
Citation: Yuan, C.; Su, Q.; Chiang,

K.-N. Coefficient Extraction of

SAC305 Solder Constitutive

Equations Using Equation-Informed

Neural Networks. Materials 2023, 16,

4922. https://doi.org/10.3390/

ma16144922

Academic Editor: Balázs Illés

Received: 28 May 2023

Revised: 30 June 2023

Accepted: 5 July 2023

Published: 10 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Coefficient Extraction of SAC305 Solder Constitutive Equations
Using Equation-Informed Neural Networks
Cadmus Yuan 1 , Qinghua Su 2 and Kuo-Ning Chiang 2,3,*

1 Department of Mechanical and Computer-Aided Engineering, Feng Chia University, Taichung 40724, Taiwan;
cayuan@fcu.edu.tw

2 Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu City 30013, Taiwan;
0967356474shq@gmail.com

3 College of Semiconductor Research, National Tsing Hua University, Hsinchu City 30013, Taiwan
* Correspondence: knchiang@pme.nthu.edu.tw; Tel.: +886-03-574-2925

Abstract: Equation-Informed Neural Networks (EINNs) are developed as an efficient method for
extracting the coefficients of constitutive equations. Subsequently, numerical Bayesian Inference (BI)
iterations were applied to estimate the distribution of these coefficients, thereby further refining them.
We could generate coefficients optimally aligned with the targeted application scenario by carefully
adjusting pre-processing mapping parameters and identifying dataset preferences. Leveraging
graphical representation techniques, the EINNs formulation is implemented in temperature- and
strain-rate-dependent hyperbolic Garofalo, Anand, and Chaboche constitutive models to extract the
corresponding coefficients for lead-free SAC305 solder material. The performance of the EINNs-based
extracted coefficients, obtained from experimental results of SAC305 solder material, is comparable
to existing studies. The methodology offers the dual advantage of providing the coefficients’ value
and distribution against the training dataset.

Keywords: Equation-Informed Neural Networks; advanced electronic packaging;
numerical Bayesian Inference; constitutive equations; Pb-free SAC305 solders

1. Introduction

Proper material constitutive models and related coefficients are fundamental for
reliable finite element predictions, encompassing the performance prediction model [1],
the manufacturing process [2,3], and the reliability prediction models. Non-linear material
properties, based on the temperature- and strain-rate-dependent material models, are often
necessary for modeling critical sections of electronic packaging [4,5] and further influence
the accuracy and predictability of the surrogate AI models [6–8].

Solder, a key component in electronic packaging, is often associated with potential
fatigue failures. Wilde et al. conducted a study on the rate-dependent constitutive relation-
ship of Pb-rich material [9], resulting in extracting Anand-based coefficients and identifying
kinematic hardening, also known as the Bauschinger effect. To gain a better understanding
of the creep characteristics of Pb-free solders, Xiao and Armstrong [10] performed tensile
tests on both eutectic PbSn and Sn3.9Ag0.6Cu solder. Their findings revealed substantial
microstructural alterations in the Sn3.9Ag0.6Cu with significantly lower absolute creep
rates than the PbSn eutectic. The creep measurement data were successfully fitted into the
Garofalo model [11], and the corresponding Garofalo coefficient was extracted.

Furthermore, Motalab et al. [12,13] conducted creep tests under meticulous control
of the microstructure of the SAC305 solder without an oxidized surface, yielding a set of
nine parameters for the Anand model. Basit et al. [14] utilized the Anand constitutive
model with the extracted coefficients for solder joint lifetime prediction. The Chaboche
material model [15], which considers the Bauschinger effect, was applied by Xie and
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Chen [16], Deshpande et al. [17], Wang et al. [5], and Yan et al. [18] for life prediction using
Manson–Coffin type equations.

Ma and Suhling reviewed the constitutive equation and the corresponding coefficients
of lead-free solder joint [19], and significant coefficient discrepancies have been reported.
On the other hand, finite element engineers frequently face difficulties in selecting an appro-
priate material model and its parameters, as the measurement conditions may differ from
those in practical applications. Kuczynska et al. [20] performed mechanical/dynamic tests
against the solder joint to verify the ability of these material models and their coefficients
to map the lifetime differences depending on the temperature rate under field and testing
conditions, as well as on the mean operating temperature.

