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Abstract: This experimental study aims at filling the gap in the literature concerning the combined
effects of hydroxyapatite (HA) concentration and elementary unit cell geometry on the biomechanical
performances of additively manufactured polycaprolactone/hydroxyapatite (PCL/HA) scaffolds for
tissue engineering applications. Scaffolds produced by laser powder bed fusion (LPBF) with diamond
(DO) and rhombic dodecahedron (RD) elementary unit cells and HA concentrations of 5, 30 and
50 wt.% were subjected to structural, mechanical and biological characterization to investigate the
biomechanical and degradative behavior from the perspective of bone tissue regeneration. Haralick’s
features describing surface pattern, correlation between micro- and macro-structural properties and
human mesenchymal stem cell (hMSC) viability and proliferation have been considered. Experi-
mental results showed that HA has negative influence on scaffold compaction under compression,
while on the contrary it has a positive effect on hMSC adhesion. The unit cell geometry influences the
mechanical response in the plastic regime and also has an effect on the cell proliferation. Finally, both
HA concentration and elementary unit cell geometry affect the scaffold elastic deformation behavior
as well as the amount of micro-porosity which, in turn, influences the scaffold degradation rate.

Keywords: polycaprolactone/hydroxyapatite scaffold; hydroxyapatite concentration; unit cell geom-
etry; laser powder bed fusion; tissue engineering; Haralick texture analysis; mechanical performances;
human mesenchymal stem cells

1. Introduction

The employment of scaffold as a cell transplant device for regenerating damaged
tissue is a novel approach to bone tissue engineering. The scaffold, designed to guide
cell organization and growth and to match the mechanical properties of the injury site,
is expected to stimulate healing and ensure the full recovery of tissue functionalities [1].
Scaffold geometry plays a pivotal role in tailoring mechanical performance and biological
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response. A periodical arrangement of elementary unit cells in the 3D space (lattice)
allows for the customization of the porous network, improving scaffold permeability and
degradability and, at the same time, minimizing risk of stress shielding [2,3].

By the appropriate choice of biomaterial and scaffold design, the native extracellu-
lar matrix (ECM) functions can be reproduced, thus providing structural support and
promoting a good healing response of host tissue [4].

Natural polymers possess a high degree of similarity to the ECM [5], although they
are difficult to process into the required shapes while maintaining unaltered biological
functions. In addition, physical and chemical variations peculiar to each production batch
hinder mass production for biomedical use [6,7]. Therefore, synthetic polymers represent
an attractive solution because of their physical–chemical and mechanical properties. In
particular, polycaprolactone (PCL) has been widely used in many tissue engineering (TE)
applications, as it is chemically inert, biocompatible, low-cost, bioabsorbable and FDA-
approved. However, PCL shows few limitations in vivo, including hydrophobicity, which
prevents cell attachment and proliferation, and slow degradation rate. To overcome such
drawbacks, addition of calcium phosphate-based ceramics in PCL has led to a composite
biomaterial with improved mechanical properties, controllable degradation rates and
enhanced bioactivity [8–11]. Hydroxyapatite (HA) chemistry is similar to apatite in natural
bone. In biological media, HA reacts with ions of the body fluid, forming a surface apatite
coating which induces protein adsorption and cell attachment, stimulating bone formation
and biomaterial resorption [12]. Therefore, the appropriate selection of materials and their
combination help to improve the biomechanical response of the device to support bone
regeneration.

Another way to enhance the biomechanical properties of composite scaffolds is the
correct choice of the production process. Manufacturing methods should also be effec-
tive to minimize toxic residues and cost, thus allowing large-scale production of patient-
customized bioresorbable devices [2]. Additive manufacturing (AM) technologies allow
the precise design of the internal structure of the biomaterial according to the mechanical
and biological requirements for tissue engineering. In the past decade, AM technologies
have boosted the fabrication of customized PCL products, with shorter processing time
and reduced material waste [13,14].

To the best of the authors’ knowledge, previous studies on the effectiveness of combin-
ing AM technologies with the biomechanical performances of PCL/HA scaffolds for bone
tissue regeneration have separately focused on the effects of the geometry [15–20] or of the
HA concentration [21–23].

Geometries already studied in the literature range from very simple structures [15–
19] to complex geometries based on a unit cell topology which is regularly repeated in
space [20]. Experimental results have indicated that geometries resulting from diamond
(DO) and rhombic dodecahedron (RD) elementary unit cells are suitable for human bone
regeneration in the trabecular mandibular region, with regard to bioresorbability and
biomechanical response [20].

Although recent studies have focused on the impact of HA concentration on the
biomechanical properties of PCL/HA scaffolds, the HA amount considered in such studies
is limited to 30 wt.% or less [21–23]. Rezania et al. [21] fabricated PCL/HA scaffolds
with 5, 10, 15 and 20 wt.% of HA, by the fused filament fabrication (FFF) technique,
aiming to produce affordable medical tools. The range of HA percentages was chosen
because of the rheology and printability of the filaments. Young’s modulus of PCL/HA
20 wt.% printed scaffold increased by 50% compared to PCL and all the samples had
qualified cytocompatibility with a human osteoblast cell line without statistically significant
differences. Liu et al. [22] produced PCL/HA scaffolds by the melting deposition forming
method using PCL/HA composites with 5, 10, 15, 20 and 25 wt.% HA content. In their
study, PCL/HA scaffold with 25 wt.% HA achieved the best comprehensive performance
for biomedical applications. Kim et al. [23] fabricated PCL/HA composite filaments with



Materials 2023, 16, 4950 3 of 19

ceramic particles at 5, 10, 15, 20 and 25 wt.%, to print scaffolds with an FDM-type 3D printer
for bone regeneration purposes.

