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Abstract: Physical Vapor Deposition (PVD) is a widely utilized process in various industrial applica-
tions, serving as a protective and hard coating. However, its presence in fields like fashion has only
recently emerged, as electroplating processes had previously dominated this reality. The future looks
toward the replacement of the most hazardous and toxic electrochemical processes, especially those
involving Cr(VI) and cyanide galvanic baths, which have been restricted by the European Union.
Unfortunately, a complete substitution with PVD coatings is not feasible. Currently, the combination
of both techniques is employed to achieve new aesthetic features, including a broader color range
and diverse textures, rendering de facto PVD of primary interest for the decorative field and the
fashion industry. This review aims to outline the guidelines for decorative industries regarding PVD
processes and emphasize the recent advancements, quality control procedures, and limitations.

Keywords: PVD; coatings; fashion; decorative; thin-film characterization; sputtering; magnetron;
physical vapor deposition

1. Introduction

The physical vapor deposition (PVD) process has been applied since the early 1900s,
but most of its development occurred in the 1960s and 1970s, becoming extensively utilized
in industrial applications (Figure 1). Advancements in vacuum technology and deposition
techniques have expanded the range of substrates to which PVD thin films can be applied,
allowing for greater control over the properties of these films. Today, PVD technology
is still to be improved; new materials, new techniques, as well as cost reduction have
enabled applications in sectors such as the aerospace [1], automotive [2], electronics [3] and
even fashion industry [4]. Specifically, the fashion industry has recently embraced PVD to
develop more sustainable manufacturing processes. This review aims to overview both the
state-of-the-art of PVD and the research perspectives.

The first evaporated thin films can be traced back to Faraday’s experiment in 1857 [5],
where he evaporated metal wires in a vacuum. Subsequently, in 1887, Nahrwold [6] repli-
cated the deposition of thin metal films in a vacuum, following Joule’s heating experiments.
A year later, Kundt [7,8] measured the refractive indices of such films. The application of
this technology on an industrial scale had to wait for the development of vacuum tech-
niques, which emerged after World War II, around 1946. The exponential growth rate
of thin films is well-documented in Olang’s excellent review of deposited films in the
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Handbook of Thin Film Technology, as well as Holland’s classic textbook [8] reflecting the
substantial pioneering work performed by the author.
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The ion plating technique was first described by Mattox [9] in 1963, although a similar
technique had previously been reported by Berghaus, who claimed that the coating had
“a perfect structure and adhering strength”, even for thicker layers. It was Mattox that
stimulated considerable interest and spurred the development of these techniques. Mattox
asserted that the technique produced films with exceptional adhesion, even when the
film and substrate materials were mutually insoluble. Moreover, the films exhibited thick
uniformity and effectively coated irregular surfaces. Many subsequent investigations have
since confirmed these findings.

The first metal deposits realized through glow discharge plasma were reported by
Grove in 1852 [8]. In 1980, sputtering and its applications experienced rapid growth,
with advancement in the apparatus, process modifications, scientific understanding, and
expanded application areas, similar to other PVD techniques.

In 1961, two independent US universities initiated research on high deposition rates
and full-dense PVD coatings on self-supported shapes. At the Lawrence Livermore Lab-
oratory of the University of California, Bunshah and Juntz [10] produced high-purity
beryllium foil and titanium sheet and characterized them in terms of impurity content,
microstructure, and mechanical properties. During the same years, Smith and Hunt at
Temescal Metallurgical Corporation in Berkeley, California focused on the depositing of
various metals, alloys, and compounds.

In the early 1960s, USSR scientists began their work on thin- and thick-film deposition
at the Kharkiv Polytechnique Institute, and later at the Paton Electric Welding Institute
in Kiyv. Between 1962 and 1969, various steel companies dedicated significant efforts to
producing Al and Zn coatings on steel using PVD processes on a production scale [11].

In 1969, Airco Temescal Corporation [12] successfully manufactured Ti-6AZ-4V alloy
foil. Pilot production quantities were adopted in honeycomb structures on the SST aircraft,
although the aircraft project ultimately failed. The production capability was impressive,
with a production rate of 1200 ft per run of Ti-6AQ-4V foil, 12′′ wide and 0.002′′ thick at a
rate of 2–3 ft per minute; moreover, the cost was significantly lower than rolled material.

Studies of thin films had advanced before thick- and bulk-film technology, as docu-
mented by Bunshah [13] and Paton, Movchan, and Demchishin [14]. Soviet literature also
includes numerous references to the great work on thin and thick films by Palatnik of the
Kharkiv Polytechnique Institute. The development of ion plating and sputtering processes
continued progressing rapidly and interactively, repeating substantial benefits from their
shared characteristics [15].
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Towards the end of the 1970s [16], the escalating cost of gold prompted the jewelry
industry to explore alternatives in realizing micrometer-thick gold coatings. This led to
the replication of golden coatings using TiN PVD, which proved to be a cost-effective
solution for decorative purposes. While PVD processes had traditionally been employed
for wear-resistant coatings [17] on cutting and forming tools, they also demonstrated
a potential solution for decorative coatings. PVD processes offer several advantages
compared with electrochemical methods. One advantage is the ability to produce abrasion-
resistant coatings with a variety of shades of golden color. But the most appealing advantage
of PVD processes is their greater environmental friendliness and sustainability [18,19].
Figure 1 illustrates a historical timeline highlighting significant events in developing PVD
coatings. Towards the late 1990s, Préci-Coat [20] achieved the first reported industrialization
of yellow PVD coating for high-end vogue applications.

Since the 2000s, research efforts have focused on improving coatings’ characteristics,
such as adhesion, corrosion, wear resistance, and deposition rate, as discussed extensively
in detail by Baptista et al. in 2018 [21]. In the last five years, companies have focused on
reducing production costs, making processes more energy-efficient, lowering material
consumption, and recovering precious metals [22]. The most recent advancements in
multilayer engineering coatings were clearly described in the brief review by Liu et al. in
2022 [23].

The fashion industry is characterized by a dynamic and ever-changing nature. Short
production lead times, low production volumes, high price volatility, low workflow pre-
dictability, impulsive purchasing, and wide variability in aesthetic requirements are com-
mon issues faced by companies operating in this sector. The manufacturers must frequently
adjust their offering by altering the colors of raw materials and components, making the
finishing process a critical aspect of production. Fashion products must reflect the current
mood and trends, resulting in a brief and seasonal selling period that may last only a few
months or weeks. External factors such as weather conditions and customer preferences
can influence demand for fashion products, leading to unpredictable sale volumes.

Metal accessories, including closures, buckles, rings, loops, and clasps, play a crucial
role in designing and realizing a fashion product. These accessories are typically made from
copper alloys (e.g., brass) or steel, and then they are coated with a thin layer of precious
metal such as gold, ruthenium, or palladium. The traditional finishing process for metallic
items in the fashion industry involves electroplating, which is widely used in countries
like Italy and France, where the most important companies are based. Although recently
introduced in this production sector, PVD technology has played a secondary role [4].

Fortune Business Insights [24] valued the global physical vapor deposition market size
at USD 22.43 billion in 2020, with projections indicating reaching USD 40.97 billion at a
compound annual growth rate (CAGR) of 8.2% from 2021 to 2028. Figure 2 provides an
estimation of the market size in the Asia Pacific region, demonstrating the rising demand
for PVD products.

