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Abstract: 2 at.% Cu + 2 at.% Ni were co-doped in ZnO nanoparticles by a simple hydrothermal
method, and then the modified nanoparticles were compounded into Cu-Ni alloy coatings using an
electroplating technique. The effects of the current density (15–45 mA/cm2) on the phase structure,
surface morphology, thickness, microhardness, corrosion resistance, and photocatalytic properties of
the coatings were investigated. The results show that the Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite
coatings had the highest compactness and the best overall performance at a current density of
35 mA/cm2. At this point, the co-deposition rate reached its maximum, resulting in the deposition
of more Zn0.96Ni0.02Cu0.02O nanoparticles in the coating. More nanoparticles were dispersed in the
coating with a better particle strengthening effect, which resulted in a minimum crystallite size of
15.21 nm and a maximum microhardness of 558 HV. Moreover, the surface structure of the coatings
became finer and denser. Therefore, the corrosion resistance was significantly improved with a
corrosion current density of 2.21 × 10–3 mA/cm2, and the charge transfer resistance was up to
20.98 kΩ·cm2. The maximum decolorization rate of the rhodamine B solution was 24.08% under
ultraviolet light irradiation for 5 h. The improvement in the comprehensive performance was mainly
attributed to the greater concentration of Zn0.96Ni0.02Cu0.02O nanoparticles in the coating, which
played the role of the particle-reinforced phase and reduced the microstructure defects.

Keywords: (Cu, Ni) co-doped ZnO; Cu-Ni nanocomposite coating; electrodeposition; corrosion
resistance; photocatalysis properties

1. Introduction

The service life and safety of marine infrastructures, such as ships, submarine pipelines,
harbor terminals, and cross-sea bridges, are less than ideal, and corrosion often occurs,
causing serious safety hazard problems, due to the harsh marine service environment. Most
marine engineering structures are currently bare or underprotected, and reactive metals,
such as aluminum, magnesium, iron, and alloys, are facing great challenges in serving the
complicated marine environments [1–4].

Cu-Ni alloy parts and Cu-Ni alloy coatings have good resistance to seawater scouring
corrosion, high heat transfer coefficients, excellent mechanical or welding properties, and
can inhibit the adhesion of marine microorganisms. They are widely used in the cooling
water pipes of the main and auxiliary engines of ships, fire-fighting pipelines of offshore
oil recovery platforms, heat exchangers of power plants, and condensers of nuclear power
plants [5,6]. However, the rapid development of the marine industry has put forward
increasingly high requirements for materials used in marine engineering applications, and
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Cu-Ni alloy coatings still cannot satisfy the severe service demands of the complicated and
varied marine environments.

The addition of Al2O3, ZrO2, TiN, Y2O3, graphene, and other nanoparticles can
further improve the strength, hardness, wear resistance, and corrosion resistance of Cu-
Ni coatings [7–11]. These conventional nanoparticle reinforcements tend to improve the
seawater corrosion resistance of Cu-Ni alloy coatings but cannot further improve their
marine microbial corrosion resistance. ZnO is a typical functional nanoparticle with high
application potential in the fields of photocatalysts [12], antiseptics [13], and semiconductor
devices [14,15]. Generally, the photocatalytic activity of nanoparticles can be effectively
improved by doping [16,17]. Therefore, ZnO can also be doped with transition metal ions to
enhance its photocatalytic activity [18–20]. Since the atomic radii of Cu and Ni are smaller
than that of Zn, they can be used to replace the ZnO lattice to adjust the photocatalytic
activity [21]. The results of several related studies have confirmed that Cu and Ni co-doped
ZnO can significantly affect UV absorption and luminescence properties, thus stimulating
photocatalytic activity [21–24]. Then, can Cu and Ni co-doped ZnO with photocatalytic
activity be used as a nanoparticle reinforcement to further enhance the seawater and marine
microbial corrosion resistance of Cu-Ni alloy coatings?