This experimental study aims to fill the gap in the literature, by focusing attention on
the combined effect of geometry and HA amount on the biomechanical and degradative
behavior of PCL/HA scaffolds produced by AM. Scaffolds with DO and RD elementary
unit cell geometry, charged with HA amounts of 5, 30 and 50 wt.% and produced by the
laser powder bed fusion (LPBF) technique, were submitted to structural, mechanical and
biological characterization. Results clearly showed the impact of HA amount and unit cell
geometry on the mechanical response as well as on the biological and degradative behavior.

2. Materials and Methods
2.1. Design and Production

Two different elementary unit cells with sides of 1 mm (Figure 1) were used, based
on findings of Gatto et al. [20], to create diamond (DO) and rhombic dodecahedron (RD)
scaffolds, filling a volume of 10 × 10 × 5 mm3, Figure 1. DO and RD scaffolds were
designed (Materialise Magics software, vers. 21.0, Materialise, Belgium) with 80% nominal
porosity and strut thickness of 0.42 mm and 0.46 mm, respectively.
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Figure 1. Images of the produced scaffolds: (a) Diamond (DO) geometry and (b) rhombic dodecahe-
dron (RD) geometry. Schematic of the elementary unit cell geometry is shown in the inset for each
scaffold type.

Three different powder mixtures obtained by combining polycaprolactone (PCL, Euro-
coating S.p.a., Pergine Valsugana, Italy) and hydroxyapatite (HA, Boc Sciences, Inc., Shirley,
NY, USA) in 5, 30 and 50 wt.% were used for scaffold manufacturing by laser powder bed
fusion (LPBF) technology, using a Formiga P110 Velocis (EOS GmbH, Munich, Germany)
manufacturing system. Printing parameters were optimized, starting from findings of
Gatto et al. [20].

From this point on, samples are indicated by geometry (DO and RD) and percentage
of HA in wt.% (5, 30 or 50). As an example, the PCL-based scaffold produced with diamond
geometry and 5 wt.% HA compound is referred to as DO5. The same wording is also
applied to the powders (P).

2.2. Morphological and Structural Characterization

The morphology of PCL/HA powders, the scaffold surface and cells after 4 days of
incubation on scaffolds were investigated by a Tescan Vega 3 (Tescan Company, Brno, Czech
Republic) scanning electron microscope (SEM) equipped with an EDAX Elements energy
dispersive micro-analysis (EDS) system. Based on SEM images of P50 powders, the normal
size distribution of HA and PCL particles was calculated using FIJI software (Version
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2.3.0) [24]. The chemical composition of powders and scaffolds was determined by EDS
micro-analysis. Results were obtained by averaging data taken from five different sample
areas observed at the same magnification (500×). Chemical concentration of calcium (Ca),
phosphorus (P) and the Ca/P ratio were considered. Structural information from powders
and scaffolds was achieved using X-ray diffraction (XRD), by using a Bruker D8 Advance
diffractometer (Bruker, Karlsruhe, Germany) operating at V = 40 kV and I = 40 mA, with
Cu-Kα radiation, in the angular range 2θ = 10◦–60◦. Pattern analysis was performed by the
DIFFRAC.EVA software package (Version 4.3.0.1) (Bruker), while XRD peak shape analysis
was conducted by the OriginPro 2023 software (OriginLab, Northampton, MA, USA).

2.3. Haralick’s Surface Analysis

Surface texture of scaffolds was studied through two Haralick’s surface features
(energy and variance) [25], calculated starting from the SEM images obtained via secondary
electrons (SEs) at 350× of magnification. This approach evaluates the surface texture using
a gray-level image of the surface [26,27]. Briefly, for each SEM image of the scaffold surface,
at least two regions of interest (ROIs) were selected to measure the gray-level co-occurrence
matrix (GLCM) and then, for each GLCM, Haralick’s energy and variance values were
quantified. The energy computes the amount of similarity inside the GLCM and is a
measure of local homogeneity in pixel values, whereas the variance has the same meaning
as the statistical variance and is a measure of the local heterogeneity in pixel values.

2.4. Roughness

The surface roughness of scaffolds was measured using a Nikon LV 150 Confovis mi-
croscope (Nikon, Tokyo, Japan). According to ISO 25178–603 [28], quantitative information
was extracted from roughness maps. Surface roughness parameters under consideration
were surface skewness (Ssk) and surface kurtosis (Sku).

2.5. XµCT

To quantify morphometric parameters, scaffolds were subjected to X-ray micro-
computed tomography (XCT) analysis using a Bruker Skyscan 1174 tomographic system
(Bruker, Billerica, MA, USA). As shown in Table 1, scaffold projections were obtained at
V = 50 kV and I = 800 A using the experimental settings listed in Table 1. The conditions
under which projections were processed in stacks of cross-sectional slices using Nrecon
reconstruction software (version 1.7.1.6) (Bruker) are also detailed in Table 1.

