRSA, K. pneumoniae, MSSA
(methicilin-sensitive S. aureus), P. aeruginosa

Venkateswaran et al. [103];
Ozcelik et al. [157]

Active/Bio-inspired antimicrobials
Lasioglossin-III, ceragenin CSA-131,

cholesterol and lecithin,
sphingosine, phages

S. epidermis, S. pneumoniae, C. albicans, C. auris,
K. pneumoniae, P. aeruginosa, MRSA, S. aureus,

A. baumannii, MDR (Multidrug resistant)
P. aeruginosa

Aronson et al. [107];
Hashemi et al. [40];

Jones et al. [116];
Seitz et al. [113];

Amankwah et al. [115]

Passive/Nanomodified surfaces Fungal lipase S. aureus, P. aeruginosa Machado et al. [122];
Machado and Webster [123]

Passive/Hydrophilic/hydrophobic
surface modification Plasma treatments P. aeruginosa Triandafillu et al. [125]

Passive/micropatterned surfaces Sharklet pattern design A. baumannii, K. pneumoniae, MRSA, E. coli,
P. aeruginosa

May et al. [128];
Mann et al. [63]

Combinatorial materials

Chitosan—AgNPs—
polyacrylamide, fungal lipase and
fructose, chlorhexidine and silver

carbonate, copper and zeolite,
hydrogels with nebulized
gentamicin, curcumin and

photodynamic effect

P. aeruginosa, S. aureus, A. baumannii,
Enterobacter aerogenes, MRSA, MDR. A.

baumannii, E. coli

Wang et al. [132];
Durmus et al. [121];

Pacheco-Fawler et al. [101];
Milenković et al. [133];

Jones et al. [136];
Zangirolami et al. [135]

Table 5 summarizes the main species of pathogens investigated in the literature in
relation to the antimicrobial methods presented in the paper.

Another limitation of the literature is associated with a need for in vivo analysis. These
types of tests are necessary because they put in evidence very precisely the influence of the
physiological media and location on the indwelling device. Of all the medical implants,
ETTs are considered challenging because they are in contact with a large surface inside the
human body. These medical implants are inserted along the esophagus, bronchi, and lungs,
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are placed in direct contact with different body fluids and tissue secretions, and are influ-
enced by the gas flow and different pressures from the ETT cuff adjustment. Their insertion
length can be up to 23 cm as a function of patient age, gender, or airway length [158]. Other
risks that must be mentioned include the fact that bacterial contamination can occur at the
moment of patient intubation, and prolonged intubation time can lead to biofilm formation
and persistence.

The ETT surface modifications or coatings presented in this review paper put in ev-
idence valuable data that permit scientists to reduce pathogens’ adherence to medical
devices and even to kill bacteria and prevent biofilm formation and patient contamination.
In active approaches based on metal coatings, antiseptic release, photo-based therapy,
ceragenin, and bacteriophages, almost all the limitations associated with the passive tech-
nologies are overcome. Unfortunately, only silver-coated ETTs are on the market due to
their high involvement in clinical trials, but concerns such as stability and cytotoxicity are a
real problem. Other described solutions are still in the preclinical stage. Passive approaches
include alterations of the patterning and chemical composition of the ETT surface, resulting
in a nano-rough and hydrophobic surface that inhibits bacterial adherence and the aggrega-
tion of mucus secretions. Combinatorial technologies are another vital way to fight against
VAP and represent a combination of active and passive approaches.

Usually, in the case of pediatric patients, bio-inspired antimicrobial coatings are consid-
ered one of the most suitable solutions. Aronson et al. [107] developed a proof-of-concept
study in which they made an innovative coating that can release antimicrobial peptides
that have an antibacterial effect on specific pathogens. This novel device can modulate
the upper-airway microbiome and can prevent diseases such as subglottic stenosis. The
endotracheal microbiome of intubated patients is unbalanced, and treating this problem
with antibiotics can lead to antimicrobial resistance, which is not indicated in the children’s
cases. A polymer coating that releases Lasioglossin-III was investigated in the study men-
tioned above. The efficiency of this peptide was tested against microbes, bacteria, and
human microbiome (Table 5). It was concluded that this drug-eluting ETT could prevent
biofilm formation and laryngotracheal stenosis and that it can be applied successfully in
children [159]. Another method that can be used for children consists of chemical etching
on the ETT surface due to a fungal lipase action, as described by Machado et al. [160]. This
process generates a nano-roughened surface that hinders bacterial adhesion, as described
in Section 2.2.1. Regarding other coating methods on ETTs that can be considered suitable
and safe for children, published studies remain lacking.