Cu and Ni co-doped ZnO nanoparticles can be synthesized by methods such as
the hydrothermal method [22], electrochemical deposition [25], sol-gel [26], laser abla-
tion [27], microwave-assisted synthesis [28], the spray pyrolysis technique [19], and co-
precipitation [23]. A series of ZnO nanoparticles with different Cu and Ni doping levels
were prepared by a hydrothermal method [29]. The results show that 2 at.% Cu + 2 at.% Ni
co-doped ZnO nanoparticles were obviously superior to pure ZnO, single doped ZnO, and
other amounts of (Cu, Ni) co-doped ZnO. Compared with coating preparation methods
such as spraying, electroless plating, and laser melting, electroplating technology is simple,
cost-effective, and industrially scalable [10,30]. In a previous study, 2 at.% Cu + 2 at.%
Ni co-doped ZnO nanoparticles were effectively compounded with Cu-Ni coatings by an
electroplating technique [31]. The effects of nanoparticle addition on the performance of
the nanocomposite coatings were investigated, and the results showed that Cu and Ni
co-doped ZnO nanoparticles could effectively improve the hardness, corrosion resistance,
and photocatalytic degradation of organic pollutants of the Cu-Ni composite coatings. The
photocatalytic activity can reflect its antibacterial and bactericidal ability from the side.
Therefore, this study indirectly reflects the microbial corrosion resistance of the coatings by
the photocatalytic degradation of organic pollutants.

In general, the performance of electrodeposited coatings is mainly controlled by elec-
trodeposition parameters, such as the bath temperature [32], current density (Jk) [33,34],
electrolyte composition [35], and electrolyte pH [36]. In this paper, the effects of current den-
sity on the corrosion resistance and photocatalytic properties of Cu-Ni-Zn0.96Ni0.02Cu0.02O
nanocomposite coatings are further investigated to optimize the preparation process and
enhance their comprehensive performance.

2. Experimental Materials and Methods
2.1. Synthesis of Zn0.96Ni0.02Cu0.02O Nanopowders

In the experiment, Zn0.96Ni0.02Cu0.02O nanoparticles were first prepared by a simple
hydrothermal method. The precursor solutions were Zn(NO3)2·6H2O, Ni(NO3)2·6H2O,
Cu(NO3)2·3H2O, C6H12N4 (HMT), and we ensured that the molar ratio of Zn2+ to HMT
in the precursor solution was 1:1. The surfactant was used with C6H5Na3O7·2H2O in the
solution. These experimental reagents are analytically pure and purchased from the China
National Pharmaceutical Group Corporation (SINOPHARM). The doping amounts of Cu
and Ni in ZnO nanoparticles were regulated by controlling the ratio of Cu(NO3)2·3H2O
to Ni(NO3)2·6H2O. The details of the preparation procedure were reported in a previous
study [31]. Finally, 2 at.% Cu and 2 at.% Ni were doped into ZnO nanoparticles, which
were subsequently used as a nanoparticle reinforcements in the electrodeposited coatings.
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2.2. Preparation of Cu-Ni-Zn0.96Ni0.02Cu0.02O Nanocomposite Coatings

Since the oxide film of aluminum is only one nanometer thick, it is prone to damage
in the process of use, leading to corrosion of the aluminum alloy substrate. Therefore, in
the experiment, the 2024 aluminum alloy sheets were selected as the cathode for electro-
plating, and 70–30 Cu-Ni alloy sheets were used as the anode. The Cu-Ni alloy coatings
were expected to expand the application of aluminum alloy structural parts. The alu-
minum alloy substrate was subjected to mechanical polishing, alkaline washing, and acid
washing before electroplating. A simple DC-regulated power supply was used for elec-
troplating. The bath composition was 20 g/L CuSO4·5H2O, 85 g/L NiSO4·6H2O, 75 g/L
C6H5O7Na3·2H2O, and 0.2 g/L C12H25SO4Na, as shown in previous work [31]. The added
amount of Zn0.96Ni0.02Cu0.02O nanoparticles was 4 g/L, the plating solution was neutral,
the bath temperature was 45 ◦C, the electroplating time was 45 min, and the electromagnetic
stirring rate was 300 rpm/min. The effects of the current density (15, 25, 35, 45 mA·cm–2)
on the properties of the nanocomposite coatings were investigated.

