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Abstract: In situ fenestration of endovascular stent-grafts has become a mainstream bailout technique
to treat complex emergent aneurysms while maintaining native anatomical visceral and aortic arch
blood supplies. Fabric tearing from creating the in situ fenestration using balloon angioplasty may
extend beyond the intended diameter over time. Further tearing may result from the physiologic
pulsatile motion at the branching site. A resultant endoleak at the fenestrated sites in stent-grafts
could ultimately lead to re-pressurization of the aortic sac and, eventually, rupture. In an attempt to
address this challenge, plain woven fabrics were designed. They hold a specific corona surrounding
a square-shaped cluster with a plain weave fabric structure, a 2/2 twill, or a honeycomb. The
corona was designed to stop potential further tearing of the fabric caused by the initial balloon
angioplasty and stent or later post-implantation motion. The cluster within the corona was designed
with relatively loose fabric structures (plain weave, 2/2 twill weave, and honeycomb) to facilitate
the laser fenestration. Two commercial devices, Anaconda (Vascutek, Terumo Aortic) and Zenith
TX2 (Cook), were selected as controls for comparison against this new design. All the specimens
were characterized by morphology, thickness, and water permeability. The results demonstrated
that all specimens with a low thickness and water permeability satisfied the requirements for a stent
graft material that would be low profile and resistant to endoleaks. The in situ fenestrations were
performed on all fabrics utilizing an Excimer laser followed by balloon angioplasty. The fabrics
were further observed by light microscopy and scanning electron microscopy. The dimension of the
fenestrated apertures was smaller than the balloon’s diameter. The tearing was effectively confined
within the corona. The clinical acceptability of this concept deserves additional bench testing and
animal experimentation.

Keywords: in situ fenestration; stent-graft; fabrics; balloon angioplasty; tearing

1. Introduction

In-situ fenestration of stent grafts is now accepted worldwide as a bailout option for
frail or elderly patients presenting with emergent, life-threatening complex aortopathies
who are only candidates for minimally invasive endovascular aneurysm repair (EVAR) [1,2].
The success of this technique compares favorably to the chimney and other similar meth-
ods [3,4]. Although considerable refinements of the technique of in-situ laser fenestration
have been achieved, the mainstream manufacturers of stent-graft devices have not yet
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overcome the challenge of developing and producing optimized and commercially avail-
able fabrics designed to be fenestrated in situ [5]. The in-situ fenestration procedure is
performed by first penetrating the fabrics of the stent-grafts by laser fenestration, followed
by balloon angioplasty. This is considered the optimal technique by most stent-graft manu-
facturers [6]. Alternative fenestration techniques (with and without laser) have recently
been investigated through the AARCHIF registry in the cardiac literature [7]. All the
fenestration techniques for in situ endovascular aortic arch repair are viable treatment
options [8]. Regrettably, adverse clinical outcomes were observed due to embolic stroke
or type III endoleaks [9,10]. The various types of woven fabrics currently selected by
most commercial stent-graft manufacturers include 4/4 twill woven monofilament, plain
woven multifilament, and fancy warp-locked (plain + warp double) multifilament yarns.
These materials permit fenestration of the fabrics by either energy fenestration (laser or
radiofrequency) or mechanical fenestration (needles) to create the initial orifice necessary
to enable balloon insertion and dilation [11–13]. Using current knowledge, surgeons select
the most appropriate technique based on their skills, the imaging equipment available,
and the availability of devices that allow safe and reliable fenestrations [14]. In response
to balloon dilation before the placement of covered stents, the risk of fabric tearing with
the current stent-graft fabric designs still needs to be optimized to eliminate the risk of
endoleak and aortic sac size progression [15]. The success of the fenestration of fabrics is
highest when using a non-compliant balloon whose diameter is 8 mm or less. The use of
cutting balloons in this context is no longer recommended [6]. The issue of tear propagation
post-ballooning of the fabric and after branch graft flow restoration has been addressed
previously [16,17]. The goal of this research was to develop and optimize a unique fabric
structure to prevent the tearing of the stent graft (Figure 1) caused by the necessity to
first perform balloon angioplasty during the in situ fenestration of the stent graft while
performing urgent endovascular treatment of complex aortic pathology.
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Medical-grade polyester multifilament fibers (RxFiber LLC, Windsor, CA, USA) were 
selected to weave the fabrics. The specifications of the yarn 40D/27f were as follows: 27 

Figure 1. Sketch of an in situ fenestrated stent-graft with a tubular fabric with the specific “corona”,
which consisted of the body and the corona. A square “cluster” (5 mm in width) was incorporated
into the square corona (11 mm in width) and surrounded by it. The function of the corona is to
prevent the tearing caused by the balloon’s dilation, while the cluster allows for easy balloon dilation
by the surgeon.