Considering the many application scenarios, which may range from low to high tem-
peratures and strain rates, an emerging trend encourages users to obtain their own material
coefficients [5]. This approach emphasizes the importance of tailoring the coefficients to the
specific conditions encountered in each unique application. The least squares method and
its derivatives are frequently employed in extracting coefficients. Although this approach
is well established, matrix multiplication and inversion may diminish computational ef-
ficiency when handling extensive datasets. Moreover, the obtained coefficients based on
the least square method are sensitive to the outliers, and this method does not apply to the
censored data.

Historically, machine learning has harbored a certain resistance to rule-based inference.
However, the efficacy of neural networks in symbolic computation is gaining recognition
by integrating symbolic reasoning with continuous representations. Pioneers such as
Zaremba et al. [21] and Allamanis [22] have explored the application of neural networks
in handling mathematical objects. A significant advancement came from Lample and
Charton [23] when they proposed a representation for mathematical expressions. Sharma
et al., Chhabra et al., and Yadav et al. have applied neural network method for material
optimization studies [24–26]. As a result, the theoretical basis for representing mathematical
and symbolic equations using neural networks is well-established.

In this research, we have developed the Equation-Informed Neural Networks (EINNs)
method, synergistically incorporating the Bayesian Inference (BI) iteration technique to
extract the coefficients of constitutive equations from measurement data. As visualized in
Figure 1, the foundational concept of EINNs begins with constructing an artificial neural
network to embody the constitutive equation f , where coefficient αk is designated as their
respective weights. Subsequently, EINNs deploy a pre-processing mapping technique on
the input/output data pairs which are obtained from the experiments, a strategy rooted
in neural network learning theory, and enables exploring coefficient fitting across various
domains in-depth.
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This neural network can be incrementally trained using input and output data pairs,
facilitating the simultaneous approximation of coefficient αk. Theoretically, the steepest de-
scent algorithm of the neural network backpropagation bolsters the computation efficiency
and fosters the selective learning of data pairs. The final coefficients are obtained by the
post-processing conversion. Utilizing the coefficients obtained by EINNs as initial values,
Bayesian Inference (BI) is applied to obtain the distribution of the coefficients against the
training datasets and further enhance the accuracy of coefficient extraction.

This paper is organized as follows: the “Theory” section provides an introduction
to the framework of Equation-Informed Neural Networks (EINNs) and the numerical
Bayesian Inference (BI) method. The subsequent section, “EINN Formulation”, presents the
conversion process of constitutive equations from their conventional mathematical forms
to their EINN equivalents, complete with pre-processing mapping and post-processing
functions. In the “Applications” section, we apply the EINN formulation to the coefficient
extraction of the material constitutive equation pertinent to Pb-free SAC305 solder joints.
Detailed discussions and numerical results pertaining to the EINN formulations of the
Chaboche, hyperbolic Garofalo, and Anand material models are also included. The paper
concludes with a concise summary of our findings.

2. Theory
2.1. The Framework of Equation-Informed Neural Networks (EINNs)

Assume a constitutive equation is given by the function:

yi = f
(
xj; αk

)
, (1)

where yi, xj, and αk are vectors in real space with dimensions i, j, and k, respectively. The
xj and yi represent the input and output of the functions, while αk refers to the coefficients.
Design pre-processing mapping functions:

Mx
(
xj
)
= Xj andMy(yi) = Yi, (2)

which serve to effectively modify the domains of xj and yi to optimize the precision of
coefficient extraction. Consequently, a new function can be formulated as Yi = F

(
Xj, Ak

)
.

Meanwhile, the corresponding neural network representations of Yi are formulated, and
the coefficient Ak is assigned as the weighting.

The learning process of the neural network involves continuous adjustment of these
weights or coefficients. These adjustments can be computed for each known data pair using
steepest-descent-based backpropagation as Anew

k = Anew
k − η∆y

∂yi
∂Ak

. Since these updates
are independent of each data pair, the computationally expensive matrix multiplication
and inversion inherent in the least squares-based approaches can be avoided. Furthermore,
incorporating ratios into the adjustments allows for user emphasis on specific data pairs.