Table 1. Experimental settings for XµCT analysis.

Phase Parameter DO5 RD5 DO30 RD30 DO50 RD50

Acquisition

Pixel size [µm] 11.5

Rotation step [deg.] 0.4 for 180

Frame averaging 2

Al filter [mm] No filter 0.25 0.25

Exposure time [s] 1.6 3 4

Reconstruction

Smoothing 1 2 2

Ring artifact reduction 2 2 2

Beam hardening
correction [%] 5 20 25

DO and RD scaffolds for each compound composition were analyzed with CT-analyzer
software (Version 1.18) (Bruker). Morphometric parameters examined were micro-porosity
(%) and total porosity (%).
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2.6. Mechanical Tests

Four samples of each scaffold typology were subjected to compressive testing employ-
ing an Instron 5567 machine (Instron, Norwood, MA, USA) with a 5 kN maximum load
and 0.5 mm/min compression rate. Tests were stopped at 50% displacement from initial
scaffold height. Results were plotted as applied load (N) vs. compression on initial sample
height (%). In addition, compressive modulus © and ultimate compressive strength (σUC)
were quantified from the stress/strain curve, according to ASTM D 1621e10 [29].

2.7. Biological Tests
2.7.1. Cell Culture and Seeding

Human bone marrow mesenchymal stem cells (hBM-MSCs) were isolated and pheno-
typically analyzed in accordance with the International Society for Cellular Therapy [30,31],
to evaluate mesenchymal properties. The Institutional Review Boards of the Fondazione
IRCCS Policlinico San Matteo and the University of Pavia (2011) authorized the study
protocols. All participants provided their written, informed consent. In all the experiments,
cells were mainly at passages 4–5. hBM-MSCs were cultured in a low-glucose Dulbecco’s
modified Eagle’s medium (DMEM) as maintenance medium supplemented with 10% Mes-
enCult, 2% glutamine, 1% penicillin–streptomycin (P-S) and 1% amphotericin B (Lonza
Group Ltd., Basel, Switzerland) and maintained in an incubator at 37 ◦C with a 5% CO2
atmosphere. Before cell seeding, scaffolds were sterilized in a 70% ethanol bath for 20 min
before being extensively rinsed with sterilized water and phosphate-buffered saline (PBS)
solution. After 40 min of UV exposure, dried scaffolds were deposited in a 24-well ultralow
cell attachment plate (Corning, Inc., Corning, NY, USA) and incubated overnight in the
culture medium. Cell seeding density was 5 × 104 cells/sample.

2.7.2. Cell Viability

In order to assess cell viability, cell mitochondrial activity was evaluated after 24 h and
4 days of culture with a 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide
assay (MTT; Sigma-Aldrich, St. Louis, MO, USA), as previously described [32]. Absorbance
was measured at 570 nm using 100 µL samples and a CLARIOstar® Plus Multi-mode
Microplate Reader (BMG Labtech, Ortenberg, Germany). Interpolation of a titration curve
was used to determine the number of cells in each sample. The results were reported as the
mean ± standard deviation. Each biological experiment was conducted in triplicate and in
a minimum of three distinct assays. Statistical analysis was carried out using GraphPad
Prism 6.0 (GraphPad, Inc., San Diego, CA, USA). Analysis was performed using one-way or
two-way analysis of variance (ANOVA), followed by a Bonferroni post hoc test (significance
level of 0.05).

2.7.3. Cell Morphology

After 4 days of incubation, hMSC-seeded scaffolds were processed to analyze cell
morphology by SEM. Samples were fixed with a 2.5% (v/v) glutaraldehyde solution in a
0.1 M Na-cacodylate buffer (pH = 7.2) for 1 h at 4 ◦C, rinsed with Na-cacodylate buffer and
then dehydrated at room temperature in an ethanol gradient series up to 100%. After 6 h of
lyophilization for complete dehydration, samples were sputter-coated with gold for SEM
observation.
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2.8. PhC-XµCT

Interaction between cells and scaffold material after 24 h and 4 days from cell seeding
was investigated with phase-contrast X-ray micro-tomography (PhC-XµCT). PhC-XµCT
analysis was conducted at the SYRMEP beamline of the ELETTRA Synchrotron Radiation
Facility (Trieste, Italy).

While conventional XµCT analysis presents results based on attenuation contrast,
PhC-XµCT imaging relies on phase contrast, according to the following Equation (1):

n = −1 − δ + iβ (1)

where n is the refractive index of material. Since δ, the real decrement of the refractive index
n, is one hundred times higher than the imaginary part β in soft tissues, the phase contrast
approach provides higher sensitivity than attenuation contrast for the investigated samples.

