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Abstract: With the increasing requirements of automotive lightweighting, metal/CFRP laminates are
increasingly used. In this paper, Al/CFRP laminates were prepared using an integrated hot press
curing method, and the optimum curing conditions were determined using the single-lap shear test
at 130 ◦C for 45 min. The effects of fiber lay-up, forming speed, and metal layer thickness on bending
springback were investigated using the V-shaped bending test and Abaqus finite element analysis
method. The results show that fiber lay-up has an important influence on springback. Among the
five different fiber lay-ups (0◦ unidirectional, 90◦ unidirectional, 0◦ orthotropic, 90◦ orthotropic, and
45◦ orthotropic), the 45◦ orthotropic lay-up had the lowest springback rate of 1.11%. Increasing
the thickness of the sheet metal can significantly reduce the resilience rate. As the sheet thickness
increased from 2 mm to 3 mm, the springback of the 90◦ unidirectional lay-up decreased by 43%.
Springback was not sensitive to forming speed, and the difference in springback was within 1%
at different forming speeds. The damage behavior of the forming process was analyzed using the
three-dimensional Hashin damage law with the Vumat subroutine and microscopic analysis. Fiber
and resin damage under 45◦ orthotropic lay-up conditions was relatively small compared to fiber
damage under 0◦ unidirectional lay-up and resin damage under 90◦ unidirectional lay-up.

Keywords: fiber metal laminate; bending; springback; damage; numerical simulation

1. Introduction

Along with the increasing production of automobiles, the corresponding energy
consumption and environmental protection problems are becoming increasingly serious.
Energy savings and emission reduction have become the primary issues that need to be
addressed for the sustainable development of the automotive industry. Vehicle weight
reduction is one of the effective measures to improve energy efficiency and reduce emis-
sions [1]. Carbon fiber reinforced plastics (CFRP), which exhibit a high specific modulus
and high designability, have great potential for automotive lightweighting [2–5]. However,
the poor plasticity and fracture toughness of CFRP materials make it possible to produce
sharp corners after damage fracture, causing damage to passengers [6]. CFRP/metal
composite laminates [7–9] can effectively reduce the cost of production, without compro-
mising strength and stiffness, while overcoming the shortcomings of single material perfor-
mance [10,11]. With the development of automotive lightweighting, 7000 series aluminum
alloy materials have gradually replaced traditional steel materials [12–16]. A composite
of 7000 series aluminum alloy and CFRP material can obtain excellent comprehensive
performance of the high strength of CFRP and the good toughness of aluminum alloy.

For Al/CFRP composite laminates, common processing methods include resin transfer
molding [17], autoclave molding [18], and hot press curing integrated molding. Resin
transfer molding is prone to defects, such as inadequate curing of CFRP and uneven
thickness after molding. Autoclave molding has a high cost and high requirements for
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temperature and vacuum, and poor temperature control accuracy cannot make complex
shape parts.

Hot press curing integration has the advantages of low cost and short production
cycle. It first heats the forming dies and then forms and cures the metal/CFRP hybrid part
in one stroke using epoxy resin in CFRP as the adhesive. Uriya et al. [19] investigated the
springback of V-shaped CFRP/Al hybrid parts at different temperatures. Wang et al. [20]
formed Al/CFRP laminates and studied the effect of forming temperature on formability.
Tanaka et al. [21] used CFRP containing thermoplastic epoxy resin, laminated with Al
alloy sheets to form hat-shaped parts, and analyzed the lay-up sequence of CFRP, the
material thickness ratio of Al and CFRP, and the effect of the stacking method on stiffness
using the finite element method. The model using CFRP with a stacking sequence of
(±45) showed higher stiffness. Hu et al. [22] investigated the mechanical properties and
failure mechanisms of CFRP/Al laminates. The bending behavior under different stacking
sequences was investigated using three-point bending tests. The results suggest that the
carbon fiber reinforced composite layers played a prominent role in the bending properties.
With an increasing volume fraction of aluminum sheets, lower bending strength and
modulus were obtained for the laminates. Different fiber orientations have different
effects on forming damage. However, due to the complexity of the layer, material failure
mechanism, and difficulty of forming, there is very limited research on the forming of
CFRP/7000 aluminum alloy laminates, especially the springback after forming.