Traditionally, electroplating has been utilized to obtain protective coatings in the
jewelry industry. However, this approach carries significant environmental consequences,
including generating toxic heavy metals, gases, and harmful waste [25,26]. Recently, there
has been a growing focus on investigating electroplating technology [27–31] due to its
high environmental impact. Electroplating effluents contain highly toxic substances such
as cyanides and metal ions, making wastewater treatment technologically complex and
expensive. Consequently, businesses in the fashion and design industry, as well as the
faucets [32] and tiles industry [33,34], are seeking and investing in alternative solutions.
Several advantages, including a lower environmental impact and removing the need
for wastewater treatments, make PVD an appealing alternative to electrodeposition [35].
A comparative study conducted by Martinuzzi in 2022 highlighted the advantages and
disadvantages of both techniques [36]. As is shown in Figure 3, there is a clear and
continuous increase in the general interest and the adoption of PVD coatings [37].
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This review aims to provide a comprehensive summary of the latest scientific publica-
tions and recent developments in the field of PVD coatings, specifically focused on their
industrial decorative applications. The primary objective is to present a thorough compara-
tive analysis of traditional galvanic coating processes and the more eco-friendly alternatives
offered by PVD technologies. The review highlights the shortcomings of conventional
methods and proposes potential replacements, suggesting specific industrial production
processes. Furthermore, the review describes industrial coating processes presenting the
most common substrate materials (e.g., brass and steel). It then details the substrate prepa-
ration procedures and coatings characterization, including tests for color and brightness.
Finally, this review covers all aspects of quality control processes for decorative purposes.
The authors aim to present the untapped potential of PVD technology and try to dispel any
stereotypes and mistrust surrounding its use.
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2. Fundamentals of Physical Vapor Deposition (PVD)

Physical Vapor Deposition is a widely used technique for depositing thin films, both in
basic and applied research, as well as in various industrial sectors. It finds extensive uses in
realizing protective coatings for biomedical applications and in developing thermal barrier
systems (especially for aircraft engines) [38,39], in optics [40], and in electronic components
manufacturing [41]. These coatings can improve the substrate’s performance by increasing
hardness, wear [42], and corrosion resistance; improvements in tribological [43], optical,
and electrical properties are also reported. A combination of these properties is often
required [35].

PVD is a vacuum-based technique that involves depositing a thin layer or multilayers
of target materials onto a substrate. The thickness of coatings ranges from a few angstroms
to several microns, and the deposition rate depends on various operating parameters,
including the total pressure in the chamber [44], the partial pressures of the carrier and the
reactive gases [45], power and source of usage [46], voltage biases [47], temperature [48],
and the sputtering yield of the target [49]. It is important to note that in industrial prac-
tice depositing hard coatings is just one step in a sequence of operations that includes
the mechanical preparation of surfaces, cleaning, heating, etching, coating, cooling, and
conditioning; the weakest link in this chain, therefore, defines the overall quality of the
coating. In some cases, specific steps may be skipped; however, this does not make things
easier because methods and operating parameters for the remaining steps vary significantly
depending on the coating material, the process used, and the desired final performance
specifications [19].

During the deposition process, the material is vaporized from a solid into an atomic or
molecular form and transported through a vacuum or low-pressure gas environment or
plasma (Figure 4) towards the substrate, where it condenses. Vacuum deposition typically
takes place in a chamber with a pressure range of 10−5 Torr to 10−9 Torr, depending on the
level of gas contamination that can be tolerated. The rate at which deposition occurs ranges
from 10 Å/s to 100 Å/s and it can be influenced by many factors, such as evaporation
or the sputtering yields of materials. For instance, gold has a higher deposition rate than
chromium under the same conditions.

Materials 2023, 16, x FOR PEER REVIEW 6 of 31 
 

 

 
Figure 4. Example of plasma production in magnetron sputtering system. 

Additionally, the deposition rate is lowered by improving the gas pressure via the 
addition of both carrier gas (Ar is the most used for this purpose) and reactive gas (O2, N2, 
acetylene), increasing their flow rate (expressed in Sccm, Standard cubic centimeters per 
minute), or through target poisoning, which can create a hysteresis effect [50,51]. A proper 
adjustment in the voltage bias and (sample heating) temperature can produce better film 
properties, such as high density and improved adhesion [52,53]. 

Over the years, the advancement of technologies in the construction of automated 
production plants has allowed the scale-up of various PVD deposition techniques [54]. In 
the following sections, the most widely used in industry will be presented and subdivided 
according to the main physical phenomenon on which they are based: evaporation or 
sputtering. 

2.1. Evaporation Systems 
Evaporation systems are based on an apparatus in which the material is transferred 

from a heat source to the substrate with little or no interaction with the gas molecules in 
the chamber. A schematic representation of the most common techniques are reported in 
Figure 5 on the left side; all share the “line-of-sight” trajectory for the evaporated particles 
[55]. In evaporating alloys, according to Raoult’s law, the vapor’s composition (and, there-
fore, that of the coating) reflects the relative vapor pressures of the components. Arc Vapor 
Deposition [56] involves the use of a high-current, low-voltage arc to vaporize a cathodic 
electrode (cathodic arc) or anodic electrode (anodic arc) and deposit the vaporized mate-
rial onto a substrate. A voltage bias is often applied to the substrate’s holder, accelerating 
the ionized source material in its direction. This method is commonly used to deposit both 
decorative and hard coatings. The need to reduce the structural defects of the coatings 
drove the development of combined systems like Arc Ion Plating [57], also known as Ion-
Assisted Deposition (IAD) or Ion Vapor Deposition (IVD). In ion plating processes, the 
substrate is bombarded with highly energetic ions before and during the deposition; this 
can increase the density of the deposited coating, limiting defects during growth. The ions 
are generated throughout the deposition by heat or by a plasma source. Another popular 
evaporation method is Electron Beam PVD (EB-PVD); here, electrons from an electron gun 
are focalized by magnetic fields on the coating material, producing its vaporization [58]. 

Figure 4. Example of plasma production in magnetron sputtering system.



Materials 2023, 16, 4919 6 of 30

Additionally, the deposition rate is lowered by improving the gas pressure via the
addition of both carrier gas (Ar is the most used for this purpose) and reactive gas (O2, N2,
acetylene), increasing their flow rate (expressed in Sccm, Standard cubic centimeters per
minute), or through target poisoning, which can create a hysteresis effect [50,51]. A proper
adjustment in the voltage bias and (sample heating) temperature can produce better film
properties, such as high density and improved adhesion [52,53].

Over the years, the advancement of technologies in the construction of automated
production plants has allowed the scale-up of various PVD deposition techniques [54].
In the following sections, the most widely used in industry will be presented and subdi-
vided according to the main physical phenomenon on which they are based: evaporation
or sputtering.