The experimental setup, fine-tuned to better discriminate PCL, HA and background,
was: white X-ray beam with peak energy of 19 keV; sample-to-detector distance of 10 cm
and pixel size of 0.9 µm. The total number of projections for each sample was 2048, while
the analyzed field of view (FOV) was 2048 × 2048 px2, equivalent to an acquired volume
of about 6.3 mm3, a relatively small portion with respect to the entire scaffold volume
(Vnom = 500 mm3). Tomographic slice reconstruction was performed using SYRMEP Tomo
Project (STP) open-source software (Version 1.6.3) [33], developed by beamline researchers
for its users. Paganin’s phase retrieval algorithm [34] has been applied. Ten cubic volumes
of interest (VOIs) with a voxel edge of 270 µm were selected for each sample by FIJI
and analyzed with VG Studio MAX 1.2 software (Volume Graphics GmbH, Heidelberg,
Germany). Representative threshold values were manually set for PCL and HA and
structural analysis was carried out on three-dimensional images. Dragonfly software
(Version 2022.1) (ORS, Montréal, QC, Canada) was used to visualize the samples and
produce 3D models of the inner areas.

3. Results
3.1. Powder Characterization

The results of SEM observations of PCL/HA feedstock powders are shown in Figure 2.
The PCL and HA particles are discernible by shape and contrast, due to image acquisition
with backscattered electrons. The PCL powder is formed of irregular structures (dark con-
trast), while HA has a roundish shape (bright contrast). From the normal size distribution,
most of the HA particles were observed in the range of 15–25 µm, while PCL was observed
in the 65–85 µm range (Figure 3).

Materials 2023, 16, x FOR PEER REVIEW 6 of 19 
 

 

2.8. PhC-XµCT 
Interaction between cells and scaffold material after 24 h and 4 days from cell seeding 

was investigated with phase-contrast X-ray micro-tomography (PhC-XµCT). PhC-XµCT 
analysis was conducted at the SYRMEP beamline of the ELETTRA Synchrotron Radiation 
Facility (Trieste, Italy). 

While conventional XµCT analysis presents results based on attenuation contrast, 
PhC-XµCT imaging relies on phase contrast, according to the following Equation (1): 

n = −1 − δ + iβ  (1)

where n is the refractive index of material. Since δ, the real decrement of the refractive 
index n, is one hundred times higher than the imaginary part β in soft tissues, the phase 
contrast approach provides higher sensitivity than attenuation contrast for the investi-
gated samples. 

The experimental setup, fine-tuned to better discriminate PCL, HA and background, 
was: white X-ray beam with peak energy of 19 keV; sample-to-detector distance of 10 cm 
and pixel size of 0.9 µm. The total number of projections for each sample was 2048, while 
the analyzed field of view (FOV) was 2048 × 2048 px2, equivalent to an acquired volume 
of about 6.3 mm3, a relatively small portion with respect to the entire scaffold volume 
(Vnom = 500 mm3). Tomographic slice reconstruction was performed using SYRMEP Tomo 
Project (STP) open-source software (Version 1.6.3) [33], developed by beamline research-
ers for its users. Paganin’s phase retrieval algorithm [34] has been applied. Ten cubic vol-
umes of interest (VOIs) with a voxel edge of 270 µm were selected for each sample by FIJI 
and analyzed with VG Studio MAX 1.2 software (Volume Graphics GmbH, Heidelberg, 
Germany). Representative threshold values were manually set for PCL and HA and struc-
tural analysis was carried out on three-dimensional images. Dragonfly software (Version 
2022.1) (ORS, Montréal, QC, Canada) was used to visualize the samples and produce 3D 
models of the inner areas. 

3. Results 
3.1. Powder Characterization 

The results of SEM observations of PCL/HA feedstock powders are shown in Figure 
2. The PCL and HA particles are discernible by shape and contrast, due to image acquisi-
tion with backscattered electrons. The PCL powder is formed of irregular structures (dark 
contrast), while HA has a roundish shape (bright contrast). From the normal size distri-
bution, most of the HA particles were observed in the range of 15–25 µm, while PCL was 
observed in the 65–85 µm range (Figure 3). 

 
Figure 2. SEM micrographs of PCL/HA feedstock powders: P5 (a), P30 (b) and P50 (c). Figure 2. SEM micrographs of PCL/HA feedstock powders: P5 (a), P30 (b) and P50 (c).



Materials 2023, 16, 4950 7 of 19
Materials 2023, 16, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 3. Particle size distribution of PCL (blue curve) and HA (orange curve) powder. 

XRD patterns of feedstock powders (P5, P30 and P50), in the full angular range in-
vestigated, are reported in Figure 4. Peak position of PCL is indicated by full dots, while 
all remaining peaks are due to hydroxyapatite Ca10(PO4)6(OH)2, hexagonal, with lattice 
parameters a = 0.93944 nm and c = 0.68751 nm (ICDD 74–565). Figure 4 shows well-defined 
and narrow peaks of all phases, suggesting good crystallization of PCL and HA powders. 
Moreover, the sequential increment in the relative intensity of HA peaks in P5, P30 and 
P50 patterns agrees with the increase in the relative amount of HA in the mixed powder. 

 
Figure 4. XRD patterns of P5, P30 and P50 powders. PCL—full dot. All other peaks are due to HA. 

3.2. Scaffold Characterization 
3.2.1. SEM Analysis 

The SEM acquisition of scaffold skin-up surfaces is reported in Figure 5. HA is visible 
as bright round-shaped particles dispersed in PCL, which shows a gray contrast. After 
production, powder particles can be distinguished on the scaffold surface due to incom-
plete melting on the scaffold surface (Figure 5). The morphology of PCL particles is irreg-
ular and edgy, with particle boundaries easily distinguishable. This effect is less 

Figure 3. Particle size distribution of PCL (blue curve) and HA (orange curve) powder.