2. Materials and Methods
2.1. Yarn Selection

Medical-grade polyester multifilament fibers (RxFiber LLC, Windsor, CA, USA) were
selected to weave the fabrics. The specifications of the yarn 40D/27f were as follows:
27 fibers in each yarn and a 40 deniers yarn’s liner density. (The denier is the unit of
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fineness for yarn equal to the fineness of a yarn weighing one gram for every 9000 m).
The diameter of the fiber is 12.33 ± 0.32 µm. Such a specification is similar to that of the
fiber employed in the Anaconda stent-graft material (Vascutek, Terumo Aortic, Inchinnan,
Scotland, UK) at 12.87 ± 0.64 µm).

2.2. Design and Manufacture of Flat Fabrics Incorporating a Corona

The basic fabric, designed to integrate a cluster within a corona, was a plain woven
body 20 cm in width and a selected choice in length. The fabric count was 7 ends/mm and
7 picks/mm in all the prototypes. The coronas were created to stop tearing after fenestration
and balloon angioplasty using non-compliant balloons. This fabric structure was a basket,
11 mm × 11 mm. The clusters were declined in three different constructions: plain weave (A),
2/2 twill weave (B), and honeycomb (C) in squares 5 mm × 5 mm within the coronas. The
initial plain fabric without a corona and a cluster served as a reference (D). All the specimens
were woven on a customized shuttle loom at Donghua University. The thermal treatment was
performed after the weaving with a temperature setting of 180 ◦C for 10 min (Figure 2, Table 1).
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Figure 2. The configuration and structure of the flat fabric. The plain weave is selected for the body
(basic zone) as common device, while the basket weave is selected for the corona (reinforced zone) in
order to enhance the structure and prevent tearing. There are three kinds of weaves (plain, 2/2 twill,
and honeycomb) selected as the cluster (fenestrated zone) to be penetrated easily by the laser probe
or needles. However, isolate the blood flow from the aneurysm effectively.

Table 1. The information of the novel design of fabrics.

Design 1. Cluster 2. Corona 3. Body

Zones Site of fenestration Reinforced zone Basic zone

Function Facilitates the perforation by
the laser probes or needles

Improves the tearing
resistance caused by the

dilation of balloons

Guarantees its
imperviousness to prevent

blood oozing

Fabric structure
• Specimen A: Plain weave

Specimens A, B and C: Basket Specimens A, B, and C: Plain• Specimen B: 2/2 twill
• Specimen C: Honeycomb

Two commercial stent-grafts, Anaconda (Vascutek, Terumo Aortic, Inchinnan, Scot-
land, UK) and Zenith TX2 (Cook Medical, Bloomington, IN, USA), were selected as refer-
ence endografts.
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2.3. Fabric Characteristics
2.3.1. Thickness

It was measured according to ISO Standard 7198 [18] to confirm that the thicknesses
of the fabrics with the corona were similar to those of the control D and to assess that
potential future commercial devices could be inserted into delivery sheaths of diameters
equivalent to or even smaller than those of currently available commercial devices. Each
zone of the specimen was measured three times, and then the mean and standard deviation
were calculated.

2.3.2. Water Permeability

The water flow volume is measured through the flat fabric wall per centimeter square
at 16 kPa, i.e., 120 mmHg pressure per minute (mL/min/cm2) [19]. Each fabric specimen
was cut into a square of 15 mm × 15 mm2. The coronas fitted with the clusters were
included for specimens A, B, and C. The total effective surface area (A) of fabrics was
0.636 cm2 (Ø 9 mm) (Figure 3). The volume of distilled water (Qi) per minute was collected
continuously over ten minutes to calculate each fabric’s average water permeability (P)
according to the following Equation (1). The water permeability test was performed three
times for each specimen.

Pi =
Qi
A

(i = 1, 2, . . . . . . , 10) (1)
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Figure 3. Schematic illustrating configuration of the specimen for locally water permeability test. The
water flow will penetrate the surface areas (red cycle) of the fabric.