2.1. Evaporation Systems

Evaporation systems are based on an apparatus in which the material is transferred
from a heat source to the substrate with little or no interaction with the gas molecules in
the chamber. A schematic representation of the most common techniques are reported in
Figure 5 on the left side; all share the “line-of-sight” trajectory for the evaporated parti-
cles [55]. In evaporating alloys, according to Raoult’s law, the vapor’s composition (and,
therefore, that of the coating) reflects the relative vapor pressures of the components. Arc
Vapor Deposition [56] involves the use of a high-current, low-voltage arc to vaporize a
cathodic electrode (cathodic arc) or anodic electrode (anodic arc) and deposit the vapor-
ized material onto a substrate. A voltage bias is often applied to the substrate’s holder,
accelerating the ionized source material in its direction. This method is commonly used
to deposit both decorative and hard coatings. The need to reduce the structural defects of
the coatings drove the development of combined systems like Arc Ion Plating [57], also
known as Ion-Assisted Deposition (IAD) or Ion Vapor Deposition (IVD). In ion plating
processes, the substrate is bombarded with highly energetic ions before and during the
deposition; this can increase the density of the deposited coating, limiting defects during
growth. The ions are generated throughout the deposition by heat or by a plasma source.
Another popular evaporation method is Electron Beam PVD (EB-PVD); here, electrons
from an electron gun are focalized by magnetic fields on the coating material, producing its
vaporization [58].
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2.2. Sputtering Systems

Sputtering is a physical process that involves bombarding a solid target material
with energetic ions or atoms, typically using plasma (Figure 4), which causes the target
material to eject atoms or molecules from its surface [59]. As a result of the reduced
collision probability in a low-pressure environment, the ejected particles travel within
the vacuum chamber with an almost straight-line trajectory [60], as confirmed by the
good agreement between theoretical studies (mainly based on the Monte Carlo method)
and experimental results [61,62]. The line-of-sight trajectory is responsible for the typical
columnar microstructure of the deposit [63].

There are several variants of sputtering techniques, but the most common is called
DC magnetron sputtering [35]. In this process, a negatively charged target material is
bombarded with positively charged ions from a plasma in a low-pressure environment,
typically made of an inert gas such as argon. The positive ions from the plasma collide with
the target, causing atoms or molecules to be ejected. Recent developments in sputtering
technology are summarized in the following paragraphs.

High-Power Impulse Magnetron Sputtering (HiPIMS) [64] is a magnetron sputtering
process in which the plasma is generated through short and high-power current pulses.
This technique has been shown to produce films with improved adhesion, higher density,
and increased film quality compared with conventional DC or RF magnetron sputtering [65].
Keraudy in 2019 [66] investigated the effect on the ion energy of bipolar HiPIMS, where
the standard HiPIMS pulse is followed by a reversed potential applied on the target,
demonstrating that the amplitude of the reversed potential gives excellent control over
the ion energies. This is particularly interesting in realizing insulating thin films, for
which adjusting the energy of the impinging ions through the substrate’s bias voltage
is not feasible. Tiron in 2019 [67] applied the bipolar regime to diamond-like carbon
(DLC) films, increasing density and hardness. Brenning in 2021 [68] studied the electron
discharge of insulating substrates by mixed high- and low-power pulsing. Ghailane in
2020 [69] reviewed the latest HiPIMS deposition system designs developed to improve the
performances of hard coatings.

Pulsed DC Sputtering (PDMS) [70] is a DC sputtering technique that generates plasma
with short, high-power current pulses. PDMS has been shown to improve film quality,
reduce arcing, and improve target utilization. Dong in 2021 [71] studied the role of the
frequency of the pulses (Fp) on the deposition of vanadium oxide thin films, finding that
an increase in Fp resulted in a reduction of the deposition rate and a transition from the
typical columnar structure to a smoother and fully dense deposit.

Hybrid Sputtering [72] involves combining multiple sputtering techniques, such as
magnetron sputtering and ion beam sputtering, or bipolar sputtering with HiPIMS. For
instance, high-density [73] and low-roughness [74] films can be obtained by combining
magnetron and ion beam sputtering with the technique known as Ion-Beam-Assisted
Deposition (IBAD) [73–75]. Concurrent different sputtering processes can lead to complex
deposition mechanisms: plasma diagnostics and material-characterization methods may
help clarify how plasma characteristics affect coatings properties. Among the operating
parameters, frequency, duty cycle, substrate bias, total pressure, and reactive gas partial
pressure are probably the most significant. The effects of the pressures and biases have been
widely investigated [53,70,76,77]; however, there is still much to do about the frequencies
and the duty cycles. Emile Haye in 2018 [78] investigated the effect of duty cycle and pulse
frequency on the reactive bipolar sputtering efficiency, highlighting that high frequencies
combined with short duty cycles are a good compromise to achieve ionization with a limited
back attraction of the species. Another example of mixed application was performed
by Ou in 2020 [79], depositing CrN/Si3N4 multilayer coatings using combined Deep
Oscillation Magnetron Sputtering (DOMS) with pulsed DC magnetron sputtering, obtaining
harder coatings with better cracking resistance. These recent developments in sputtering
technology are improving the quality and performance of thin film coatings in a variety of
industries. An interesting analysis of PVD-Magnetron Sputtering for industrial applications
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was made by Baptista and Silva [21]. They examined the latest technology improvements
that allow one to obtain smooth surfaces with excellent mechanical, tribological, and
adhesion properties operating at lower temperatures.

2.3. PVD + Galvanic Hybrid Systems

Its flexibility and adaptability make PVD suitable for fulfilling fashion market de-
mands. Unlike conventional coating techniques such as electroplating, PVD can coat both
metallic and dielectric substrates (e.g., plastics and ceramics) with a wide range of materials,
including nitrides [56], carbides [80], and oxides [81]. In the fashion industry, high-end
coatings are mainly applied to brass and steel to enhance aesthetics and functional proper-
ties. However, direct PVD coating, especially on brass, may not offer sufficient protection
against corrosion, so a combination of galvanic and PVD coating is often needed [36].

Galvanic deposition [82] involves immersing the substrate in an electrolytic solution
containing ions of the coating material, with the substrate acting as the cathode. When a
current is applied, the coating material condenses on the substrate. Galvanic coatings offer
numerous advantages, such as good adhesion, ductility, and a high level of control over
coating thickness and morphology. When a power source is applied, reduction reactions oc-
cur at the substrate’s surface, which is covered. Galvanic coatings offer several advantages,
such as good adhesion, ductility, and high control over coating thickness and morphol-
ogy. Both PVD and galvanic coatings have advantages and limitations; PVD coatings are
typically harder and more wear-resistant, making them ideal for high-wear applications.
Compared with electroplating, even better wear resistance can be achieved using hard
materials as underlayers [42]. They also offer a broader range of color options, including
metallic and non-metallic ones. However, PVD coatings require complex equipment and
are generally more expensive than galvanic coatings. Additionally, PVD coatings may be
less ductile than galvanic coatings, leading to cracking or peeling under certain conditions.

On the other hand, galvanic coatings have lower prices than PVD coatings and can
be applied to a wide range of substrates. They offer good adhesion and ductility, making
them suitable for applications that require flexibility or deformation. Combining PVD and
galvanic deposition can offer unique advantages for decorative coatings. It enables one
to obtain a broad color range, improved adhesion, and enhanced wear resistance. The
most straightforward hybrid process can be realized using an electroplated surface as
the base layer for a PVD-made topcoat that determines the appearance of the finish. This
approach provides numerous color and finish options and enhances the durability and wear
resistance of the coating. An example of multilayer architectures for brass and stainless
steel is shown in Figure 6. On the left side, stainless steel is covered by two PVD layers,
the adhesion layer (in white) and the final PVD finish. In the center of the picture, a brass
substrate is covered with an electrochemically deposited (ECD) nickel layer; a PVD topcoat
is then realized using an intermediate thin film to improve its adhesion (adhesion layer
in white). On the right side, a PVD topcoat is realized on a typical nickel-free ECD stack
consisting of copper, white bronze (WB), and palladium. Another way to combine PVD
and galvanic techniques is through so-called “graded coatings”, where the composition
or texture gradually changes during growth, an approach that can improve the erosive,
abrasive, and wear properties of the coating. An example of graded coatings realized by
varying the current and the voltage bias during deposition was studied by Antonov [83].