2.3. Characterization Techniques

The crystal structure of the Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite coatings was
analyzed by a TD-3500 X-ray diffractometer with Cu Kα radiation (λ = 1.5406 Å). The
diffraction angle 2θ ranged from 20◦ to 90◦ at a scanning speed of 12 ◦/min. A scanning
electron microscope (S-4800, Hitachi, Tokyo, Japan) was used to characterize the surface
morphology and cross-sectional thickness of the coatings with a test voltage of 5 kV.
Energy disperse spectroscopy (EDS, Oxford, Abingdon, UK) was used to measure the
compositions of Cu, Ni, and Zn in the nanocomposite coatings with a test voltage of 15 kV.
The microhardness of the nanocomposite coatings was measured with a 402MVD digital
Vickers hardness tester.

The effects of the current density on the corrosion resistance of the nanocomposite
coatings were investigated using the polarization curves and electrochemical impedance spec-
troscopy (EIS) by a CHI 604E device. In the three-electrode cell, the Cu-Ni-Zn0.96Ni0.02Cu0.02O
nanocomposite coatings were used as the working electrode. A saturated calomel electrode
and a graphite electrode were used as the reference electrode and the counter electrode, re-
spectively. The corrosion resistance measurements were performed in a corrosive medium
of 3.5% NaCl solution, and EIS measurements were conducted with a sine wave ampli-
tude of 10 mV and a frequency range of 105 Hz to 10–2 Hz. The potential scanning rate
was 0.166 mVs–1, and the potentiodynamic polarization curves were obtained from Eocp
−500 m V to Eocp +800 m V.

A UV-VIS spectrophotometer (Lambda 750S, Perkin-Elmer, Waltham, MA, USA) was
used to test the photocatalytic degradation performance of the nanocomposite coatings
against rhodamine B (RhB) solution under UV light irradiation. The prepared nanocom-
posite coatings were soaked in 100 mL of 8 mg/L RhB solution, and the reaction system
was stirred thoroughly for 60 min in the dark to achieve an adsorption equilibrium. A 10 w
UV lamp at room temperature was used for irradiation, and the degradation process was
measured by a UV-VIS spectrophotometer at certain time intervals. The decolorization
rate η of the RhB solution by the nanocomposite coatings was calculated according to the
formula described in Ref [31].

3. Results
3.1. Phase Structure

XRD was used to analyze the effect of the current density on the phase structure of
the nanocomposite coatings, and the results are shown in Figure 1. Only the diffraction
peaks of Cu-Ni solid solution were found, and no single diffraction peaks of Cu or Ni
were found, which confirmed the successful preparation of the Cu-Ni alloy coatings [37,38].
The Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite coatings showed a dominant orientation
of (111), (200), and (220) reflections, indicating good crystallization. With the increase in
the current density, the diffraction angle of the (111) crystal plane gradually shifted toward
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higher values. This was due to the increase in the current density, which reduced the
content of Cu atoms and increased the content of Ni atoms in the coatings, as shown in the
following EDS results. Since the atomic radius of Ni is smaller than that of Cu, the lattice
constant decreased, and the diffraction angle increased. The results showed that Cu and
Ni co-doped ZnO nanoparticles showed typical hexagonal wurtzite, but the diffraction
peaks of ZnO were not found in the XRD patterns of the nanocomposite coatings, probably
because the content in the coatings was not enough to be detected [10,31].
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Figure 1. XRD patterns of Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite coatings with different current
densities.