2.4. Fenestrations
2.4.1. In-Situ Fenestration

Four series of fabric perforations were made on the experimental devices A, B, and
C, the control fabric D, and the commercial device fabrics using the 308-nm CVX-300
Excimer Laser System (Spectranetics, Colorado Springs, CO, USA), which can successfully
and efficiently create apertures in polyester-based stent-grafts outside the manufacturer’s
instructions for use (IFU). The laser operates at a wavelength of 308 nm. A Turbo Elite Laser
Ablation Catheter (2.3 mm diameter) at high energy (i.e., fluency of 60 mJ/mm2) was used
to create each fenestration [4,9]. The fabrics were submerged in the bottom of a basin filled
with a physiologic saline solution at room temperature. The fenestrations were performed
in three lines of five punctures for each cluster design: the first one was selected as the
control; the other two were dilated by non-compliant balloons (Mustang Over-The-Wire
PTA Balloon Dilatation Catheters, Boston Scientific, Marlborough, MA, USA) of 6 mm and
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8 mm diameter, respectively. They were inflated to a nominal pressure of 10 atmospheres.
The same protocol was followed for the control and commercial devices.

2.4.2. Observations in Microscopy

The fabrics were examined non-destructively as received, after laser fenestration, and
after ballooning. Each one was observed at 20× magnification with a light compound
microscope (SMZ745T, Nikon Imaging (China) Sales Co. Ltd., Shanghai, China) fitted
with a CCD camera (Digital Sight DS-Fil, Nikon Imaging (China) Sales Co. Ltd., Shanghai,
China). Then square areas of 15 mm × 15 mm2 holding the clusters were cut out of the
fabric, gently flattened, and fixed on a stub without tension using conductive adhesive.
They were then sputter-coated with platinum and observed at 100× magnification by the
scanning electron microscope (Quanta 250 FEI Company, Hillsboro, OR, USA) at a 15 kV
accelerating voltage. The images were processed with Adobe Photoshop CS.

2.4.3. Dimension of the Fenestrated Apertures

The area and the maximal tearing length of each fenestrated aperture were measured
under optical microscopy and scanning electron microscopy. Adobe Photoshop CS mea-
sured the lengths of the fenestrations in the warp (parallel to the direction of the blood
flow) and weft (perpendicular to the direction of the blood flow) directions. They were
defined as the maximal length between the two extremities of the holes in both warp and
weft directions. Ultimately, the area of fenestration was measured. The data were analyzed
by SPSS version 26 for Windows (SPSS Inc., Chicago, IL, USA). All results were expressed
as the mean ± standard deviation (SD). The significance between the data groups was
tested using the One-way ANOVA test. A value of p < 0.05 was considered significant.

3. Results
3.1. Stent-Graft Fabrics for In Situ Fenestration

The fabrics incorporated different zones, i.e., body, corona, and cluster. They were
flat. The structure of the basic zone and reinforcement zones’ structures was uniform and
stable. The boundary transition between different zones was well-defined. The control
specimen D with the plain weave showed a structure much denser than the other two
structures, the corona and the cluster. The structure of 2/2 twill with the right diagonals
was observed on the cluster of specimen B, while the honeycomb shapes were present on
specimen C with the honeycomb weave. There were no skewed weft yarns observed on all
specimens. Therefore, the three-stage gradient fabric with stable structures was obtained
by the integrated textile preparation technology with varying structures (Figure 4).

3.2. Fabric Characteristics
3.2.1. Thickness

All the specimens with the reinforced zone (corona) and zones to be fenestrated A, B, and
C were thicker than the control D (0.123 ± 0.002 mm). Meanwhile, the thickness of the corona
zone was higher than that of the basic zone and zones to be fenestrated. Fabric specimen C
(reinforced zone: 0.203 ± 0.002 mm) was the thickest, while B (0.188 ± 0.002 mm) was the
thinnest. The Zenith reference TX2 fabric was the thickest at 0.234 ± 0.010 mm (Figure 5).

3.2.2. Water Permeability

It decreased with time from 0 to 10 min (Figure 6). Within the reinforced and fenes-
trated zones, the water permeability of specimens was higher than control D
(23.0 ± 2.6 mL/min/cm2). Specimen C (163.7 ± 17.2 mL/min/cm2) was the highest, while
specimen A (80.8 ± 2.6 mL/min/cm2) showed the lowest permeability. The water perme-
ability of the commercial references Anaconda and Zenith TX2 measured
43.9 ± 4.6 mL/min/cm2 and 24.1 ± 2.4 mL/min/cm2, respectively.
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with the only basic zone (3).