The hybrid approach produces unique aesthetic effects and enhances the coating’s
performance by tailoring its properties to specific substrate areas [36,84].

Overall, the combination of PVD and galvanic techniques provides a powerful toolset
for creating decorative coatings with a broad range of colors, textures, and properties. By
carefully selecting the deposition parameters and process conditions, it is possible to obtain
coatings with enhanced adhesion, wear resistance, durability, and unique aesthetic features.
On the other hand, the combination of two completely different deposition processes, such
as electrodeposition and PVD, increases the production complexity and costs. For this
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reason, research is active to minimize the inconvenience of the two techniques in order to
obtain a single standalone process.
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and brass.

3. Substrates

PVD coatings can be deposited on several substrates, such as, Ti, Al, Cu alloys, steel,
and even plastics (e.g., polycarbonate [85]). Corrosion-resistant substrates are preferred
because PVD coatings’ corrosion performances are highly dependent on the microstructure.
The well-known columnar structure, typical of PVD films, is due to the line-of-sight process,
often associated with a not negligible degree of porosity. Voids within the coating could
be the starting points for substrate degradation processes [86]. This is just one of many
aspects to keep in mind when choosing substrate material for industrial applications. The
compatibility with PVD processes is an often-overlooked aspect in base material selection.
The main drivers are the raw material cost, the ease of working, and the suitability for
large-scale manufacturing. This section will discuss two of the most common substrates for
decorative applications, i.e., brass and stainless steel. The benefits and drawbacks of using
brass and steel as substrates in industrial deposition processes are summarized in Figure 7.
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3.1. Brass

The term “brass” (Figure 8) refers to various alloys containing copper and zinc as
the main components. Thanks to its forging and machinability properties, brass is the
most employed substrate for decorative applications. Fashion accessories are usually made
through hot stamping [87], a low-cost and highly adaptable processing technique. Dual-
phase (α + β) and leaded brasses are preferred because of their better machinability [88–92].
Lead-free brasses containing silicon and bismuth also have good machinability and can be
used as decorative substrate materials [91]. From a practical point of view, Si-containing
brasses, due to their poor electrical conductivity, are not recommended if electrochemical
pre-treatments are required. PVD on brass is usually preceded by an ECD [32,93] of an
anticorrosion and a leveling layer to increase lifetime and brilliance. ECD pre-treatments
are needed because PVD does not allow for the sealing of the substrate; external agents can,
therefore, come in contact with the substrate, promoting its corrosion, delamination, and
intermetallic diffusion processes [94]. An ECD of bright nickel is commonly used under a
PVD coating as it provides good anticorrosion and leveling properties. An ECD of copper
is used as a leveling layer for nickel-free products, while white bronze and palladium layers
work as anticorrosion and diffusion barriers [95] (Figure 6).
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Figure 8. Brass coupon with polished finish.

Before electroplating, brass substrates are polished, cleaned, degreased, and the su-
perficial oxides are removed: this preparation is obtained with different steps involving
ultrasonic cleaning in an alkaline solution at 60 ◦C, followed by electrochemical alkaline
degreasing and cleaning in diluted sulfuric acid [82]. If Si-based brasses are used, rinsing
in hydrofluoric acid between ultrasonic cleaning and degreasing is advisable to improve
the adhesion of the deposit. Ultrasonic cleaning is usually performed after electrochemical
treatments before entering the vacuum chamber (Figure 9). Some studies of direct PVD
on brass for decorative purposes are present in the literature [84,96,97], but as far as the
authors know, those procedures are not used in industrial applications.
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3.2. Stainless Steel

The generic name “steel” represents a vast collection of iron-based alloys contain-
ing carbon whose composition has been developed according to the needs of specific
applications. European standard EN 10027 [98] classifies steel alloys by a nomenclature
representing their physical and mechanical characteristics. One of the most common
designation systems is the AISI (American Iron and Steel Institute), developed by the
homonymous organization. The AISI identifies steels by a three-digit code followed
by an optional letter. AISI 304 is the most popular steel for high-end fashion acces-
sories (Figure 10).

The performances of steels depend on the properties associated with their mi-
crostructures, i.e., the composition, the size, the morphology, and the arrangement of the
constituting phases [99–102]. Since all phases in steels are crystalline, steel microstruc-
tures are composed of various crystals, sometimes up to three or four different types, that
are physically mixed during phase changes and heat treatments. Among all microstruc-
tures, the most relevant and studied are the ferritic, martensitic, and austenitic types.
Ferritic steels are ferromagnetic and have a high temperature resistance. Martensitic and
precipitation steels contain low amounts of nickel and molybdenum; also, these types
of steels are magnetic and have high hardness and toughness. Austenitic steel is the
largest group of steels and can be subdivided according to the chemical composition in
(i) Cr-Mn; (ii) Cr-Ni; and (iii) Cr-Ni-Mo. Every alloying element actively empathizes a
specific physical or chemical property, as reported in the Handbook of Stainless Steel by
Outokumpu Oyj company [103].
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Figure 10. AISI 304 coupon with polished finish.

In addition to iron, the main components of steel are carbon, chromium, and nickel.
Carbon—It promotes the austenitic microstructure, increasing mechanical strength.

However, it has a negative impact on the intergranular corrosion resistance caused by
carbonate formation [104]. This has led to the development of low-carbon alloys. In ferritic
alloys, carbon greatly reduces the breaking stress and corrosion resistance. In martensitic
alloys, it increases hardness and strength but decreases toughness.

Chromium—It is a transition metal, hard and brittle, with strong corrosion resistance.
Chromium is highly prone to combine with oxygen, producing a passivation film of stable
oxide that protects the surface from corrosion; therefore, it is always used in producing
stainless alloys. It accounts for at least 10 wt% in stainless steel and the corrosion resistance
increases almost linearly with its abundance. Chromium also increases resistance to high-
temperature oxidation, promoting ferritic microstructure formation.

Nickel—It promotes the formation of the austenitic microstructure, as well as provides
greater hardness and ductility. In addition, it reduces the corrosion rate in the active state
and improves resistance in acidic environments. In precipitation-hardened steels, nickel
forms intermetallic compounds which increased strength, while in martensitic structures, it
is combined with carbon to improve weldability.

The performance of steels depends on the properties associated with their microstruc-
tures, that is, the arrangements, volumetric fractions, sizes, and morphologies of the various
phases constituting a macroscopic section of steel with a given composition in a particular
processing condition [99–102]. Unlike brass, many publications report direct PVD coating
on stainless-steel substrates [105–109].

Superficial defects and imperfections created during the manufacturing process can in-
terfere with protective film formation, reducing resistance to certain types of corrosion [110].
Concerning the PVD process, to obtain good coatings, the surface preparation process must
be well-established and highly reproducible. The typical pre-treatment procedure con-
sists of the following steps: tumbling, polishing, electropolishing, and ultrasonic cleaning
(Figure 11). A more detailed discussion of stainless steel cleaning processes is reported in
ASTM International Handbooks [111].



Materials 2023, 16, 4919 13 of 30

Materials 2023, 16, x FOR PEER REVIEW 13 of 31 
 

 

Nickel—It promotes the formation of the austenitic microstructure, as well as pro-
vides greater hardness and ductility. In addition, it reduces the corrosion rate in the active 
state and improves resistance in acidic environments. In precipitation-hardened steels, 
nickel forms intermetallic compounds which increased strength, while in martensitic 
structures, it is combined with carbon to improve weldability. 