The crystallite size of the Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite coatings was
calculated from the (111) crystal plane diffraction peak of XRD, according to the Debye–
Scherrer formula [39], and the results are shown in Table 1. By increasing the current
density, the crystallite size in the coatings first decreased and then increased. The minimum
crystallite size of 15.21 nm was obtained when the current density was 35 mA/cm2. Due
to the increase in the current density, the cathodic electric field force increased, and the
deposition rate increased. More Zn0.96Ni0.02Cu0.02O nanoparticles were deposited in the
coatings, which hindered the grain growth [40]. Meanwhile, Zn0.96Ni0.02Cu0.02O could act
as nucleation sites, causing the nucleation rate to increase and thus leading to a decrease in
the crystallite size.

Table 1. Diffraction angle of the (111) crystal plane and the crystallite size of the coatings at different
current densities.

Current Densities/(mA/cm2)
(111) Crystal Plane
Diffraction Angle/◦ Crystallite Size/nm

15 43.51 16.13
25 43.64 15.65
35 43.72 15.21
45 43.77 15.53

According to Guglielmi’s two step model, the increasing incorporation rate can be
attributed to the increasing tendency for ZnO nanoparticles to arrive at the cathode sur-
face [41,42]. Therefore, it can be seen that the co-deposition rate was mainly determined
by the nanoparticle content moving to the cathode surface and the current density. When
the current density was too high, the nanoparticles at the far end could not move to the
cathode surface in time, leading to a decrease in the content of nanoparticles in the coatings.
Therefore, at a high current density, the deposition rate of Cu2+ and Ni2+ was higher than
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that of Zn0.96Ni0.02Cu0.02O nanoparticles, which led to a weaker grain refinement effect
and an increase in the crystallite size of nanocomposite coatings. Overall, the effects of
the current density on the crystallite size of the Cu-Ni coatings were not obvious, which is
consistent with related reports [8,10,43].

3.2. Surface Morphology

Figure 2 shows the SEM images of the surface morphology of the coatings with
different current densities. Zn0.96Ni0.02Cu0.02O nanoparticles were irregular particles with
uniform size and good dispersion, and the average particle size was about 60 nm [29].
At the current density of 15 mA/cm2, the coating surface showed some coarse cellular
particles, a loose structure, more cracks and holes, and poor compactness. When the
current density increased to 35 mA/cm2, the coating became uniform and dense, and the
cracks were significantly reduced, as shown in Figure 2c. Sadoun, et al. had reported that
nanoparticles could fill the microcracks and pores in the coatings, resulting in a dense and
defect-less coatings [10,44]. When it continued to increase to 45 mA/cm2, more cracks
appeared in the coating indicating that the quality of the coating began to deteriorate.
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Figure 2. SEM images of Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite coatings with different current
densities: (a) 15 mA/cm2, (b) 25 mA/cm2, (c) 35 mA/cm2, (d) 45 mA/cm2.

At low current densities, the cathodic polarization was weak, the crystal growth
rate was larger than the nucleation rate, and the coating structure was coarse. As the
current density increased, cathodic polarization increased, the nucleation rate became
faster, the grain size of the coating decreased, and the compactness became better. In the
electrodeposition process, as nucleation sites, nanoparticles could form new grains and
inhibit the continuous growth of grains, resulting in grain refinement [43]. However, when
the current density was too high, the deposition rate of Cu and Ni ions was greater than the
nucleation rate, and the nanoparticles at the far end could not move to the cathode surface
in time. Therefore, the concentration of Zn0.96Ni0.02Cu0.02O nanoparticles in the coating
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would decrease and the grain refinement would be weakened, resulting in a slight increase
in the grain size, which is consistent with the related reports [42,43].