This paper focuses on the forming and springback study of V-bending of 7075 alu-
minum alloy/CFRP laminates in order to have a deep understanding and effective control
of springback behavior. Forming accuracy was measured based on the amount of spring-
back. The experiments were performed using a V-bending mold, and the simulations were
performed using Abaqus/Explicit. Forming damage, such as fiber fracture and matrix
fracture, was predicted using the subroutine Vumat.

2. Experimental Methods and Materials

The CFRP was T700 carbon fiber prepreg produced by Toray, Tokyo, Japan, with a
thickness of 0.15 mm. R5600 standard prepreg resin with 38% resin content was used.
The T700 material properties are shown in Table 1 [23]. E1 is the longitudinal modulus of
elasticity, E2 is the transverse modulus of elasticity, µ is Poisson’s ratio, and G is the shear
modulus. Aluminum sheets (7075-T6) of 2 mm and 3 mm were selected, and the properties
are shown in Table 2.

Table 1. Mechanical properties of T700.

Density
(kg/cm3)

E1
(GPa)

E2
(GPa) µ12 G12

(GPa)
G13

(GPa)
G23

(GPa)

1560 130 8 0.28 4.5 4.5 3.6

Table 2. Mechanical properties of aluminum alloy 7075-T6.

Density
(kg/cm3)

Tensile Strength
(GPa)

Yield Strength
(GPa)

E
(GPa)

Elongation
%

2800 0.55 0.48 64 10

2.1. Preparation of Composite Laminates

The composite laminates were prepared using the hot press curing integrated method.
The hot press curing device is shown in Figure 1, which includes an upper die, a lower
die, heat cartridges, a thermocouple, and a temperature control box. The heating box
has a power of 1 kW and a temperature control range of 0–999 degrees Celsius. First, the
aluminum alloy sheet surface was sanded with 80-grit sandpaper and ultrasonically cleaned
to remove debris. Then, 6 layers of CFRP were manually laid on the treated aluminum sheet
surface. When the temperature reached the curing temperature (120–140 ◦C), the composite
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laminate would be placed between the upper die and the lower die. The laminate was
cured under pressure at 18 MPa for 30–60 minutes and then removed from the dies.
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2.2. Determination of Curing Conditions

The connection between the CFRP and the aluminum sheet relies on the epoxy resin
in the CFRP prepreg. This resin starts to flow under heat, enters the pits in the rough
metal surface, and starts to cure when the curing temperature is reached, thus achieving
a tight connection between the CFRP and the aluminum sheet. Curing conditions have
an important influence on the quality of the CFRP/aluminum alloy interface connection.
The best curing conditions were determined using the single-lap shear test, using the
interfacial bearing capacity as a measure. The single-lap shear specimen was designed
according to ASTM-1002, as shown in Figure 2. The CFRP prepreg was laminated with
6 layers of 0◦ unidirectional lay-up. After placing the prepreg over the aluminum sheet,
they were hot pressed. The specimens were subjected to the single-lap shear test using a
WDW-20 electronic universal testing machine (KeXin, Changchun, China) with a loading
speed of 2 mm/s. The average of two experimental results was taken for each group. The
force–displacement curves of the experimental results are shown in Figure 3. The fracture
morphology of the specimen is shown in Figure 4.

When curing at 120 ◦C, the interfacial bearing capacity was generally very low, show-
ing an order of magnitude difference from the experimental results of the other groups.
The interfacial bearing capacities of the 30 min group and 45 min group were approxi-
mately 0.17 kN and 0.30 kN, respectively. According to the morphology at the debonding
of CFRP/Al laminate, CFRP completely separated from the Al sheet surface, with the
surfaces smoother and the amount of residual fibers less, which was considered to be
caused by incomplete curing. When the thermosetting resin is incompletely cured, the
resin remaining on the rough metal surface does not create a sufficient connection between
the CFRP and the metal sheet. Thus, when subjected to a load, the interface is damaged
before the fibers and the CFRP separate from the aluminum. For the 130 ◦C curing group,
the interface bearing capacity reached 4.01 kN at 30 min. When the curing time reached
45 min, the bearing capacity reached a peak of 4.40 kN. Compared to the 120 ◦C groups,
the bearing capacity increased by 2258.82% and 1366.67%, respectively. A large amount of
fiber residue was visible at the debonding surface, and the fiber bundles appeared to be
fractured. The curing was thus considered completed, the interfacial strength was higher
than the interlayer strength, and the bearing capacity was also greatly increased. When
the curing time reached 60 min, there was a slight decrease in the bearing capacity due to
the excessive curing time, which led to aging of the resin. It can be found that the bearing
capacity of the 140 ◦C curing group did not exceed that of the 130 ◦C group. From both
performance and benefit perspectives, 130 ◦C-45 min was chosen as the curing condition.
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2.3. V-Shaped Bending Test