This can be implemented as Anew
k = Anew

k − η ∑l rl ·
(

∆y
∂yi
∂Ak

)(l)
, where l is the coefficient

adjustment from each data pair and ∑l rl = 1.
Following several learning iterations with satisfactory accuracy, the coefficient Ak of

the constitutive equation can be obtained. However, due to the pre-processing mapping
function (2) being applied, counteractions are required to reverse its effect. Therefore, we
define the post-processing conversion functions as follows.

ak = gk
(
xj, yi, Ak

)
. (3)

Through the combined application of pre-processing mapping functions and post-
processing conversion of coefficients, the EINN framework gains an additional degree of
freedom, bolstering the accuracy of coefficient extraction. Additionally, the steepest descent
method offers a unique opportunity to prioritize specific data pairs while maintaining high
computational efficiency.
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2.2. The Numerical Bayesian Inference (BI) Iteration

We define the mean square error (MSE) function of Equation (1) with respect to the
coefficients αk, as

ε(αk) = ∑
l

∥∥∥y(l)t,i − yi

(
x(l)j ; αk

)∥∥∥2
, (4)

where xl
j and yl

t,i denote the input and ground truth of the l-th datapair, respectively.

Assume that the distribution of the data pairs y(l)t,i and x(l)j are normal, and so is the
error function ε(αk), denoted as ε(αk) ∼ N(µ, τ). Because the parameter τ cannot be
negative, we assume it follows the gamma distribution, so that τ ∼ G(a0, b0), where a0 and
b0 are the gamma distribution parameters of τ. Moreover, assume that all the coefficients
follow the normal distribution, say αk ∼ N(µk, τk), and µk and τk are the average and
precision, respectively. The posterior distribution after the BI remains normal distribution.
In practice, we set µk equal to αk.

Consequently, the probabilities of the coefficient τ and αk can be derived as

P(τ) =
b

a0
0 τa0−1e−b0τ

Γ(a0)
and P(αk) = (2π)−

1
2 τ

1
2

k e−
1
2 τk(αk−µk)

2
, respectively. The likelihood

with respect to coefficient τ and αk is L(αk, τ) ≡ P(data|αk, τ) = ∏L
l=1

1√
2π

τ
n
2 e−

(y(l)t,i −y(l)i )
2

2σ2 =

(2π)−
n
2 τ

n
2 e−

τ
2 ε(αk) [27].

The posterior of the τ distribution can be updated by the gamma–gamma conjugate:

anew
0 = aold

0 +
n
2

and bnew
0 = bold

0 +
1
2

ε, (5)

As Equation (1) is not always a linear function, the posterior of coefficient αk cannot
always be computed by conjugate. Therefore, under the assumption that the value of ∆αk
is relatively small, a numerical integration approach is applied:∫ ∞

0
L(αk)·P(αk)dαk ∼∑n=N

n=1 L
(

α
(0)
k + n·∆αk

)
·P
(

α
(0)
k + n·∆αk

)
·∆αk, (6)

where α
(0)
k is the minimal value of αk and n is the number of the equal split between the

assigned maximum and minimum αk with a total of N splits. The posterior can then be
obtained using normal distribution approximation.

We employ the Markov Chain Monte Carlo (MCMC) method to compute large hi-
erarchical models requiring integration over many parameters. By applying the Gibbs
sampling, the τ distribution parameters a0 and b0 are first updated through the conjugate
(Equation (5)), and a new τ value will be sampled from the gamma distribution. Each αk
will be updated sequenently, and the new value will be accepted. Following thousands of
iterations, every αk exhibits a normal distribution. The mean value of this distribution is
computed and assigned as the updated value for αk.

3. EINN Formulation

This section outlines the development of Equation-Informed Neural Network (EINN)
formulations for the hyperbolic Garofalo, nine-parameter Anand, and Chaboche models,
including pre-processing mapping and post-processing coefficient functions.

3.1. Hyperbolic Garofalo Model

The conventional hyperbolic Garofalo constitutive equation can be written as:

.
εp = C1·[sinh(C2σ)]C3 ·e−

Q
RT , (7)
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where
.

εp, σ, Q, R, and T represent the plastic strain rate, stress, activation energy, gas
constant, and temperature, respectively. C1, C2, and C3 are the coefficients that need to be
extracted from the experimental data.

We introduce e =
.