This review paper aims to present and evaluate the existent solutions that can be
applied to reduce and even prevent biofilm formation and increase scientists’ awareness
of the global economic and social burdens of VAP. The chosen topic’s importance can also
be seen from the fact that the global PVC ETT market is estimated to achieve about USD
2925.14 million by 2030, with a compound annual growth rate of 5.9% over the forecast
period [161]. The market growth is directly proportional to increased surgery, disease
burden, and technological discoveries. Uncoated ETTs are predominant on the market,
with a revenue share of 32.10% in 2022. Coated ETTs are used in intensive care units to
prevent VAP infections. Although a small number of producers that manufacture coated
ETT are present on the market, the number of coated medical devices increased during
the COVID-19 pandemic. The market size in 2021 was estimated at USD 159.4 million,
with a market forecast value of more than USD 262 million and a growth rate of 5.1%
over 2022–2031. It can be noticed that although conventional ETTs are cheaper than the
coated ones, a similar dynamic of the market regarding growth rate until 2031 is foreseen.
It is expected that coated ETTs will be beneficial in VAP prevention, and many hospitals
worldwide will choose to use them to the detriment of classical ones [162].

From our point of view, coated or surface-modified ETTs are more efficient in ensuring
adequate VAP prevention, although their cost is much higher than that of conventional ones.
In this direction, we suggest the following next steps for research in the domain: complex
in vitro studies, necessary to determine the antimicrobial and antibacterial efficiency of the
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coating or modified surface against a much larger number of pathogens encountered in
biofilm composition, including rare respiratory bacteria; additional in vivo studies to prove
the beneficial effect of the coating materials in cases of medium and long-term ventilation;
less invasive coating or surface modifications based on bio-solutions for the development of
ETTs dedicated to children and neonates; supplementary experimental tests to establish the
biological range for each metal or oxide used in the ETT coating procedure; introduction in
clinical trials of different antimicrobial coatings based on natural compounds and passive
approaches regarding the surface chemistry modifications. These studies are necessary
to gain a clear overview, and they must be accelerated by considering the gravity of the
situation in hospitals worldwide. This fact is fundamental because each year, many more
patients need to be intubated, and adequate solutions to increase patient comfort and care
and to hinder the complications associated with pneumonia are a first-line problem.
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154. Kramek-Romanowska, K.; Stecka, A.M.; Zieliński, K.; Dorosz, A.; Okrzeja, P.; Michnikowski, M.; Odziomek, M. Independent
Lung Ventilation-Experimental Studies on a 3D Printed Respiratory Tract Model. Materials 2021, 14, 5189. [CrossRef] [PubMed]

155. Ryu, B.; Okada, Y.; Fujita, N.; Nagasaka, Y. A Novel Magnetic Resonance Imaging-Compatible Titanium Alloy Wire-Reinforced
Endotracheal Tube. Materials 2022, 15, 5632. [CrossRef] [PubMed]

156. Van Charante, F.; Wieme, A.; Rigole, P.; De Canck, E.; Ostyn, L.; Grassi, L.; Deforce, D.; Crabbé, A.; Vandamme, P.; Joossens,
M.; et al. Microbial Diversity and Antimicrobial Susceptibility in Endotracheal Tube Biofilms Recovered from Mechanically
Ventilated COVID-19 Patients. Biofilm 2022, 4, 100079. [CrossRef]