The performance of steels depends on the properties associated with their micro-
structures, that is, the arrangements, volumetric fractions, sizes, and morphologies of the 
various phases constituting a macroscopic section of steel with a given composition in a 
particular processing condition [99–102]. Unlike brass, many publications report direct 
PVD coating on stainless-steel substrates [105–109]. 

Superficial defects and imperfections created during the manufacturing process can 
interfere with protective film formation, reducing resistance to certain types of corrosion 
[110]. Concerning the PVD process, to obtain good coatings, the surface preparation pro-
cess must be well-established and highly reproducible. The typical pre-treatment proce-
dure consists of the following steps: tumbling, polishing, electropolishing, and ultrasonic 
cleaning (Figure 11). A more detailed discussion of stainless steel cleaning processes is 
reported in ASTM International Handbooks [111]. 

 
Figure 11. A flowchart about steel surface pre-treatments before entry inside the PVD chamber. 

4. Surface Finishing 
4.1. Titanium-Based Coatings 

Decorative titanium-based coatings have been widely used in the industry due to 
their biocompatibility [112], color options [113], remarkable corrosion resistance [105], and 
cost-effectiveness. TiN coatings, as shown in Figure 12, can be prepared by adjusting the 
vacuum to 5 × 10−5 Torr, heating the substrate to 100 °C, and using 4 A of input current. In 
these conditions, nitrides like TiN [114] and ZrN [113] can be deposited; these have been 
extensively researched for a variety of industrial applications such as hard coatings [105], 
diffusion barriers in semiconductor technology, mirrors for optical applications [115,116], 
and decorative coatings. 

Figure 11. A flowchart about steel surface pre-treatments before entry inside the PVD chamber.

4. Surface Finishing
4.1. Titanium-Based Coatings

Decorative titanium-based coatings have been widely used in the industry due to
their biocompatibility [112], color options [113], remarkable corrosion resistance [105], and
cost-effectiveness. TiN coatings, as shown in Figure 12, can be prepared by adjusting the
vacuum to 5 × 10−5 Torr, heating the substrate to 100 ◦C, and using 4 A of input current.
In these conditions, nitrides like TiN [114] and ZrN [113] can be deposited; these have been
extensively researched for a variety of industrial applications such as hard coatings [105],
diffusion barriers in semiconductor technology, mirrors for optical applications [115,116],
and decorative coatings.
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Several factors influence the deposition of TiN coatings, such as the reactive gas used,
the total pressure in the chamber [117], Ar/N2 ratio [118], substrate temperature [119], and
the substrate’s bias voltage [120,121]. Among these factors, nitrogen flow is the most crucial
because it determines the color of the coatings. The deposition conditions that produce the
brightest yellow must be chosen precisely. For instance, a mistaken N2 supply can produce
unaesthetic dull colors [122]. The watchmaker industry developed the historical process
for gold coating, which involved covering a thin layer of titanium nitride with a flash of
gold to create a highly wear-resistant coating. Combining TiN and ZrN layers, a gold-like
appearance has been successfully obtained in producing luxury pens [123].

Carbides are prepared similarly to nitrides, using acetylene instead of nitrogen as
a reactive gas; they are an alternative to the most expensive DLC for the realization
of black coatings, albeit with lower hardness and stress resistance. To overcome these
drawbacks, Gupta in 2019 [124] proposed a new type of black coating, i.e., TiAlCO, using
ion implantation. The Ti surface was bombarded with energetic carbon ions, applying
2 kV anode voltage and a 0.03 T magnetic field. A carbon-rich plasma was established at
2 × 10−6 h·Pa and a minimum ion fluence of 1018 C·cm−2 was necessary to achieve a black
color surface.

Blue-colored coatings based on TiNO or ZrNO can be obtained by increasing the oxy-
gen content in the nitride lattice. Another well-known material for decorative applications
is TiO2, thanks to the wide range of colors obtainable by varying the coating thickness [81].

4.2. Chromium-Based Coatings

Chromium is a popular choice for PVD coatings due to its excellent mechanical,
thermal, and chemical properties [125]. Chromium coatings are widely used in a variety of
industries, including the aerospace [126], automotive [2], and medical industries, due to
their ability to provide high wear resistance, hardness [110], and corrosion resistance [127].

Chromium PVD coatings (Figure 13) are known for their exceptional resistance to wear
and abrasion, making them ideal for use in applications that involve high levels of friction
or impact. Additionally, chromium coatings have a low coefficient of friction, which makes
them ideal for use in applications where sliding or rolling contacts are involved [128], such
as bracelets and anklets.
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Another advantage of chromium PVD coatings is their ability to provide excellent
corrosion resistance. Chromium is easily passivated, which means that chromium coatings
can protect the underlying material from rust and other forms of corrosion. It is also worth
noting that chromium PVD coatings can come in a range of different colors, from a bright
silver color to a darker gunmetal gray. The color of the coating can be controlled by adjusting
the deposition conditions, such as the gas mixture, pressure, and temperature. Chromium
PVD coatings are of interest to the decorative industry as an alternative to ECD chromium.
Shiny and highly reflective ECD chromium coatings are widely used and appreciated; those
are generally obtained via electrodeposition from Cr(VI) baths. Hexavalent chromium
is a known human carcinogen, and its use has been heavily restricted by the European
Union [129]. PVD chromium competes with Cr(III) baths to fill the space left in the market
by Cr(VI) baths, as trivalent chromium baths have considerable criticalities such as the high
temperature and high voltage required and worse mechanical and aesthetic properties due
to the presence of carbides formed during the electrodeposition. In 2022, Martinuzzi [36]
published a comparative study between PVD chromium and ECD chromium, proving
how PVD chromium coatings are a valid alternative to ECD deposits obtained from Cr(VI)
solutions. He deposited Cr PVD on a copper substrate at 6.3 × 10−3 Pa pressure, heating
the substrate at 300 ◦C, while the plasma current was set at 150 mA.

4.3. Zirconium-Based Coatings

Zirconium-based ceramic compounds are used as a top layer due to their peculiar
mechanical and aesthetic capabilities; an exhaustive review of Zr(N, C, CN) properties
was made in 2020 by Ul-Hamid [130]. The most famous Zr-based ceramic for decorative
applications is ZrN thanks to its golden-like color. Already in the late 1980s, ZrN-based
coatings were first investigated as a hard coating for industrial applications such as wear-
resistant protective layers [131]. ZrN PVD coatings exhibit a wide range of color depending
on the deposition parameters, ranging from yellow to silver and brown to gray. In the
late 1990s, it was clear that, unlike TiN, the color was dominated by the microstructure
and not by the stoichiometric composition [93] and it could achieve a higher brightness
(L* > 90) [132]. Nitrogen partial pressure is fundamental for color control, and the gold-
like color was obtained with a N2 flux of 8–10 sccm. In 2001, Nose [113] proposed a
comprehensive explanation of how the color is influenced by deposition parameters. Then,
in 2020, Ul-Hamid [133] made a complete review of deposition conditions that influence the
mechanical properties of various Zr ceramic compounds. From a decorative perspective, it
is interesting to note that the golden color of ZrN is more greenish than the one obtained
with TiN, but the higher brightness makes ZrN more suited for Au + ZrN systems. It
has been proved that with the wear of the top-deposited gold layer, a close matching
in L* guarantees a more pleasant aesthetic effect than a satisfying matching in hue [20].
Klumdoung [134] obtained silver, brown, green-yellow, and blue ZrN deposits working at
a high Ar flow rate (6 sccm) and varying the nitrogen flow from 0 sccm to 6 sccm, again
reporting the correlation between color and crystal structure. The corrosion resistance
properties of ZrN deposits are strictly correlated to structural parameters such the grain
size [132], and according to Kuznetsova [135], deposit structure can be accurately tuned
by optimizing the N2 flow. For decorative applications, multilayer Zn/ZrN systems
are preferable due to their superior corrosion-resistance properties [136,137]. Multilayer
ZrN/TiN systems can produce coatings with high hardness and stronger adhesion [138]
compared with ZrN and TiN systems. Recent works have focused on improving ZrN’s
mechanical and optical properties with the addition of Si and O as ternary elements [139–141].
Furthermore, to obtain coatings with antimicrobial capabilities [142,143], the addition of Cu
to Zr-based ceramics has been evaluated. Gray PVD coatings can be achieved by depositing
ZrC [144], but this top layer is uncommon in the decorative field since Cr-based coatings
are preferred.
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4.4. DLC Coatings