εp·e
Q
RT and accumulate the data pairs of {e} and {σ} from the

experimental results. In order to proportional convert the original data to the [a, b + a]
domain, the pre-processing matching functions are defined as follows:

Mx(σ) =
σ−σm

∆σ b + a = x and
My(e) = e−em

∆e b + a = y,
(8)

where σm and ∆σ represent the minimal and maximum different values of set {σ}, and
e and ∆e correspond to set {e}. Parameters a and b are parts of pre-processing mapping,
and a = 0.001 and b = 1 are assigned for this case. The values after the pre-processing are
defined as x and y, respectively. Subsequently, a new function can be derived as:

y = C[sinhAx]n, (9)

The corresponding neural network can be defined in Figure 2. The definition of the
neurons is given in Table 1.
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Table 1. The neuron definition of the EINN representation of the hyperbolic Garofalo equation.

Neuron Net Value Activation

M1 M1,net = A·x M1 = ln(sinhM1,net)
M2 M2,net = n·M1 M2 = eM2,net

y ynet = C·M2 y = ynet

Accordingly, the post-processing conversion of the coefficients can be approximated
as C1 = C∆e·rn

2 , C2 = A·b/∆σ, and C3 = n, where r2 =
(

Ab
∆σ − Aa

)
.

3.2. Anand Model

Anand et al. [28] proposed a set of viscoplastic constitutive equations for the rate-
dependent deformation of metals. Recently, the Anand model has been extensively applied
to microelectronic solders exhibiting large viscoplastic deformations. In addition to the
activation energy, there are eight coefficients in the Anand model. A two-step approach is
commonly employed to extract these eight coefficients [9,12,13].

The governing equation for the first step of the Anand model, including the ultimate
tensile stress (σ∗), plastic strain rate (

.
εp), activation energy (Q), and temperature (T), is

expressed in Equation (10). ŝ, ξ, A, n, and m are the coefficients that need to be extracted.

σ∗ =
ŝ
ξ

( .
εp

A
·e

Q
RT

)n

sinh−1

[( .
εp

A
e

Q
RT

)m]
, (10)

Utilizing the same method as in the previous section, we assume e0 =
.
εp·e

Q
RT . Since

the value of the strain rate is relatively small compared to other input parameters, a scaling
factor R is applied, such that e = e0

R . For consistency within this paper, the same activation
function as in the previous section is assumed. The data pair of {e} and {σ∗} is collected
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from the Motalab et al. [12,13]. An additional y and x are introduced to represent the output
and input parameters, and the pre-processing mapping functions are defined as

x =
e− em

∆e
be + ae and y =

σ∗ − σ∗m
∆σ∗

bσ + aσ, (11)

where em and ∆e are the minimal and maximum difference among set {e}, and so are σ∗m
and ∆σ∗ in {σ∗}. ae, be, aσ, and bσ are the mapping coefficients. By defining β = ŝ

ξ , the new
function can be written as

y = β∗
( x

A∗
)n∗

sinh−1
[( x

A∗
)m∗

]
, (12)

Based on Equation (12), the EINN representation can be formulated as Figure 3. This
network’s definitions are listed in Table 2.
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Table 2. The neuron definition of the EINN representation of the step 1 Anand equation.

Neuron Net Value Activation

M1 M1,net = 1/A∗·x M1 = ln(M1,net)

M2 M2,net = m∗·M1 M2 = ln
(

sinh−1eM2,net
)

y ynet = n∗·M1 + M2 + β y = eynet

By defining r = σ∗m − aσ
∆σ∗
bσ

, the post-processing of the coefficients can be written as
follows:

1
A

=
1

A∗

(
bbe

∆e
+

ae

avg(y)

)
· 1
R

, n = n∗, m = m∗ and β =

[
∆σ

bσ
·β∗ + r

β∗·avg(x)

]
=

ŝ
ξ

, (13)

where avg(x) and avg(y) are the averges of {e} and {σ∗}.
The governing equation of the second step of the Anand model is listed in (14),

and s0, a, and h0 are the three remaining coefficients. The parameter c is defined in (15),
and ξ is defined as the smallest positive real number to keep c < 1.

σ = σ∗ −
[
(σ∗ − cs0)

1−a + (a− 1)
{
(ch0)(σ

∗)−a
}

εp

]1/(1−a)
, (14)

c =
1
ξ

sinh−1

( .
εp

A
e

Q
RT

)m

, (15)

We assume that x = sinh−1
[( .