XRD patterns of feedstock powders (P5, P30 and P50), in the full angular range
investigated, are reported in Figure 4. Peak position of PCL is indicated by full dots, while
all remaining peaks are due to hydroxyapatite Ca10(PO4)6(OH)2, hexagonal, with lattice
parameters a = 0.93944 nm and c = 0.68751 nm (ICDD 74–565). Figure 4 shows well-defined
and narrow peaks of all phases, suggesting good crystallization of PCL and HA powders.
Moreover, the sequential increment in the relative intensity of HA peaks in P5, P30 and P50
patterns agrees with the increase in the relative amount of HA in the mixed powder.
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3.2. Scaffold Characterization
3.2.1. SEM Analysis

The SEM acquisition of scaffold skin-up surfaces is reported in Figure 5. HA is visible
as bright round-shaped particles dispersed in PCL, which shows a gray contrast. After
production, powder particles can be distinguished on the scaffold surface due to incomplete
melting on the scaffold surface (Figure 5). The morphology of PCL particles is irregular
and edgy, with particle boundaries easily distinguishable. This effect is less pronounced
for scaffolds with 30 wt.% HA (Figure 5c,d). This was especially the case for RD30, where
the particles were fully melted on the strut surface of the scaffold (Figure 5d). Although
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they appear unevenly distributed on the scaffold struts (Figure 5), HA particles (inset in
Figure 5f) act as a solid dispersion in the PCL/HA scaffold matrix.
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Table 2. Results of the EDS chemical analysis for Ca/P atomic ratio of powders, DO and RD scaffolds
with 5, 30 and 50 wt.% of HA.

Ca/P (at.%)

HA 5% HA 30% HA 50%

Powder 1.6 ± 0.2 2.1 ± 0.1 2.1 ± 0.1
DO 1.9 ± 0.1 2.3 ± 0.4 2.1 ± 0.2
RD 1.9 ± 0.1 1.7 ± 0.3 2.1 ± 0.1

XRD patterns of the scaffold top surface are reported in Figure 6. Patterns of DO
and RD geometries are shown for the different HA amounts, vertically shifted to ease
comparison. XRD patterns of scaffolds are reported in Figure 6 in the reduced angular range
2θ = 15◦–45◦ where the most intense peaks of both phases (PCL and HA) are positioned.
PCL peaks are indicated by full dots, while all other peaks are due to HA.
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A qualitative comparison of XRD patterns of DO (Figure 6a) and RD (Figure 6b)
scaffolds in terms of peak intensity and width suggests a better crystallization of the
DO geometry.

3.2.2. Haralick’s Surface Analysis

The results of the Haralick’s surface texture analysis are reported in Figure 7. From a
descriptive statistics viewpoint (Figure 7a,b), the higher the HA percentage, the closer the
values of energy and variance. It is, however, possible to achieve a multivariate view [35]
by fitting a repeated measures model (Figure 7c), where the Haralick’s features together
generate their marginal means (it is possible to show multivariate statistics in a univariate
manner). For each geometry, the surface textures of 30 and 50 wt.% HA are statistically
equivalent (p > 0.05). In addition, the higher the HA percentage, the closer the values of
marginal means, indicating that the surface textures of DO50 and RD50 are statistically
equivalent (p > 0.05). The other comparisons (within each geometry or between geometries
with equal percentages of HA) were also significant (with at least p < 0.05).
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Figure 7. Haralick’s surface texture analysis: (a) Haralick’s energy; (b) Haralick’s variance and
(c) estimated marginal means in repeated measures model calculated from (a,b). The results are
presented as mean ± SD in (a,b), whereas as mean ± standard error in (c) with * p < 0.05, ** p < 0.01,
*** p < 0.001 (the comparisons were made within each geometry or between geometries with equal
percentages of HA).

3.2.3. Roughness

Parameters related to surface roughness, derived from surface maps, are listed in
Table 3. Although both geometries have a predominance of valleys (Ssk < 0), RD scaffolds
present roughness profiles with a peak distribution (Sku > 3) that is higher and sharper
with respect to values obtained in DO.

Table 3. Roughness parameters from roughness maps.

Parameter
DO RD

DO5 DO30 DO50 RD5 RD30 RD50

Ssk Symmetry of roughness profile
with respect to mean line −0.5 −0.24 −1.3 −0.6 −0.4 0.2

Sku Sharpness of roughness profile 2.6 2.4 4.4 2.8 4.28 3.2

3.2.4. XµCT

The scaffold morphometric parameters resulting from XµCT analysis are listed in
Table 4. Values of micro-porosity and total porosity are considered for DO and RD scaffolds
for each compound composition. Total porosity is higher in RD than in DO, except in the
case of DO30 and RD30 where both geometries exhibited similar values. Micro-porosity
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within the scaffold struts, conversely, is higher in DO with respect to RD and in scaffolds
with 30 and 50 wt.% HA, compared to 5 wt.%.