3.3. In-Situ Fenestration
3.3.1. Gross Observations

The dilations with non-compliant balloons permitted enlargement of the initial laser
perforation (Figure 7). Compared to control D, the corona effectively prevented further
tearing. Among the specimens, C presented larger apertures than A and B. Specimen C,
with the honeycomb weave in the fenestrated zones, demonstrated a longer float length of
yarns while the interweave points of yarns were less, which resulted in the least amount of
uncontrolled tearing. Thus, it demonstrated the highest risk of causing excessive tearing.
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Figure 7. Light microscopy and SEM photo of laser fenestrations after the non-compliant balloon
deployment of specimens and commercial references. It is obviously observed that the corona
(reinforced zone) could prevent the further tearing of the dilation of the non-complaint balloon in the
cluster (fenestrated zone).

The yarns within the cluster were broken by the balloon dilatation instead of cutting
away from the fabric. When the balloon was removed, the broken but flexible yarns could
partially recoil back to their original position. Thus, the shape of the fenestrated apertures
of specimens B and C looked to a “butterfly”. Acutely, the shape of the apertures of
specimen B most closely approximated a concentric circle with a similar tearing length
in both directions. Furthermore, it demonstrated that the yarns broken within the cluster
(fenestrated zone) were destroyed by the balloon dilations. However, it is observed that the
yarns within the corona (reinforced zone) only curled along the balloon dilation direction
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instead of breaking. This suggests that, due to the reinforced fabric structure, the yarns in
the corona could prevent further tearing.

3.3.2. The Area and the Length of Fenestrated Apertures

Table 2 and Figure 8 show the maximal length and area of the fenestrated apertures. Com-
pared to specimen D, the samples with the reinforced zones have lower tearing lengths and areas.
Specimen C was the largest among the three specimens, while B had the shortest tearing length
and smallest area post-balloon dilatation (p < 0.05). Furthermore, the tearing directions in the
warp and weft of Specimen B were similar when using the non-compliant balloons (p < 0.05).

Table 2. The maximal tearing length and area of the fenestrated apertures.

No. Fenestration Devices
Maximal Tearing Length (mm)

Area (mm2)
Warp Weft

A
Laser probe 1.26 ± 0.11 2.10 ± 0.12 1.94 ± 0.34

NC balloon
(mm)

Ø 6 2.42 ± 0.45 2.84 ± 0.23 4.32 ± 0.51
Ø 8 2.52 ± 0.29 4.76 ± 0.69 7.00 ± 0.63

B
Laser probe 1.82 ± 0.04 1.06 ± 0.05 1.74 ± 0.09

NC balloon
(mm)

Ø 6 2.52 ± 0.43 2.60 ± 0.12 2.98 ± 0.58
Ø 8 3.08 ± 0.45 3.16 ± 0.56 5.54 ± 1.47

C
Laser probe 1.78 ± 0.08 1.1 ± 0.23 1.96 ± 0.42

NC balloon
(mm)

Ø 6 2.94 ± 0.09 2.98 ± 0.13 4.54 ± 0.93
Ø 8 4.10 ± 0.46 3.48 ± 0.33 7.98 ± 1.67

D
Laser probe 1.20 ± 0.20 2.04 ± 0.25 1.92 ± 0.11

NC balloon
(mm)

Ø 6 2.70 ± 0.23 2.72 ± 0.13 4.96 ± 0.44
Ø 8 4.80 ± 1.19 3.44 ± 0.22 9.12 ± 1.33

Anaconda
Laser probe 2.60 ± 0.15 2.49 ± 0.14 5.14 ± 0.87

NC balloon
(mm)

Ø 6 3.88 ± 0.99 2.69 ± 0.36 6.71 ± 1.80
Ø 8 4.23 ± 0.86 3.24 ± 0.19 12.13 ± 3.85

Zenith
Laser probe 2.60 ± 0.20 2.52 ± 0.29 5.05 ± 0.61

NC balloon
(mm)

Ø 6 2.60 ± 0.40 2.35 ± 0.20 6.27 ± 0.82
Ø 8 4.62 ± 0.58 2.83 ± 0.18 12.77 ± 3.25

Note: NC stands for the non-compliant.
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Compared to the Anaconda, the tearing length and the area of the apertures of spec-
imen B are smaller (p < 0.05). The Zenith has a double warp structure; thus, its tearing
length (2.83 ± 0.18) in the weft direction is shorter than all specimens (p < 0.05). However,
its tearing length (4.62 ± 0.58 mm) in the warp direction is longer than that of specimen B
(3.08 ± 0.45 mm) (p < 0.01).