DLC coatings are amorphous carbon-based materials containing a mix of sp2 and
sp3 hybridized C atoms. Their unique properties, such as high hardness, low friction,
high thermal conductivity, and chemical inertness, rank among the two allotropic forms
of carbon (graphite and diamond) and they depend on the sp2:sp3 ratio [145]. Raman
spectroscopy is fundamental to characterize DLC: from D and G bands; it is possible to
estimate the sp2:sp3 ratio and the internal stress [146,147]. DLC can be deposited by PVD
using a graphite source and by CVD using a mixture of hydrocarbons as reactive gas [148].
The electrodeposition of DLC on Ti was achieved in 2009 by Manhabosco [149], but required
a rapid increase in applied potential from 0 to 1200 V for 4 h and acetonitrile mixed with
DMF as a medium; for their simplicity, PVD and CVD remain the best way for industrial
applications. An in-depth analysis of DLC properties and classification was made in 2021
by Ohtake [150]. Due to their tribological and chemical properties, DLC coatings are widely
used for cutting tools, engine parts, optics, and corrosion barriers, as reported by Vetter [151]
in their historical review of DLC deposited by PVD for industrial applications from the first
developments to 2014. DLC deposits are interesting for decorative applications because
their black color (Figure 14), low friction, and wear resistance make DLCs great to be
used as a finish on bracelets and watch bands [152]. DLCs are promising as a corrosion
barrier too, but due to their high internal stress they are not suited to be an intermediate
layer [144]. Low adhesion and delamination are the main problems that limit the usage of
DLC in decorative applications. To improve the adhesion on a steel substrate, a Cr-based
underlayer system was developed by Duminica in 2018 [43], and in 2021 Gómez [153]
obtained a DLC coating on steel with surprising adhesion deposited with high-power
impulse magnetron sputtering (HIPIMS) technology with positive pulses. For the DLC
film, they used a graphite target operating at 600 V and 1.5 A.
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5. Characterization of PVD Coatings

In decorative and high-end fashion industries, coating defects could compromise
aesthetic properties, which are crucial in determining the commercial success of a prod-
uct [154]. For this reason, accurate quality control planning of quality control is mandatory
to reduce rejected products and increase company competitiveness [155]. A standard



Materials 2023, 16, 4919 17 of 30

quality control protocol for PVD coatings has to include the evaluation of tribological
properties (at least hardness and wear resistance), adhesion tests, corrosion resistance, and
color measurements.

This section provides a comprehensive overview of the most common tests and
analyses implemented by quality control processes adopted in decorative finishing.

5.1. Thickness Determination

Probably the most common analysis in the decorative industry for PVD coatings is
thickness determination [156]. Thickness is an important parameter, and it is correlated
with other properties like adhesion, wear and corrosion resistance, and barrier proper-
ties [157,158]. The importance of layer thickness is amplified in modern multilayer systems,
as their properties depend on the interface volume between layers [159,160]. As other im-
portant parameters for quality control, the thickness measurement methods of multilayer
systems go under ISO 21874:2019 [161]. Thickness determination methods can be subdi-
vided into destructive and non-destructive techniques. To examine multilayered structure
methods involving Scanning Electron Microscopy (SEM) analysis, metallographic cross
sections are preferable because they allow one to directly visualize and measure the multi-
layered structures. Other popular destructive techniques are the crater grinding method
(regulated under ISO 26423:2016 [162,163]) and GDOES [164]. Thickness measurements
methods based on X-ray fluorescence (XRF) and regulated under ISO 3497:2000 [163] are the
most popular in industrial applications: they provide fast and accurate analysis, especially
for metallic coatings, and various desktop ED-XRF, coupled with user-friendly software,
are sold on the market for industrial applications. A new trend is the automatization of
XRF measurements and the capability to obtain real-time data during the deposition [165]
to improve further the quality control over the products. A standardless approach based
on Monte Carlo simulations for XRF was proposed in 2019 [166]. Indirect thickness mea-
surements with quartz microbalances (QCM) are also popular to perform real-time quality
control on the deposited material over the surface [158]. To evaluate the thickness of thin
films, Giurlani [167] developed in 2018 a standardless method based on EDS spectroscopy
and Monte Carlo (MC) simulations: it was able to measure nanometric thicknesses of
PVD-sputtered samples. In 2020, MC simulations were also employed with success to
make calibration curves for XRF thickness measurements [168]. Another emerging non-
destructive methodology was proposed in 2021 by Isern [169]; it is based on terahertz (THz)
reflectivity and was successfully employed to map the PVD-deposited yttria-stabilized
zirconia thermal barrier. In 2023, Cruz [170] proposed a standardless method, tested on
TiN coatings, based on EDS and MC simulations that correlates the acceleration voltage,
the type of substrate, and the intensity ratio of peaks of the substrate and the deposit to the
coating thickness.

5.2. Mechanical Properties and Defects Analysis

Mechanical and tribological properties have been the subject of numerous stud-
ies [56,151,171–175]. In decorative PVD coatings, tribological properties play a critical role
in determining the resistance of the coating to wear and abrasion, because they can affect
the appearance and the lifespan of the coating. Therefore, coatings with good tribological
properties such as high hardness, low coefficient of friction, and good wear resistance
are preferred for decorative PVD applications. Several tribological parameters such as
coefficient of friction, wear rate, and volume are evaluated with a pin-on-disk Tribometer;
this test is regulated by ASTM G99-17 [176], DIN 50324-07 [177], and ISO 18535:2016 [178].
Hardness and adhesion are other important mechanical properties to evaluate the quality
of a produced good: accessories and fashion jewels are subjected to continuous changes
in temperature and frequent shocks and bumps. Small detachments or scratches that
compromise the aesthetic value of the object determine the end of life of the product,
as decorative goods lose functionality as soon as the visual appearance worsens and it
is no longer desirable. Then, to improve the overall quality and reduce the embodied



Materials 2023, 16, 4919 18 of 30

energy (the total energy required to produce a product, from raw material to the delivery
of the final good), decorative PVD coatings need to pass hardness and adhesion tests. For
hardness evaluation, indentation [179] tests are regulated by ISO 14577-1:2015 [180]. The
Rockwell adhesion test is the one of choice to evaluate the adhesion of PVD coatings, as it
provides quantitative information and it is regulated under ASTM C1624-22 [181] and VDI
3198 [182]; developments on automatizing and standardizing the Rockwell test involving
neural networks and machine learning algorithms are ongoing [183]. Other adhesion tests
are the network of cuts method under ISO 2819:2017 [184] and ISO 11644:2022 [185] and the
tape test under ISO 11644:2022 [185]. A novel methodology, based on the crater grinding
method and adhesion scratching tests, to obtain quantitative information on deformations
and degradation of PVD multilayer films named the Recatest was proposed in 2021 by
Domanowski [186]. Defect analysis is fundamental for PVD coatings due to the colum-
nar structure and poor coverage of the deposits, and an excellent review of PVD growth
defects was written by Panjan [86] in 2020. To differentiate defective products that could
accelerate degradation processes and ensure the customer receives a high-quality product,
the techniques to analyze PVD deposits, especially multilayer ones, are regulated under
ISO 21874:2019 [161]; the election techniques are SEM analysis and Glow-Discharge Optical
Emission Spectroscopy (GDOS) [187,188].