Table 4. Scaffold morphometric parameters obtained from XµCT analysis.

Parameter
DO RD

DO5 DO30 DO50 RD5 RD30 RD50

Total porosity [%] 65 ± 1 56 ± 4 64 ± 2 70 ± 1 53 ± 1 69.5 ± 0.5

Scaffold micro-porosity [%] 1.9 ± 0.1 5.9 ± 0.4 4.6 ± 0.4 1.4 ± 0.1 3.7 ± 0.3 3.1 ± 0.1

3.3. Mechanical Test

The results of mechanical tests performed on DO and RD geometry for each compound
composition are plotted in Figure 8. Scaffolds with 30 and 50 wt.% HA exhibit similarly
shaped load/compression curves. The curves show an initial steep rise, due to elastic
compression of the struts in the unit cell, of up to about 10% compression with respect to
the initial scaffold height. After elastic deformation, the curve shows a slowly increasing
linear behavior, because of the progressive collapse of the struts (plateau). This plastic collapse
is followed by a significant increase in the slope of the curve, coinciding with the densification of
the scaffold. Compression tests were considered complete at about 50% of the specimen height.
Scaffolds with 30 wt.% HA have a higher ultimate compressive strength than scaffolds with
50 wt.% HA. Scaffolds containing 5% wt.% HA exhibit a less evident plastic collapse regime,
with the compaction of the unit cells starting at about 25% compression.
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Values of scaffold elastic modul©(E) and ultimate compressive strength (σUC), derived
from compression curves in Figure 8, are reported in Table 5 for DO and RD geometries
and 5, 30 and 50 wt.% HA.

Table 5. Mechanical parameters from uniaxial compressive test. E—elastic modulus; σUC—ultimate
compressive strength.

Mechanical
Parameter

DO RD

DO5 DO30 DO50 RD5 RD30 RD50

E (MPa) 10.8 ± 0.6 13 ± 2 8 ± 2 7.2 ± 0.5 11.6 ± 0.7 6.3 ± 0.1

σUC (MPa) 2.8 ± 0.7 2.20 ± 0.05 1.5 ± 0.6 1.9 ± 0.1 2.4 ± 0.2 1.07 ± 0.01

It is worth noting that in the elastic regime the unit cell geometry has a predominant
influence on the mechanical response of scaffolds only in samples with low HA amounts,
while at concentrations of 30 and 50 wt.% the HA amount becomes the determining factor.
In the plastic regime the behavior is dependent on both geometry and HA concentration.
Densification is fully dependent on the material. Furthermore, at 50 wt.% HA the mechanical
behavior of scaffolds is always determined by the material, regardless of unit cell geometry.

3.4. Cell Adhesion and Proliferation

Viability tests were carried out on DO and RD scaffolds containing different amounts
of HA after 24 h (1 d) and 4 days of hMSC culture. In Figure 9, the data are represented as
the number of cells at both culture times. It can be seen that the increasing addition of HA
contributed positively to cell adhesion and proliferation of DO and RD geometries. Within
the DO geometry, observed cell numbers were significantly higher at 30 and 50 wt.% HA,
when compared to the 5% concentration (** p < 0.01), after 24 h incubation. Furthermore,
an increase in cell proliferation was observed at 4 days compared to 24 h, although this
was only significant in the sample with 5 wt.% HA (** p < 0.01) (Figure 9a). A similar
trend was observed in the RD geometry, where cell numbers were significantly higher at
30 and 50 wt.% HA, compared with 5 wt.% HA, at both 24 h and 4 days of incubation
(Figure 9b). A significant increment in cell growth was evident in all three concentrations
at 4 days, compared to 24 h culture (Figure 9b). In terms of geometries, a significantly
higher number of cells was determined on the RD geometry, at both 24 h and 4 days at
all HA concentrations. This indicates the critical contribution of unit cell geometry in the
interaction with cells.
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In an effort to clearly understand the morphology and the behavior of the hMSCs, SEM
observations (Figure 10) were carried out after 4 days of incubation on RD30 (Figure 10a)
and RD50 and not on RD5 (Figure 10b), because of the greater number of cells in the former
than in the latter. As depicted in Figure 8, hMSCs spread extensively on the inner struts
of both scaffold typologies, extending their filopodia and cellular protrusions across the
scaffold pores. It is interesting to note that SEM analysis after 4 days of culture revealed the
presence of few hMSCs on scaffold surfaces, most likely as a result of cell colonization of
the innermost scaffold layers.
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3.5. PhC-XµCT

Hydroxyapatite weight percentages (wt.%), obtained by PhC-XµCT analysis, are
reported in Table 6 for both scaffold geometries with 5, 30 and 50 wt.% HA, after 4 days
of cell culture. It is worth noting that in both geometries, at high HA percentages (30
and 50 wt.%), it is possible to identify areas filled with deposits of worn away composite
material, whereas at lower HA percentages the struts maintained their configurations and
the porous portions remained hollow (Figure 11).

Table 6. HA wt.% average value and standard deviation in PCL/HA scaffolds, after 4 days of cell culture.