ε
A e

Q
RT

)m]
, y = (σ∗ − σ), l = σ∗, and z = εp, and the

pre-processing mapping functions are defined as

y =
y− ym

∆y
by + ay, l =

l − lm
∆l

bl + al , x =
x− xm

∆x
bx + axand z =

z− zm

∆z
bz + az, (16)
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By assuming 1− a = a′, the new function can be written as

y =

[(
l +
(
− s0

ξ

)∗
·x
)a′∗

− a′∗
{((

h0

ξ

)∗
·y
)
(l)a′∗−1

}
·z
]1/a′∗

, (17)

Based on Equation (17), the EINN representation can be formulated as Figure 4. This
network’s definitions are listed in Table 3. Moreover, the post-processing of coefficients can
be derived as

a′∗ = a′, s′0 =
ry

rl
·(s0), h′0 =

ry

rl
·rz(h0), (18)

where rl =
bl
∆l , rx = bx

∆x , ry =
by
∆y , and rz =

bz
∆z .
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Table 3. The neuron definition of the EINN representation of the step 2 Anand equation.

Neuron Net Value Activation

M1 M1,net = l +
(
− s0

ξ

)∗
x M1 = ln(M1,net)

M2 M2,net =
(

h0
ξ

)∗
·M1 M2 = ln(M2,net)

M3 M3,net = z M3 = ln(M3,net)
M4 M4,net = l M4 = ln(M4,net)
M5 M5,net = a′∗·M1 M5 = eM5,net

M6 M6,net = M2 + M3 + (a′∗ − 1)·M4 M6 = eM6,net

M7 M7,net = M5 − a′∗·M6 M7 = ln(M7,net)
y ynet =

1
a′∗ ·M2 y = eynet

3.3. Chaboche Model

The Chaboche model [15,29] is often applied for presenting the metallic material with
the Bauschinger effect under cyclic loading. The original function can be written as

α =
C
γ

(
1− e−γ·εp

)
+ σ0 (19)

where α and εp are the back tensile stress and the plastic strain. σ0 is the initial yielding
stress, and C and γ are the fitting coefficients. To simplify the equation, we substitute and
C/γ as β. Let x = εp, y = α, as the parameters, with the pre-processing mapping functions:

x =
εp − εp,m

∆εp
and y =

α− αm

∆α
, (20)

where εp,m and ∆εp are the minimal and maximum differences among set {εp}, and so are
αm and ∆α in {α}, and s = σ0. Hence, the new function can be re-written as

y = β∗
(

1− e−γ∗ ·x
)
+ s, (21)



Materials 2023, 16, 4922 8 of 16

with the EINN formulation shown in Figure 5 and the neuron definition listed in Table 4.
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Table 4. The neuron definition of the EINN representation of the Chaboche equation.

Neuron Net Value Activation

M1 M1,net = (−γ∗)·x M1 = 1− eM1,net

y ynet = β∗·M1 + s∗ y = ynet

Furthermore, the post-processing of coefficients can be derived as

σ0 = xm + s∗·∆α, γ =
γ∗

∆εp
, and C =

∆α

∆εp
·(β∗·γ∗) (22)

4. Applications

Building on the EINN formulation and Bayesian Inference (BI) iteration described
in the preceding section, this chapter discusses the extraction of coefficients from the
hyperbolic Garofalo, nine-parameter Anand, and Chaboche models for the SAC305 solder
material.

4.1. Hyperbolic Garofalo Model

The experimental dataset is drawn from Xiao and Armstrong [10]. To determine
the coefficient C in Equation (9), we employ a grid search combined with a bisection
optimization technique, whereas the EINN structure for coefficients A and n is addressed
using standard backpropagation. To emphasize coefficient extraction for low temperatures
(both 318 and 353 K) and low strain rates, ratios are assigned to the datapairs, as shown in
Table 5. Table 5 also lists the input (plastic strain) and output (stress) of the EINN learning.
Utilizing the post-processing conversion formula, the EINN coefficients, C1, C2, and C3,
are obtained and presented in the middle column of Table 6. The hyperbolic model, when
compared to the experimental data, is depicted in Figure 6. The data at 388 K exhibits a
more significant difference than the others, primarily due to the ratio setting outlined in
Table 5.
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Table 5. The ratios applied to the data pair to emphasize the preference.