5.3. Color Evaluation

Color is probably the most important parameter for the haute couture and decorative
industries: the main aim of a finishing coat in those fields is to provide aesthetic value to
the artifact, increasing the perceived value, to make it a luxury and desired object. Several
studies have been conducted on the importance of color and its implication in marketing
and psychology [189,190], and the link between a good quality PVD coating and the precise
color requested by a customer is so tight that it is mandatory to have a standardized and
quantitative method to define, measure, and classify colors. Environmental factors (e.g., the
source of illumination) and the intrinsic properties of objects can generate inconsistent data,
causing disputes between manufacturers and customers. To avoid this, the color is usually
encoded through the standard dictated by the L*a*b* color space (also known as CIELAB
or CIE1976). The CIE (Commission International de l’Eclairage) establishes the procedures,
lighting sources, and observation angles that can be used; those procedures are under
ISO/CIE 11664:2019 [191]. The values of the three coordinates L*a*b* are obtained through
the transforms relating to the X, Y, and Z coordinates of the color space CIE XYZ [192] and
the mathematical treatment is already covered extensively in the literature [193]. The L*a*b*
color space covers the entire gamut of the visible human spectrum and can be understood
and represented as an opposite color model with b* that shifts from yellow (b* < 0) to blue
(b* > 0), a* from green (a* < 0) to red (a* > 0). L* represents the brightness and goes from
0 (pure black) to 100 (pure white). Colorimetric measurements can be achieved with a
cost-efficient tristimulus colorimeter [194], but modern colorimetric spectrophotometers
are better suited to obtain accurate data and avoid disputes with the customer [195]. The
accuracy required for the color of a PVD coating is usually determined by the customer in
the form of a* ± ∆a*, b* ± ∆b*, and L* ± ∆L, but an important parameter to evaluate the
quality of a product is the Euclidean distance (∆E) inside the L*a*b* color space (1)

∆E =
2
√
(∆L*)2 + (∆a*)2 + (∆b*)2 (1)

A just noticeable difference (JND) between two objects is detected by a human eye
for ∆E ≥ 3 [196]. That threshold should be considered in the decorative PVD industry to
evaluate the production quality.

5.4. Corrosion Tests

As mentioned in previous sections, the aesthetic properties of a PVD coating in the
decorative industry are the main task to obtain and maintain. Visible corrosion-derived
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defects, even if they do not alter the mechanical properties of the goods, determine the
end of life in the decorative field [20]. Produced goods, to meet customer acceptance, have
to pass various tests that simulate and accelerate the environments where those objects
are going to be used [197] (e.g., the atmospheric conditions of a bathroom, especially for
faucet industries); especially for wearable products, they need to pass tests that simu-
late human beings (e.g., sweat). Corrosion tests and corrosion resistance properties are
extensively indagated for PVD coatings [36,56,171,198,199]. In the decorative industry,
a commonly used substrate is brass, and corrosion studies are needed to evaluate the
performances that could be compromised by the columnar structure of PVD [84,97,188].
The most used regulated tests for quality control in the decorative industry are the salt
spray test, divided into neutral, acetic acid, and copper variants (ISO 9227:2022 [200]); the
synthetic sweat test (ISO 3160-2:2015 [201] and NF S 80-772:2010 [202]); electrochemical
impedance spectroscopy tests (ISO/TR 16208:2014 [203] and ISO 16773 [204]); potentiostatic
and potentiodynamic polarization measurements (ISO 17475:2005 [205]); tests that simu-
late pollution and corrosive atmospheres (thioacetamide test ISO 4538:1978 [206], sulfur
dioxide and nitric acid tests regulated under ISO 4524:2000 [207]); and dump heat (with
leather, ISO 17228:2015 [208], and without leather, ISO 4611:2010 [209]). For haute couture
industries, damp heat with leather is important to simulate the contact with chrome-tanned
leather: it has been proved that chrome-tanned leather releases oxidating agents in the
form of Cr(III) and Cr(VI) [210,211] that could damage PVD-covered accessories.

5.5. Heavy Metals’ Release

Regarding wearable artifacts, the release of heavy metals is a fundamental parameter
for ensuring the quality and safety of the product for the customer. Common hazardous
metals in wearable PVD-coated artifacts are nickel and lead. Although lead and nickel thin
films can be deposited by PVD [212,213], those coatings are not of interest for decorative
applications, but both could be found in small quantities inside substrate alloys. Nickel-
containing steel is the most used type of steel for PVD applications and lead is added to
brass to increase its machinability [214], even if the trend is to employ new performing
lead-free brasses [91]. In addition, as we mentioned before, electroplated nickel is widely
used as a strike layer for PVD topcoats if brass is used as a substrate. Nickel is considered
a hazardous element for human health and its issues concerning human health are well
reported in the literature [215,216]; the most common problem related to nickel-containing
wearable objects is nickel allergy [217]. Nickel-release tests have to be carried out according
to EN 12472:2020 [218], which regulates methods that simulate the wear and corrosion
of artifacts for the detection of nickel release; nickel determination is regulated under
EN 1811:2015 [219] and an accurate report of the techniques used to quantify nickel release
in decorative industries was accomplished by Giurlani [95]. Lead needs to be considered
one of the most important toxic heavy metals in the environment, and its full spectrum
toxicity is reported in a 2015 review by Wani [220]; in the European Union, lead percentage
in alloys is regulated by the European Chemical Agency (ECHA) and only alloys with lead
content of a weight lower than 0.05% are admitted in jewelry. Other important regulations
are the US standard ASTM F2999-19 [221] for adult’s jewelry, which sets a 1.5% threshold
for lead in alloys, and the US standard ASTM F2923-14 [222] for children’s jewelry, which
sets the threshold at 0.01% [223]. Determination of lead content in a sample is regulated
under CPSC-CH-E1001-08.3 [224], ISO 26482:2010 [225], and EPA 6010C:2014 [226].