3.3. Composition

The EDS elemental mapping analysis of the Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite
coatings at a current density of 35 mA/cm2 is shown in Figure 3. The coating contained four
main elements, Cu, Ni, Zn, and O, with a mass fraction of Cu that was approximately three
times that of Ni. The atomic percentage of the Zn and O elements was close to 1:1, confirm-
ing that the co-doped ZnO nanoparticles were present in the coating. Figure 4a shows the
EDS analysis of the Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite coatings at different current
densities. After increasing the current density, the Cu content of the coatings decreased; on
the contrary, the Ni content increased. This was because Cu2+ species were discharged by
mass transport control, while Ni2+ species were discharged by activation control [45,46].
Hence, Cu was more easily deposited on the cathode surface at lower current densities,
while with the increase in the current density, Ni was more likely to precipitate.
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Figure 4. The contents of (a) Cu, Ni, Zn and (b) Zn0.96Ni0.02Cu0.02O nanoparticles in the coatings
with different current densities.

The content of Zn increased first and then decreased with the increase in the current
density, indicating that the content of Zn0.96Ni0.02Cu0.02O nanoparticles in the coatings
increased first and then decreased. At a current density of 35 mA/cm2, the content of Zn
in the coating reached the maximum value. According to the EDS results, the content of
Zn0.96Ni0.02Cu0.02O nanoparticles in the coatings can be calculated as shown in Figure 4b.
At a current density of 35 mA/cm2, the content of nanoparticles in the coating reached
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its maximum value. It has been reported that the content of ZrO2 [43] and Al2O3 [7]
nanoparticles in Cu-Ni alloy coatings could be close to 10 wt.%, which is similar to the
results of this work. The increase in the current density enhanced the cathode polarization
and increased the co-deposition efficiency. Therefore, more nanoparticles were coated
during the co-deposition process [38]. However, when the current density was too high, the
deposition rate of metal ions was higher than that of nanoparticles, which would have led to
a decrease in the content of nanoparticles in the coating. Hence, the content of nanoparticles
directly affects the hardness, corrosion resistance, and photocatalytic performance of the
coatings.

3.4. Thickness

Figure 5 shows the thickness of the Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite coatings
at different current densities. When the current density was 35 mA/cm2, the thickness of
the Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite coating reached the maximum value. This
was due to the weaker cathodic polarization and slower deposition rate at a current density
of 15 mA/cm2, resulting in a thinner coating. When the current density was 35 mA/cm2,
the cathode overpotential, electric field force, and the electroplating rate increased, resulting
in an increase in the coating thickness. As the current density increased to 45 mA/cm2,
the hydrogen evolution reaction intensified, the electroplating deposition rate slowed
down instead [47], and the thickness of the Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite
coating decreased. Moreover, nanoparticles serving as nucleation sites were beneficial for
improving the efficiency of electrodeposition. Therefore, when the current density was
35 mA/cm2, the content of co-deposited nanoparticles in the coatings was the highest,
ultimately achieving the maximum coating thickness.
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Figure 5. Thickness of Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite coatings at different current densities.

3.5. Microhardness

Figure 6 shows the microhardness results of the nanocomposite coatings at different
current densities. At a current density of 35 mA/cm2, the maximum microhardness of
the nanocomposite coating was 558 HV. This hardness value was close to 600 HV, which
is similar to the results reported recently [7,43]. As the current density increased from
15 mA/cm2 to 35 mA/cm2, the content of Zn0.96Ni0.02Cu0.02O nanoparticles in the coatings
increased, and the surface of the coatings became smoother and denser. More nanoparticles
and a better surface quality enabled the coatings to achieve maximum hardness.
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Figure 6. Microhardness of Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite coatings at different current
densities.