Due to the poor formability of 7075-T6 at room temperature, the aluminum alloy
sheet was solution treated at 480 ◦C for 30 min and rapidly quenched before being lam-
inated with CFRP. The size of the 7075 aluminum alloy sheet was 80 mm × 20 mm,
and the thickness was 2 mm and 3 mm. The thickness of the single layer prepreg was
0.15 mm. Six layers of prepreg were laid in 0◦ unidirectional (0/0/0/0/0/0), 90◦ unidirec-
tional (90/90/90/90/90/90), 45◦ orthotropic (45/−45/45/−45/45/−45), 90◦ orthotropic
(0/90/90/90/90/0), and 0◦ orthotropic (90/0/0/0/0/90). After lay-up, the laminate was
hot pressed and cured at 130 ◦C for 45 min. The bending dies and dimensions are shown
in Figure 5.
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2.4. Springback Rate Measurement

The angles of the unloaded parts were measured using a multifunctional protractor.
The difference in angle before and after forming is shown in Figure 6.
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Use the springback rate to characterize the degree of springback.

K =
θe − θd

θd
× 100% (1)

where θe is the angle after springback, θd is the angle before springback, and K is the
springback rate.

3. Results and Discussion
3.1. Effect of Lay-Up Direction on Springback

The bending parts with different layer-up sequences are shown in Figure 7. The corre-
sponding springback rates are shown in Figure 8, where the 90◦ unidirectional springback
is 5.5%, the 45◦ orthotropic spingback is 1.11%, the 90◦ orthotropic springback is 3.33%, and
the 0◦ orthotropic springback is 1.67%. It is obvious that lay-up direction has an important
effect on springback, which is mainly reflected in the resistance to deformation of different
lay-ups, i.e., the elastic modulus E.
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The simplified laminate models are shown in Figure 9. The equivalent elastic moduli
of different lay-up laminates can be obtained using the composite theory. The elastic moduli
of 0◦ unidirectional and 90◦ unidirectional are 130 GPa and 8 GPa, respectively. For the
other lay-ups, the core layer thickness/total thickness ratio v is introduced.

v =
h2 + h3 + h4 + h5

h1 + h2 + h3 + h4 + h5 + h6
(2)
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According to the classical compound rule, the equivalent elastic modulus Ec is given by:

Ec = Einv + Eout (1 − v) (3)

Ein is the elastic modulus of the middle four layers, and Eout is the elastic modulus of
the outer two layers.

The equivalent elastic moduli of the different lay-up laminates are shown in Table 3.

Table 3. Elastic modulus of CFRP.

Lay-Up 0
Unidirectional

90
Unidirectional

90
Orthotropic

0
Orthotropic

45
Orthotropic

E (GPa) 130 8 48.67 89.33 16

Use the same method to obtain the equivalent elastic modulus Es of the Al/CFRP
hybrid laminates:

Es = Ecvc + Ef(1 − vc) (4)

Ef is the modulus of elasticity of the aluminum sheet, and Es is the effective modulus.
The elastic modulus of the hybrid laminate is shown in Table 4.

The force–displacement curves with different lay-up laminates are shown in Figure 10.
For the laminate with 0◦ unidirectional lay-up, it was subjected to tensile stress during
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bending and had a high resistance to deformation. However, the fracture of the fibers and
the aluminum alloy sheet occurred during the forming process. The force–displacement
curve of the 0◦ unidirectional lay-up showed two abrupt drops. Because of the aluminum
alloy sheet and fiber fracture, the release of residual stress leads to less springback. For
the 90◦ unidirectional lay-up, the fiber bundle flows to both sides along the punch loading
direction, and the resistance to deformation is weak. Although fiber fracture also occurs, the
residual fiber and aluminum alloy sheet can promote springback. For the 45◦ orthotropic
lay-up, the in-plane shear modulus is much smaller than its tensile modulus along the fiber
direction; therefore, during the bending and forming process, the resistance to deformation
is weak, causing less springback. Comparing the 90◦ orthotropic and 0◦ orthotropic lay-up,
it can be seen that the more 0◦ lay-up, the smaller the springback.