Data ID Temperature
(◦C) Plastic Strain Rate (

.
εp, 10−9 1/s)

Stress
(MPa) Ratio

1 45 1.4 10.54 18.0
2 45 4.0 12.30 6.0
3 45 13.6 14.25 5.0
4 45 43.9 15.92 0.5
5 80 6.6 10.43 18.0
6 80 13.1 11.59 6.0
7 80 21.2 12.40 5.0
8 80 57.8 13.80 3.0
9 80 95.0 14.46 1.0

10 115 13.4 8.73 15.0
11 115 19.8 9.35 12.0
12 115 34.2 10.07 6.0
13 115 50.5 10.61 6.0
14 115 166.0 12.41 1.0
15 150 90.1 7.51 1.0
16 150 165.0 8.63 1.0
17 150 315.0 9.82 1.0
18 150 454 10.54 0.5
19 150 810 11.52 0.5

Table 6. The comparison of the extracted coefficients of Hyperbolic Garofalo Model.

Xiao and Armstrong
[10] EINNs EINNs + BI

Q (kJ/mol) 62,000 65,000 65,000
C1 0.184 0.539 0.443
C2 0.221 0.473 0.482
C3 2.89 1.055 1.073

MSE * 37,188.5 11,794.9 10,967.4
*: defined by Equation (4).

A total of 1000 Bayesian Inference interactions were performed to obtain the distribu-
tion of the extracted coefficients. The distributions are displayed in Figure 7, represented as
the ratio of each coefficient value to the average, and are expanded by the precision τ of the
error function. As denoted by the dashed lines in Figure 7, which signify a 5% difference,
stable distributions of coefficients C2 and C3 are observed, while the large variation in C1 is
attributed to the ratio setting, which induces a higher discrepancy among the 388 K data.
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The coefficient extraction of the hyperbolic Garofalo constitutive equation highlights
the flexibility of the EINN framework, as it allows for assigning ratios to data pairs to



Materials 2023, 16, 4922 10 of 16

prioritize specific data. The fitting accuracy of the EINN results demonstrates a significant
improvement compared to the original reports [10] as indicated by the mean square error
(MSE) of Table 6, followed by Equation (4). Although the distribution of the C1 coefficients
demonstrate a small fraction of the outliers from BI integration as Figure 7, both C2 and C3
show statistical difference within ±5% difference. Over 1000 iterations, only 58 instances of
C1 shows more than ±5% difference of the average value. Consequently, a robust set of
coefficients for the hyperbolic Garofaolo constitutive model is achieved.

4.2. Anand Model

In this section, the Anand constitutive model coefficients extraction is implemented for
the lead-free SAC305 solder. The same activation energy as in the previous section is applied
for the sake of research consistency. To extract the remaining eight coefficients of the Anand
constitutive model, the first step involves utilizing temperature and strain rate-dependent
ultimate tensile stresses to determine the initial four coefficients. Subsequently, the second
step defines the remaining parameters based on temperature and strain rate-dependent
stress and plastic strain.

The experimental data are sourced from Motalab et al. [12]. The EINN formula-
tion, following Equation (12), is applied with the pre-processing mapping coefficients
ae, be, aσ, and bσ (Equation (13)) which are 0.8, 0.15, 0.9, and 0.1. It is vital to note that the
selection of these mapping coefficients depends on the numerical characteristics of the
dataset, and it is essential for preventing numerical errors during the backpropagation-
based machine learning of the EINN formulation.

During the learning phase of the EINN formulation, the coefficients n∗, m∗, A∗, and
β of Equation (12) and Figure 3 are constrained to be positive. A grid search technique is
employed to identify optimal initial values concerning the experimental data.

Furthermore, learning ratios are implemented to emphasize the learning preference
for low strain rates and temperatures close to the working temperature of electronic compo-
nents. After hundreds of iterations, the EINN coefficients are reported in Table 7. The MSE
values indicate that the coefficients obtained from the EINN formulation exhibit similar
accuracy to those obtained using conventional methods. The obtained step 1 Anand model
is plotted in Figure 8.
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Table 7. The comparison of the extracted coefficients of step 1 Anand model.