The strengthening mechanisms of Orowan looping and load transfer could play a ma-
jor role in improving the hardness of the coatings [48,49]. The particles are less than 100 nm
and dispersed uniformly in the coatings. When the indenter penetrate into the coatings, the
Zn0.96Ni0.02Cu0.02O nanoparticles carry the load and impede the motion of dislocations [50].
The nanoparticles in the coatings hinder the deformation and improve the deformation
resistance, thus increasing the hardness. A higher nanoparticle content, more uniform
dispersion and fewer defects in the coatings lead to a higher hardness. At 45 mA/cm2,
the Zn0.96Ni0.02Cu0.02O content of the nanocomposite coatings decreased, the crystallite
size increased slightly, and the compactness worsened. The nanoparticle strengthening
effect became weaker, and the microhardness of the coatings decreased. Therefore, the
nanocomposite coatings obtained the highest hardness when the bath temperature was
45 ◦C and the current density was 35 mA/cm2.

3.6. Corrosion Resistance

The polarization curves of the nanocomposite coatings at different current densities
are shown in Figure 7, and Table 2 shows the Tafel fitting results of the polarization curves.
The corrosion potential of the nanocomposite coatings varied little from 15 mA/cm2 to
25 mA/cm2. At a current density of 35 mA/cm2, the most positive corrosion potential of
the coating was −0.43 V, and the lowest corrosion current density was 2.21 × 10–3 mA/cm2,
indicating the slowest corrosion rate and the best corrosion resistance. When the bath
temperature was 45 ◦C and the current density was 35 mA/cm2, the coating had the most
nanoparticles and the densest structure, resulting in the best corrosion resistance [10]. In
addition, the maximum coating thickness would also delay the corrosion process. The
corrosion current density of the coatings in this work was similar to that of the coatings
with ZrO2 [43] and Y2O3 [10], but slightly lower than that of the coatings with Al2O3 [7]
and graphene [11].

Figure 8 shows the Nyquist plots of the nanocomposite coatings at different current
densities. The equivalent electrical circuit of the nanocomposite coatings is shown in
Figure 9, and the fitted results are shown in Table 3. Rs, Rpore, and Rct represent the solution
resistance, micropore resistance, and charge transfer resistance, respectively. Cc is the
coating capacitance, whereas Cdl is the electric double layer capacitance. At a current density
of 35 mA/cm2, the nanocomposite coatings exhibited the largest capacitive arc resistance
radius, indicating the best corrosion resistance. Meanwhile, Rct reached a maximum value
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of 20.978 kΩ·cm2, which was much higher than that of the coatings prepared at other
current densities. The results were consistent with the polarization curves, indicating that
the coatings prepared at a current density of 35 mA/cm2 had the best corrosion resistance.
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Table 2. Tafel fitting results of polarization curves of Cu-Ni-Zn0.96Ni0.02Cu0.02O coatings with
different current densities.

Current
Densities/(mA/cm2) Icorr/(mA/cm2) Ecorr/V Epit/V

15 8.03 × 10–3 −0.67 −0.25
25 7.13 × 10–3 −0.66 −0.20
35 2.21 × 10–3 −0.43 −0.15
45 4.14 × 10–3 −0.68 −0.13
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Table 3. Fitting results of the equivalent circuit of Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite coatings
at different current densities.

Current
Densities/(mA/cm2)

Rs
/(Ω·cm2)

Cc
/(S·cm−2·s−n) n

Rpore

/(kΩ·cm2)
Cdl

/(S·cm−2·s−n) n Rct
/(kΩ·cm2)

15 11.27 1.54 × 10−4 0.91 0.33 5.38 × 10−4 0.65 4.90
25 15.77 6.80 × 10−4 0.92 2.92 4.18 × 10−4 0.90 6.51
35 19.58 4.11 × 10−5 0.91 5.92 1.86 × 10−8 0.47 20.98
45 15.67 1.04 × 10−4 0.90 0.67 5.01 × 10−4 0.99 4.47