Table 4. Elastic modulus of CFRP/Al.

Lay-Up 0 Unidirectional 90 Unidirectional 90
Orthotropic

0
Orthotropic

45
Orthotropic

E (GPa) 79.28 51.12 60.47 69.82 66.76
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3.2. Influence of Forming Speed

The effect of forming speed on the 90◦ unidirectional fiber lay-up laminate was studied.
The forming speeds were 2 mm/s, 5 mm/s, and 10 mm/s. The springback rates are shown
in Figure 11. The springback rates were 6.17% for 2 mm/s, 5.56% for 5 mm/s, and 5.73%
for 10 mm/s. Forming speed had little effect on springback. On the one hand, the increase
in forming speed enhances the hardening effect of the aluminum alloy, and thus the
springback is more obvious. On the other hand, the increase in forming speed causes a
thermal effect; part of the energy consumed in plastic deformation is converted into heat,
which increases the temperature of the metal and improves the forming properties, which
contributes to the reduction in springback.

3.3. Effect of Metal Thickness

Figure 12 shows the influence of different thicknesses of aluminum alloy sheets on
springback. For the 90◦ unidirectional lay-up, the springback rate is 5.55% for the 2 mm
aluminum alloy sheet and 3.11% for the 3 mm aluminum alloy sheet (Figure 12a). For the
45◦ orthotropic lay-up, it also shows that the springback rate will decrease with the increase
in aluminum alloy sheet thickness. The effect of different metal thicknesses on laminate
bending is mainly controlled by the relative bending radius. When r/t is small, the elastic
deformation accounts for a low proportion, and the springback reduces.
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4. Finite Element Analysis
4.1. Finite Element Modeling

Simulation analysis of bending and springback was performed using Abaqus/Explicit.
This simulation method uses the central difference method to complete the simulation
with the help of multiple time increments and is suitable for analysis with large deforma-
tions. The 7075-T6 aluminum alloy sheet was subjected to hot pressing treatment after
solution, which is equivalent to aging treatment. The stress–strain curves with different
heat treatments are shown in Figure 13. The solution treatment improved the plasticity
of the 7075 aluminum alloy and reduced the strength, but the W-state aluminum alloy
was in an unstable state. After hot pressing at 130 ◦C for 45 minutes, the properties of
the material tended to be stable, and the plasticity was greatly improved compared to
that of the T6 state, which can be used for bending forming. The mechanical properties
of the 7075 aluminum alloy sheet after hot pressing at 130 ◦C for 45 minutes are shown
in Table 5. The mesh model is shown in Figure 14. The aluminum alloy sheet is C3D8R
with a mesh size of 0.2 mm, and CFRP is C3D8R with a mesh size of 0.1 mm. Theoretically,
the smaller the meshing size, the more realistic the simulation results; however, increasing
the number of meshes can significantly increase the computing time and may cause the
software to crash. For this consideration, meshing was performed. The punch and die are
non-deformed rigid cells, and the mesh shape is quadrilateral with a neutral axis algorithm.
The lay-up of CFRP modeling is shown in Figure 15.

Table 5. Mechanical properties of 7075 aluminum with 130 ◦C-45 min aging.

E
(GPa)

Tensile Strength
(GPa)

Yield Strength
(GPa)

Density
(kg/cm3)

Elongation
%

69 0.37 0.27 2800 20
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The resin in CFRP acts as an adhesive, so the interface between the CFRP layers and
between Al/CFRP was defined as cohesive contact. To observe whether the interface failed
to separate, the damage criterion was the traction rule. In order to converge the simulation
results, the viscosity coefficient was defined as 0.0001 (large coefficients can lead to scattered
results and cause simulation errors). To avoid mesh intrusion and uncontrolled slippage,
the overall contact was defined as normal hard contact and tangential penalty contact, and
the friction coefficient was 0.25. To reduce the calculation time, the step was set up with
mass scaling, while the time step was reduced to 0.01 s. The load of the springback was set
to a predefined field, and the odb file from the previous step was imported for stress relief.