6. Recent Trends and Perspectives in the Decorative PVD Industry

The decorative industry, as highlighted by Bandinelli [4] in 2021, is characterized by
low predictability and high variance in the types of artifacts produced and, particularly,
in color requests. PVD in the decorative field has not yet succeeded in undermining the
dominance of electroplating. Nonetheless, it is considered a fundamental technology for
this sector, especially since it enables a wide range of colors and textures [227]. Although it
is still a technology that is, at best, complementary to electroplating, it is gaining a lot of
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interest from the world of large-scale distribution mainly because of the possibility of ob-
taining more sustainable products, especially from an ecological point of view, meeting the
requirements of the UN 2030 agenda [228]. The advantages of PVD compared with electro-
plating are well-reported in the literature [4,84,136,229,230], and the process improvements
of recent years are well-reviewed in an excellent review from 2018 by Baptista [21]. The
challenges that will have to be faced and solved to supplant ECD techniques are several:
reduce structural defects as columnar growth, improve the research of PVD-deposited
barrier layers toward intermetallic diffusion, and bypass the line-of-sight deposition limit.
Regarding PVD barrier layers, research in the decorative field should take its cue from the
realm of electronics. This is because the study of barrier layers to prevent copper diffusion
is fundamental to ensuring the correct functionality of Cu interconnects [231]. A review
made in 2020 by Li [232] underlined how the Ta/TaN barrier layer is state-of-the-art for Cu
interconnects and how PVD-deposited Ru could be a valid candidate as a barrier layer, but
the typical defects of PVD films such as the columnar structure limit its usage. Amorphous
carbon obtained via DC magnetron sputtering as a promising barrier layer for Cu diffusion
was proposed by An [233] in 2020. A complication in the design of barrier layers is the
evaluation methodology, as a standard method of evaluation is lacking: to overcome this
limit, in 2023 a novel technique based on X-ray microanalysis suited for the decorative
and fashion industries was proposed [234]. The line-of-sight deposition limit is intrinsic
to PVD, and with an engineering-like approach (substrate rotation, multi-target systems,
and others) it is necessary to bypass that [173]. Many studies in recent years have been
conducted to evaluate how the deposited microstructure changes in the function of the
substrate angle and substrate oscillations [235–237]. Then, to meet the demand of the
market, researchers should focus on making a wider range of colored deposits to cover the
full color range offered by ECD; most of the obtainable PVD colors were well-summarized
by Alliot [238] in 2023. To better understand and optimize PVD industries, in silico studies
are trending as they can further reduce the environmental impact of the whole process
by predicting properties [239]. Computational strategies can be divided into one that
adopts an engineering-like approach and a computational chemistry one. Engineering-like
approaches based on the Finite Element Method (FEM) and Computational Fluid Dynamics
(CFD) for PVD were well-described in a 2018 review by Pinto [240]. In 2019, Kubečka [241]
presented a 2D fluid model of an ion PVD-based process that successfully predicts the
coating uniformity and the antenna effect on a workpiece of peculiar geometry. In 2020,
Wang [242] simulated the magnetically induced ion motion during a PVD deposition inside
a tubular substrate; important considerations have been drawn, as the deposition efficiency
inside the tubular substrate is influenced by the magnetic field. Controlling the ion motion
by adjusting the magnetic flux makes it possible to deposit at different positions inside
the substrate. Computational chemistry approaches have been successfully employed to
describe PVD processes, and both ab initio and classical molecular dynamics have been
used. In 2016, Xu [243] investigated the deposition mechanism at the atomistic level of a
TiN PVD deposit, and in 2018 Li [244] unveiled experimental differences between CVD
and PVD MoS2 deposition and generated guidelines for future defects engineering. In
2020, Guo [245] explored the oxidation properties of a Ti-Al-N deposit alloyed with quater-
nary transition metals. In 2021, Kang [246] studied the oxidation mechanism of a Ti2AlC
protective coating with an ab initio approach, and in 2022 Gholizadeh [247] described the
cracking mechanism of a multilayer Ti/TiN system.

7. Conclusions

Physical Vapor Deposition (PVD) has been discussed as a technique to produce coat-
ings for the decorative industry. It has been applied in the fashion industry since the
1970s and is regarded as the natural substitute for electroplating. However, it still has a
marginal role within the decorative industry, mainly due to its lack of compatibility with
brass, one of the most common substrates in the fashion field. Another issue highlighted
during the review is related to the line-of-sight deposition mechanism, which could make it
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unsuitable for covering objects with complex shapes. The line-of-sight growth mechanism
is also responsible for the deposit’s columnar microstructure, which reduces corrosion
resistance and promotes intermetallic diffusion. Nevertheless, the ever-growing interest in
environmental sustainability could convince luxury brands to switch to PVD technology.
Notwithstanding recent advances, electroplating is still one of the most environmentally
impacting manufacturing processes [26,248]. As Fortune Business Insights report, the rapid
increase in market shares confirms the growing interest in PVD coatings in the fashion
and decorative industries. Experts predict the PVD market value will double in the next
five years. With its wide range of colors and textures, PVD can also be combined with
electroplating, allowing fashion designers to fully express their creativity.

This review has focused on the latest developments in PVD technology and their ap-
plications to the fashion industry. Recent studies focused on new hybrid PVD technologies
have been presented. Applications of PVD coatings to substrates such as stainless steel
and brass have also been examined, highlighting how PVD is generally performed as a
standalone process on stainless steel, while it needs to be coupled with ECD for brass. The
importance of computational simulations is underlined, as they provide a powerful tool to
predict coating properties, reducing production waste. It has shown that Ti-based coatings
are the most used due to their wide color range (from yellow to blue). ZrN is reported as
the best alternative to gold in realizing coatings for high-end vogue applications, while
TiN is better suited for brass-like finishing, which is appreciated in the faucet industry.
This review also examined quality control processes used by companies operating in the
decorative sector.
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241. Kubečka, M.; Obrusník, A.; Zikán, P.; Jílek, M.; Vencels, J.; Bonaventura, Z. Predictive Simulation of Antenna Effect in PVD
Processes Using Fluid Models. Surf. Coat. Technol. 2019, 379, 125045. [CrossRef]

242. Wang, T.; Yang, Y.; Shao, T.; Cheng, B.; Zhao, Q.; Shang, H. Simulation of Magnetic-Field-Induced Ion Motion in Vacuum Arc
Deposition for Inner Surfaces of Tubular Workpiece. Coatings 2020, 10, 1053. [CrossRef]

243. Xu, Z.; Zeng, Q.; Yuan, L.; Qin, Y.; Chen, M.; Shan, D. Molecular Dynamics Study of the Interactions of Incident N or Ti Atoms
with the TiN(001) Surface. Appl. Surf. Sci. 2016, 360, 946–952. [CrossRef]

244. Li, L.; Long, R.; Prezhdo, O.V. Why Chemical Vapor Deposition Grown MoS2 Samples Outperform Physical Vapor Deposition
Samples: Time-Domain Ab Initio Analysis. Nano Lett. 2018, 18, 4008–4014. [CrossRef]

245. Guo, F.; Holec, D.; Wang, J.; Li, S.; Du, Y. Impact of V, Hf and Si on Oxidation Processes in Ti–Al–N: Insights from Ab Initio
Molecular Dynamics. Surf. Coat. Technol. 2020, 381, 125125. [CrossRef]

246. Kang, Q.; Wang, G.; Liu, Q.; Sui, X.; Liu, Y.; Chen, Y.; Luo, S.; Li, Z. Atomic Level Insights into the Ti2AlC Oxidation Mechanism
by the Combination of Density Functional Theory and Ab Initio Molecular Dynamics Calculations. Corros. Sci. 2021, 191, 109756.
[CrossRef]

247. Gholizadeh, P.; Amini, H.; Davoodi, J.; Poursaeidi, E. Molecular Dynamic Simulation of Crack Growth in Ti/TiN Multilayer
Coatings. Mater. Today Commun. 2022, 30, 103059. [CrossRef]

248. Kowalik-Klimczak, A.; Gajewska-Midziałek, A.; Buczko, Z.; Łożyńska, M.; Życki, M.; Barszcz, W.; Ciciszwili, T.; Dąbrowski, A.;
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