Motalab et al. [12] EINNs EINNs + BI

A 3501 1650 1649
n 1.00× 10−2 1.54× 10−4 1.64× 10−4

m 0.25 0.54 0.53
β = ŝ/ξ 7.55 4.11 4.16
MSE * 17.03 15.96 15.78

*: defined by Equation (4).

The EINN formulation coefficients serve as initial inputs for Bayesian Inference (BI) to
analyze the statistical distribution of the coefficients. Figure 9 illustrates the distribution of
the coefficients, with dashed lines indicating differences within ±5%. Due to its low value,
the coefficient n was not examined. Both coefficients A and β exhibit distribution within
±5% difference. Out of 1500 values, only 61 cases of coefficient m exceed ±5% difference,
which can be attributed to the preference settings during the EINN learning process. The
average coefficients obtained from BI are presented in the last column of Table 7 and are
utilized for the subsequent coefficient extraction step in the Anand model.
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and β, respectively.

The temperature and strain rate dependent stress–strain curves are obtained from Mo-
talab [12]. The EINN formulation of the step 2 Anand model, as indicated in Equation (17)
and Figure 4, is applied with the pre-processing mapping parameters shown in Table 8,
based on Equation (16), while in the EINN learning procedure, the values of s0 and h0 are
forced to be positive. A grid search technique is applied to define the optimal initial coeffi-
cients. The learning ratios are implemented to emphasize the learning preference for low
strain rates and temperatures close to the working temperature of electronic components,
following the coefficient extraction strategy of Motalab et al. [12]. With Equation (18), the
optimized coefficients can be obtained, as listed in Table 9, and the stress–strain curves
at different strain rates from the Anand model are plotted against the experiment [12], as
shown in Figure 10.

Table 8. The pre-processing mapping parameters.

y l x z

a 1 0.8 0.1 0.8
b 0 0.4 0.05 0.1
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Table 9. The comparison of the extracted coefficients of step 2 Anand model.

Motalab et al. [12] EINNs EINNs + BI

ξ 4 17.66 17.66
s0 21 55.96 57.45
a 1.78 2.30 2.26

h0 18,000 828,822 828,822
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Figure 10. The obtained step 2 Anand model curves for different temperatures. (a–c) are the obtained
Anand model with strain rates of 10−3, 10−4, and 10−5 (1/s). The experimental data are based on
Motalab et al. [12].

The dataset with high preference is applied to the BI iteration to mitigate the large
coefficient shifting. Figure 11 plots the MSEs of EINNs and EINNs with BI against the
Anand coefficient obtained by Motalab et al. [12], under different temperatures and strain
rates. By adjusting the ratio of EINN network learning, the coefficient extraction can be
fine-tuned to perform better in the room to the working temperature at a low strain rate, as
indicated in Figure 11.
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4.3. Chaboche Model

To study the lifetime of the ball-grid-array-type of advanced electronic packaging, the
Chaboche material model is often applied [5,8]. The Chaboche model and its coefficients
can be extracted from the temperature-dependent stress–strain curves by a given strain rate.
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Unlike the previous sectors, this section investigates the extraction of Chaboche coefficients
from the Anand model.

The Anand coefficients from Tables 6 and 7, adjusted via Bayesian Inference (BI),
are utilized to generate inputs for the Chaboche model. A strain rate of 10−5 (1/s) is
maintained, given that the Anand coefficients have been optimized for lower strain rates, as
demonstrated in the previous section. Stress–strain curves can be generated by the Anand
model (as Equations (14) and (15)) for each temperature point, including −40 ◦C, −20 ◦C,
40 ◦C, 80 ◦C, and 122 ◦C.

The temperature-dependent stress–strain data serve as the training datasets. With
the pre-processing mapping established by Equation (20), we apply the EINN formulation
for the Chaboche model as Equation (21). Following this, the steepest-descent coefficient
optimization is applied to the EINN formulation (as illustrated in Figure 5) with the neural
definitions outlined in Table 4. The post-processing of the coefficients Equation (22) allows
for the acquisition of Chaboche coefficients at various temperatures. The resultant data are
documented in Table 10, with the mean square errors (MSE) compared to the input dataset.

Table 10. Temperature-dependent Chaboche coefficients of EINNs.