Based on the three-dimensional Hashin damage criterion, damage behavior was
simulated using a user-defined subroutine Vumat. The solution-dependent state variables
(which change with the increase in time step) SDV1, SDV2, SDV3, and SDV4 corresponded
to fiber tensile damage, fiber compression damage, matrix tensile damage, and matrix
compression damage, respectively.

3D Hashin damage law [24].
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To fiber damage

σ11 > 0
(
σ11

xT

)2
+

(
σ12

s2
12

)2

+

(
σ13

s2
13

)2

≥ 1 (5)

σ11 < 0
(
σ11

xC

)2
≥ 1 (6)

To matrix damage

σ22 > 0
(
σ22

YT

)2
+

(
σ12

s2
12

)2

+

(
σ23

s2
23

)2

≥ 1 (7)

σ22 < 0
(
σ22

YC

)2
+

(
σ12

s2
12

)2

+

(
σ23

s2
23

)2

≥ 1 (8)

where σ represents Cauchy stress, and XT and XC represent the tensile and compressive
strengths in the fiber direction, respectively. YT and YC refer to the tensile and compressive
strengths in the matrix direction, and ZT represents the tensile strain strength in the fiber
thickness direction. S12, S13, and S23 represent the in-plane and out-of-plane shear strains.

4.2. Simulation Results

A comparison of the simulated force–displacement curves and the experimental
force–displacement curves is shown in Figure 16. When forming begins, the curve rises
rapidly in the elastic phase, drops after encountering varying degrees of fiber damage, and
enters the plastic deformation phase; due to the closure of the mold, the load rises after
final forming. Partial fracture of the fibers during bending leads to a drop in the curve. In
each stage of bending, the experimental and simulated curves can be seen to be in general
agreement, which verifies that the proposed model is more consistent. The springback
simulation results are shown in Figure 17. The distribution trend of the springback rate is
basically consistent with the experimental results.
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Figure 17. Simulation and experimental results of springback.

For the effects of different lay-ups on the damage, the 45◦ orthotropic and 90◦ uni-
directional lay-ups were selected, as shown in Figures 18 and 19. For the fiber damage
of SDV1 and SDV2, the laminate with 90◦ lay-up has less damage, which is due to the
fact that 90◦ fibers carry less load along the fiber direction during the bending process.
For the matrix damage of SDV3 and SDV4, the difference between 45◦ orthotropic and
90◦ unidirectional lay-ups is great. The 90◦ fibers have a weak pressure-bearing capacity,
and during the loading process, the resin matrix was loaded along the fiber direction. The
45◦ orthotropic has a strong compressive capacity, and the damage to the matrix is less.

Microscopic observation of the molding area is shown in Figure 20. Unidirectional
fibers can lead to severe damage behavior, such as fiber fracture, for the 0◦ unidirectional
lay-up and matrix fracture for the 90◦ unidirectional lay-up. For the laminates with
45◦ orthotropic lay-up, partial fiber breakage of the outer layer is visible, which is relatively
less damaged. For the laminate with the 90◦ orthotropic lay-up, the same matrix fracture is
seen in the 90◦ fibers of the core layer. In addition, fiber delamination is seen at the junctions
of the 0◦ and 90◦ fibers. The appropriate lay-up method can reduce the occurrence of
damage, which verifies the accuracy of damage prediction using the finite element method.
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Figure 20. Micromorphology of different lay-ups. (a) 0 unidirectional; (b) 90 unidirectional;
(c) 45 orthotropic; (d) 90 orthotropic; (e) 0 orthotropic.

5. Conclusions

The forming accuracy of 7075-T6 aluminum alloy/CFRP laminate was investigated
using experimental and numerical analysis methods. The results of the single-lap shear test
showed that the suitable curing conditions are 130 ◦C for 45 min. No interface debonding
between Al/CFRP was observed under this curing condition. In the V-shaped bending
experiments, the 45◦ orthotropic lay-up had the lowest springback rate of 1.11%, which was
80% lower compared to the 90◦ unidirectional lay-up. Increasing the thickness of the metal
layer reduced the springback. The springback of CFRP/Al laminates was not sensitive
to the forming speed. The simulations of spingback were consistent with the experimen-
tal results, and by subroutine Vumat and microscopic analysis, it can be stated that the
appropriate lay-ups could effectively reduce the damage to the fibers and the matrix.
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