DO RD

DO5 DO30 DO50 RD5 RD30 RD50

HA
[wt.%] 9 ± 2 50 ± 20 70 ± 20 8 ± 1 50 ±10 70 ± 20
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4. Discussion

A scaffold serving as a cell transplant device is an emerging approach to bone tissue
engineering for regenerating damaged tissue. Previous works in the literature on PCL/HA
biodegradable scaffolds produced by additive manufacturing have been focused on the
effects of geometry or ceramic amount on scaffold biomechanical behavior, separately. This
experimental work aims to analyze the combined effects of elementary unit cell geometry
and HA dispersion on additively manufactured PCL/HA scaffold performances. PCL/HA
scaffolds were produced by laser powder bed fusion (LPBF) technology with diamond
(DO) and rhombic dodecahedron (RD) elementary unit cells (Figure 1) at concentrations of
5, 30 and 50 wt.% HA, from the perspective of bone tissue regeneration.

The manufacturing of scaffolds started by using the mix of PCL and HA powders
illustrated in Figure 2, where the increasing content of round-shaped HA particles dispersed
in the feedstock powders is clearly visible with the variation in the HA amount. Both phases
(PCL and HA) in the mixed powder are well crystallized (Figure 4), with the Ca/P ratio
of HA close to the expected stoichiometric value of 1.67 (Table 2), within uncertainties, as
experimentally found by EDS analysis. The wide range of PCL particle sizes (blue curve
in Figure 3), together with the large variability in density observed in [20], is related to
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the fairly large temperature range of PCL powder [20]. This variation results in a melting
process which is difficult to control during the scaffold production by LPBF. The thermal
behavior of PCL powder, along with the heat dissipation rate which is influenced by the
elementary unit cell geometry, provokes a non-homogeneous melting of PCL particles,
which are larger and denser, on the scaffold surface (Figure 5), as also found in [17,20].

Surface roughness (Sku) of DO and RD scaffolds with 5 wt.% HA shows similar values
regardless of the geometry of unit cells (Table 3); while at higher HA concentrations (30 and
50 wt.%) the Sku parameter is influenced by both geometry and HA concentration (Table 3).
The estimated marginal means of the Haralick’s texture features (Figure 7c) have the same
variation pattern in the DO and RD scaffolds. This result indicates that both elementary
unit cell geometry and HA concentration impact on scaffold surface texture, in agreement
with roughness measurements (Table 3).

Scaffolds exhibit a double porous structure, formed of the designed macro-pores of
elementary unit cell geometry and the micro-pores within the struts. Elementary unit
cell geometry determines the arrangement of material struts (scaffold connectivity) and,
consequently, the distribution of a macro-porous network (scaffold tortuosity), as already
widely described in Gatto et al. [20]. According to [20], the higher tortuosity of DO geometry
leads to a slower heat dissipation rate during scaffold fabrication. The heat dissipation
rate affects the material crystallinity during solidification and cooling. As a consequence,
the DO scaffold tends to have higher crystallinity of both PCL and HA with respect to RD,
regardless of the HA amount (Figure 6). As already demonstrated in our previous work [20],
scaffold crystallinity depends on unit cell topology, while scaffold chemical composition is
independent of geometry (Table 2). Micro-porosity within the struts is controlled by HA
concentration and elementary unit cell geometry (Table 4). The latter affects the global heat
dissipation rate of the scaffold, while the local mechanism of heat dissipation depends on
the amount of HA particles that remain unfused during the manufacturing process.

Mechanical compression tests revealed a different elastic behavior depending on the
HA concentration (Figure 8). With only 5 wt.% HA, the elastic regime was influenced by
the unit cell geometry (black curves in Figure 6 and quantification in Table 5). On the other
hand, for higher HA concentrations (30 and 50 wt.%), the elastic deformation regime was
fully controlled by the HA amount, since DO and RD geometries show similar behavior in
terms of load/compression curve shape (Figure 8) and elastic modulus values (Table 5).
In more detail, the contribution of unit cell geometry in the elastic regime is associated
with the elastic response of struts forming the cells of the lattice structure. Moreover,
elastic modulus can be increased by adding HA particles, as found by Rezania et al. [21] in
extruded scaffolds in PCL/HA (from 5 to 20 wt.%). However, this trend shows a threshold
between 30 and 50 wt.% HA concentrations (Table 5). This result extends to the elastic
regime previous findings of Eosoly et al. [17], showing that the addition of HA into the
powder mix caused a decline in mechanical properties (compressive strength) of LPBF
scaffolds with PCL/HA up to 30 wt.%. The effect of HA incorporation on the mechanical
behavior of scaffolds depends on the sintering quality of the polymer powder particles.
In the case of weak polymer sintering, HA particles could not properly integrate into
the polymeric matrix, acting as an insulating agent working against coherent sintering
within layers and against cohesion between layers [17]. According to the findings of Gatto
et al. [36] on polyamide (PA) filled with aluminum or alumina particles, the reinforcing
mechanism is effective in two circumstances: (a) nano-reinforcements and (b) strong bonds
between matrix and filler. In all other cases, the filler is ineffective or even detrimental to
the mechanical performances.