Temperature σ0 C γ MSE *

−40 ◦C 39.32 9174.1 1004.7 1.11
−20 ◦C 33.80 7535.7 964.0 0.84
40 ◦C 21.35 4216.0 840.0 0.50
80 ◦C 15.43 2988.0 824.3 0.28
122 ◦C 10.50 1886.5 759.1 0.18

*: defined by Equation (4).

The coefficients derived from the EINN formulation are subsequently incorporated
into Bayesian Inference (BI) iterations for the temperature-dependent Chaboche model.
Figure 12 delineates the distribution of coefficients σ0, C, and γ across different tempera-
tures, magnified by the precision τ of the error function. The vertical axes in this figure
represent the ratio of the coefficient value obtained at each BI iteration to the averaged
value. Table 11 contains the averaged coefficient post-BI.
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Table 11. Temperature-dependent Chaboche coefficients of EINNs and BI.

Temperature σ0 C γ MSE *

−40 ◦C 39.30 9174.1 1004.7 1.11
−20 ◦C 33.78 7535.7 964.0 0.84
40 ◦C 21.39 4216.0 840.0 0.49
80 ◦C 15.45 2988.0 824.3 0.27
122 ◦C 10.53 1886.5 759.1 0.17

*: defined by Equation (4).

While variations in all coefficients lie within a ±5% difference, a larger variety, cou-
pled with a lower MSE, as listed in Tables 10 and 11, is evident at higher temperatures.
This suggests a reduced coefficient sensitivity at these elevated temperatures. By intro-
ducing Young’s modulus obtained by linear extrapolation from the experiment [12], the
temperature-dependent stress–strain curves are plotted in Figure 13.
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5. Conclusions

In this study, we developed the concept of Equation-Informed Neural Networks
(EINNs) as an efficient method for extracting the coefficients of constitutive equations.
Subsequently, the MCMC with numerical Bayesian Inference (BI) iterations was applied to
estimate the distribution of these coefficients, thereby further refining them.

The EINN formulation was derived by leveraging graphical representation techniques
to convert the mathematical form of constitutive equations into an equivalent EINN for-
mat. By carefully adjusting pre-processing mapping parameters and identifying dataset
preferences, we could generate coefficients optimally aligned with the targeted application
scenario.

The EINN formulation has been successfully applied to the hyperbolic Garofalo,
Anand, and Chaboche constitutive models. This paper details the EINN formulation with
its neural network format, the definition of each neuron, the appropriate pre-processing
techniques, and the post-processing of the coefficients.

The extraction of coefficients for the hyperbolic Garofalo and Anand models was
conducted using experimental results from lead-free SAC305 solder material studies by
Xiao and Armstrong [10] and Motalab et al. [12,13]. Our report includes the employed
pre-processing mapping techniques and parameters. With the dataset preference, the
constitutive equations with extracted coefficients performed better in the interested zone.
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Comparisons with coefficients of the constitutive equations from the aforementioned
studies demonstrated that those extracted from the EINN formulation were alike. Impor-
tantly, the mean square error (MSE) of the EINN formulation learning was comparable to
those from the literature [10,12,13]. The performance of the MSE depends on many factors,
such as the prescription capability of the material model and experimental measurement
accuracy. In this research, the MES is applied as a comparison of how the coefficients
extracted by the EINNs perform to the ones obtained by the original methods.

Moreover, the MCMC with numerical Bayesian Inference (BI) iteration technique was
employed to analyze the robustness of the extracted coefficients against the experiment
data, as shown in Figures 7, 9 and 12. A slightly higher variation was observed when the
dataset preference was applied to the EINN learning. Nevertheless, the coefficients derived
from EINNs remained within a ±5% confidence interval.

In conclusion, the combined use of EINNs with BI provides a powerful tool for ex-
tracting coefficients from temperature- and strain-rate-dependent constitutive equations
with dataset preference. This is under the assumption that the SAC305 solder material char-
acteristics can be described by the material model and that the experimental measurement
is accurate enough. This approach provides the coefficients’ value and the distribution of
coefficients against the training dataset.

This study’s potential limitations may include the dataset preference assumption,
which may not universally apply across all scenarios. Additionally, the applicability of the
EINN formulation to all forms of constitutive equations remains to be fully determined,
necessitating further exploration of potential limitations. Moreover, advanced neural
network backpropagation methods, such as Levenberg–Marquardt (LM) algorithm, will be
applied to EINN frameworks.
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