The mechanical properties and corrosion resistance of the particle-reinforced nanocom-
posite coatings are mainly related to the properties of the nanoparticles, the defects in the
coatings, the dispersion of the particles in the coatings, and the interfacial bonding be-
tween the particles and the metal matrix [48,51]. With the increase in the current density,
the Zn0.96Ni0.02Cu0.02O concentration in the coatings gradually increased, which would
be beneficial for filling the microvoids and microcracks in the coatings, resulting in a
denser structure, thus improving the corrosion resistance. When the current density
was too large, the deposition rate of the Cu and Ni ions was too high, the content of
Zn0.96Ni0.02Cu0.02O nanoparticles in the coatings decreased, and defects such as cracks
and holes in the nanocomposite coatings increased, resulting in a decrease in the corrosion
resistance [7,52]. In a comprehensive comparison, the nanocomposite coatings reached
the optimum corrosion resistance at a bath temperature of 45 ◦C and a current density of
35 mA/cm2.

3.7. Photocatalytic Performance

The optical band gap energy value of Zn0.96Ni0.02Cu0.02O nanoparticles could be
reduced to 2.89 eV which was smaller than that of pure ZnO, exhibiting better photocatalytic
activity [29]. According to the decolorization rate formula [31], the decolorization rate η of
the RhB solution by nanocomposite coatings at different current densities was calculated, as
shown in Figure 10. After 5 h of degradation with ultraviolet light, the η of RhB solution by
Zn0.96Ni0.02Cu0.02O nanoparticles reached more than 90% [29]. When the current density
increased from 15 mA/cm2 to 45 mA/cm2, the η values of RhB solution by nanocomposite
coatings were 20.44%, 23.25%, 24.08%, and 22.12%, respectively, after 5 h of degradation,
and the highest η was achieved at 35 mA/cm2.

The η of RhB solution was related to the content of Zn0.96Ni0.02Cu0.02O nanoparticles
in the coatings. At a current density of 35 mA/cm2, the content of nanoparticles in the
coatings was the highest, so the nanocomposite coating was the most effective for the
photocatalytic degradation of RhB solution. Due to the excellent bactericidal effect of
ZnO nanoparticles [13] and the excellent photocatalytic activity exhibited by the doped
nanoparticles, the addition of Zn0.96Ni0.02Cu0.02O nanoparticles not only improved the
mechanical properties and seawater corrosion resistance of the nanocomposite coatings but
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also improved their marine microbial corrosion resistance. This provides a new idea for the
development of functional nanoparticle reinforced metal matrix composites.
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Figure 10. Illumination time and decolorization rate of the Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite
coating at different current densities.

4. Conclusions

The Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite coatings were prepared by a simple
electrodeposition method. The effects of the current density on the phase structure, surface
morphology, composition, thickness, hardness, corrosion resistance, and photocatalytic
properties of the nanocomposite coatings were investigated.

(1) Diffraction peaks on the (111), (200), and (220) crystal planes were present in the
nanocomposite coatings, and the coatings were well-crystallized. At a current density of
35 mA/cm2, the co-deposition rate reached its maximum, resulting in the deposition of
more Zn0.96Ni0.02Cu0.02O nanoparticles in the coating. However, having more nanoparticles
was beneficial for reducing defects such as microcracks and pores, ultimately increasing
the compactness of the coating.

(2) Having more Zn0.96Ni0.02Cu0.02O nanoparticles uniformly dispersed in the coatings
could effectively hinder the movement of dislocations, thereby increasing its hardness up to
558 HV. The lowest current density of 2.21 × 10–3 mA/cm2 and the highest charge transfer
resistance of 20.98 kΩ·cm2 indicated that the coating had good corrosion resistance, which
was attributed to its dense and defectless coating structure.

(3) At the current density of 35 mA/cm2, the highest decolorization rate of RhB
solution was 24.08% after 5 h of ultraviolet light exposure, due to the higher concentration
of Zn0.96Ni0.02Cu0.02O nanoparticles in the coatings. The addition of Zn0.96Ni0.02Cu0.02O
nanoparticles made the coating exhibit good photocatalytic activity, which would be
beneficial for improving the marine microbial corrosion resistance of the Cu-Ni alloy
coatings.
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