Plastic deformation (plateau in Figure 8) is controlled by both HA concentration
and elementary unit cell geometry. Since DO geometry presents a more connected and
open-pore structure than RD [20], it requires a higher load to achieve the same plastic
deformation values, especially with up to 30 wt.% HA. At 50 wt.% HA, conversely, it is the
material composition which mostly influences plastic collapse, regardless of geometry.
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During scaffold densification, when pores are flattened and struts broken, the material
properties determine the mechanical response of the scaffold [20], leading to a decrease in
the ultimate compressive strength (σUC) as HA amounts are increased (Table 5). Therefore,
higher amounts of HA in the PCL/HA composite scaffolds induce deterioration of the
mechanical properties of the scaffold, in good agreement with the mechanical results of
Eosoly et al. [17].

However, regardless of unit cell geometry (DO or RD) or variations in HA concentra-
tion (5, 30 or 50 wt.%), all scaffolds presented an ultimate compressive strength which was
in the range of human mandibular trabecular bone [37].

The biological performances of scaffolds were tested with short-term hMSC culture
(Figure 9). Cell adhesion after 24 h is significantly higher in 30 and 50 wt.% HA than 5 wt.%,
regardless of unit cell geometry (Figure 9a,b). This suggests that, since scaffolds exhibit a
similar surface pattern (Figure 5), hMSC adhesion after 24 h of incubation is affected more
by material composition than by surface texture. On the contrary, Liu et al. [22] did not
observe any significant differences in cell proliferation activity among all scaffolds (0–25
wt.% HA in PCL matrix) after 1 day, whereas evident differences in cell proliferation activity
were observed after 3 days of culturing, with 25 wt.% PCL/HA possessing the highest
proliferation of MC3T3-E1 osteoblasts [22]. After 4 days of hMSC culturing, RD30 and RD50
resulted as the most favorable environments for cell proliferation (Figure 9b). This is likely
due to the more connected and open-pore structure, which allows cell colonization across
the whole structure because of the appropriate supply of nutrients and oxygen [20]. After 4
days culturing, cell viability is largely determined by the elementary unit cell geometry.
The absence of hMSCs on the top surface of scaffolds after 4 days of incubation (Figure 10)
suggests cell migration from the surface to scaffold inner layers.

To further understand the interaction between cells and material, phase contrast X-
ray micro-tomography (PhC-XµCT) by synchrotron radiation analysis was performed on
scaffolds after 4 days of culture (Table 6 and Figure 11). The PCL degradation, in addition
to culture medium and presence of cells, is due to the combined effects of elementary
unit cell geometry, micro-porosity, PCL molecular weight and the amount and size of
HA, as extensively demonstrated by Gatto et al. [20]. The experimental quantification of
average HA amounts in PCL scaffolds with DO and RD geometries shows high standard
deviation (SD) values (Table 6). These high SD values are probably imputable to localized
degradation phenomena, in turn attributable to (a) an inhomogeneous distribution of
HA (as suggested by Eosoly et al. [17] and observable in Figure 4) and (b) a poor con-
trol of micro-pore dispersion within the struts, as shown by 2D cross-sectional slices in
Figure 11a,b. As a result, it cannot be quantitatively demonstrated that the HA concentra-
tion generally increases because of the PCL degradation. However, 3D reconstruction of
RD5 in Figure 11c clearly displays open macro-pores, while RD30 macro-pores are filled
with eroded fragments composed mainly of PCL (Figure 11d). This result aligns with
the RD5 and RD30 micro-porosity values in Table 4. The higher micro-porosity of RD30
(Figure 11b) enables the biomaterial degradative process to accelerate, allowing for fluid
infiltration within the scaffold struts [20].

5. Conclusions

The aim of this work was to fill the gap in the literature of the combined effects of
elementary unit cell geometry and HA amounts on the performances of additively manu-
factured PCL/HA scaffolds for tissue engineering applications. Scaffolds were produced
by laser powder bed fusion (LPBF) with diamond (DO) and rhombic dodecahedron (RD)
elementary unit cells, and 5, 30 and 50 wt.% HA.

Scaffold biomechanical and degradative behaviors were investigated by structural,
mechanical and biological characterizations, to evaluate the influence of elementary unit
cell geometry and HA concentration on the scaffold performances. The main results can be
summarized as follows:
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• Mechanical tests evidenced three deformation regimes: elastic, plastic and densification:

# In the elastic regime, geometry of the elementary unit cell governs the behavior
of the scaffold containing the lowest amount of HA (5 wt.%), while at higher
concentrations (30 wt.% and 50 wt.% HA) the mechanical response depends on
the material properties;

# In the plastic regime, for scaffolds with 5 and 30 wt.% HA, the DO geometry
requires higher load to achieve the same deformation value of RD, while for
scaffolds with 50 wt.% HA the load values are almost the same;

# In the densification regime, the ultimate compressive strength decreases with
an increasing of HA amount;

• Regardless of elementary unit cell geometry (DO or RD) or HA amount (5, 30 or
50 wt.%), scaffolds presented an ultimate compressive strength value in the range of
human mandibular trabecular bone;

• The biological response of hMSCs after 24 h of culture is mostly affected by material
composition, with enhancement of cell adhesion for HA amounts of 30 and 50 wt.%;

• After 4 days of culture, cell viability is affected by elementary unit cell geometry,
with RD30 and RD50 being the most favorable environments for cell proliferation.
Moreover, higher micro-porosity values accelerate the biomaterial degradative process.
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