https://doi.org/10.2298/JSC141225017M
https://doi.org/10.1080/08927014.2014.959941
https://doi.org/10.1073/pnas.2006759117
https://doi.org/10.1021/acs.molpharmaceut.5b00208
https://www.ncbi.nlm.nih.gov/pubmed/26111258
https://doi.org/10.2147/IJN.S8746
https://doi.org/10.1016/j.biomaterials.2014.05.007
https://www.ncbi.nlm.nih.gov/pubmed/24881025
https://doi.org/10.1007/s00204-016-1701-3
https://doi.org/10.1016/j.ijbiomac.2017.06.010
https://doi.org/10.1016/j.msec.2019.03.061
https://doi.org/10.4065/81.9.1159
https://doi.org/10.3390/gels9050414
https://doi.org/10.1039/C9NR04424H
https://www.ncbi.nlm.nih.gov/pubmed/31363721
https://doi.org/10.1093/toxsci/kfw010
https://doi.org/10.2147/IJN.S353071
https://doi.org/10.1016/j.jhin.2018.01.018
https://www.ncbi.nlm.nih.gov/pubmed/29410096
https://doi.org/10.1378/chest.11-2420
https://www.ncbi.nlm.nih.gov/pubmed/22796845
https://doi.org/10.3390/ijerph14040366
https://www.ncbi.nlm.nih.gov/pubmed/28362344
https://doi.org/10.1016/j.colsurfb.2014.05.036
https://doi.org/10.1007/s11090-012-9394-8
https://doi.org/10.1016/S0891-5520(05)70209-9
https://doi.org/10.1097/00003246-199905000-00020
https://doi.org/10.3390/ma14185189
https://www.ncbi.nlm.nih.gov/pubmed/34576415
https://doi.org/10.3390/ma15165632
https://www.ncbi.nlm.nih.gov/pubmed/36013768
https://doi.org/10.1016/j.bioflm.2022.100079


Materials 2023, 16, 5034 28 of 28

157. Ozcelik, B.; Pasic, P.; Sangwan, P.; Be, C.L.; Glattauer, V.; Thissen, H.; Boulos, R.A. Evaluation of the Novel Antimicrobial BCP3 in
a Coating for Endotracheal Tubes. ACS Omega 2020, 5, 10288–10296. [CrossRef] [PubMed]

158. Oh, S.; Bang, S.; Kwon, W.; Shim, J. Patient-Specific Depth of Endotracheal Intubation-from Anthropometry to the Touch and
Read Method. Pak J. Med. Sci. 2016, 32, 1234–1239. [CrossRef]

159. Philadelphia, T.C.H. of CHOP Researchers Develop Coating for Endotracheal Tubes That Releases Antimicrobial Peptides.
Available online: https://www.chop.edu/news/chop-researchers-develop-coating-endotracheal-tubes-releases-antimicrobial-
peptides (accessed on 26 June 2023).

160. Machado, M.C.; Cheng, D.; Tarquinio, K.M.; Webster, T.J. Nanotechnology: Pediatric Applications. Pediatr. Res. 2010, 67, 500–504.
[CrossRef]

161. Research. V.M. Endotracheal Tube Market Size USD 3.1 Billion by 2030. Available online: https://www.vantagemarketresearch.
com (accessed on 27 June 2023).

162. Coated Endotracheal Tube Market. Available online: https://www.transparencymarketresearch.com/coated-endotracheal-tubes-
market.html (accessed on 27 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1021/acsomega.9b04178
https://www.ncbi.nlm.nih.gov/pubmed/32426585
https://doi.org/10.12669/pjms.325.10609
https://www.chop.edu/news/chop-researchers-develop-coating-endotracheal-tubes-releases-antimicrobial-peptides
https://www.chop.edu/news/chop-researchers-develop-coating-endotracheal-tubes-releases-antimicrobial-peptides
https://doi.org/10.1203/PDR.0b013e3181d68e78
https://www.vantagemarketresearch.com
https://www.vantagemarketresearch.com
https://www.transparencymarketresearch.com/coated-endotracheal-tubes-market.html
https://www.transparencymarketresearch.com/coated-endotracheal-tubes-market.html

	Introduction 
	General Considerations 
	Endotracheal Tube a Life-Saving Medical Device with Negative Impact on Patient Health 

	Modern Technological Advances in Antimicrobial Coatings for ETTs 
	Active Antimicrobial Coatings 
	Antimicrobial Metal Coatings 
	Antimicrobial Coatings Based on Biocide Impregnation 
	Bio-Inspired Antimicrobial Coatings 

	Passive Coatings 
	Nanomodified Surfaces 
	Hydrophilic/Hydrophobic Surface Characteristics 
	Micropatterned Surface Modifications 

	Combinatorial Materials 
	Potential Side Effects and Disadvantages of Antibacterial Coatings 

	Conclusions and Future Directions 
	References