4. Discussion

The issue of post-fenestration fabric tearing has been raised in the past [20–23] and
has been more recently addressed in several patents that were released [24,25] (Table 3).
The primary purpose of this research was to create a fabric designed to make the initial
perforation easier and decrease the risk of fabric tearing caused by the balloon angioplasty.
The selection of an optimal fabric weave or tightening the structure of the weaves are two
options to solve the tearing issue within the fenestration regions of the fabrics. These results
demonstrate a potential solution to this problem. However, much work must be done to
translate this new fabric design into a fully functioning aortic endograft for in vivo animal
or human testing.

Table 3. The comparison among the patents referred to regarding in-situ fenestration grafts.

Patent Materials Method Object Potential Clinical Issues

CN107119371B
27 September 2019

Donghua University
Textile strands

• Two various fabric
weaves (basket weave
for corona and the 2/2
twill weave for cluster)
at fenestrated regions.

• To make the
perforation easier.

• To prevent the tearing
after the balloon
dilation.

• No permeability of the
designed fenestrated
regions if the
fenestration is not
operated.

• Absence of radiopaque
marker to facilitate
tracking the
fenestrated regions.

US 8597342B2
3 December 2013

Cook Medical
Technologies LLC

Textile strands
• Reduce the yarn

density # at designed
fenestrated regions.

• To make the
perforation easier.

• Tearing of fabric after
balloon dilation.

• Risks of endoleak in
the vicinity of
fenestration orifices or
the higher porosity
caused by reduced
yarn density.

• Delayed type IV
endoleak.

US 8353943B2
15 January 2013
Cook Medical

Technologies LLC

Textile strands plus
metal strands

• Reduce the yarn
density at designed
fenestrated regions.

• Form a tighter
structure around a
branched vessel stent.

• To make the
perforation easier.

• To reinforce the
fenestration orifice and
reduce the possible
fluid leakage.

• The stiff metal stands
might stop balloon
dilation and increase
the graft rigidity.

• Abrasion of the metal
stands in one direction
to the textile strands in
another direction.

# Yarn density means the number of yarns in per 10 cm in warp or weft direction of woven fabric.
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The construction of a specific cluster nested within a corona of a woven textile fabric
has now been successfully achieved. This novel fabric design may effectively eliminate
the risk of progressive dilation over time and blood leakage past the fenestrations’ site.
The water permeability results of this fabric are similar to the anticoagulated whole blood
permeability. The water permeability of the novel specimens was higher than that of the
commercial devices; however, it was still much lower than 300 mL/min/cm2, which could
prevent type IV endoleaks [19].

Furthermore, the clinical acceptability of this concept deserves additional bench testing
and animal experimentation. To be clinically adopted and implemented, a stent-graft
incorporating such a sophisticated fabric must demonstrate its benefits for patients and
physicians. At a minimum, it must not be inferior to the current technology and must
demonstrate clinical durability over the long term [26–28]. The degree of success of any
new implantable device can be expressed by the 3Bs that we have previously highlighted:
bifunctionality, biodurability, and biocompatibility. We will address these in order of
importance as they apply to this new technological development.

1. Biofunctionality. It is anticipated that the wall of the device will be thin enough to fit
into a delivery sheath whose diameter is as narrow as possible [29]. The thickness
of the body of the fabrics created for this study, A, B, C, and D, at about 0.12 mm,
was in the same range as the Anaconda fabric and less than half of the one of Zenith
TX2. The corona thickness was maintained between the Anaconda and the Zenith
TX2. The clusters were thinner. Thus, the thickness of the flat fabrics satisfied the
clinical requirement of being low profile, which could be compressed into the delivery
system of a small diameter delivery system to be used even in patients with smaller
iliac arteries. The next step will be to incorporate seamless sleeves in between stents.
The devices will then need to include radiopaque markers to facilitate tracking and
positioning of the fenestration sites to locate and puncture the center of the clusters
under fluoroscopy. Optimization of the location of these clusters on the main body of
the stent-graft has already been done during the development of the Cook CT branch
stent-graft. They observed about 100 typical CTAs of patients with aortic pathology
and determined the location of the visceral branches with 83 to 86% success [30,31].
A future “In-situ Specific Endograft” would be designed in a similar manner. Still,
instead of branches, clusters would be placed at the most likely positions of the
visceral arteries, for example. The stent-graft would likely be designed with the SMA
fenestration already created so that when the stent-graft is initially partially deployed
into the aorta, all visceral vessels will continue to be perfused. The last vessel to be
cannulated through this single pre-manufactured fenestration would be the open
SMA artery, completing the seal of blood flow from the aortic sac while minimizing
visceral ischemic time during the procedure. Another feature of this design may be
the incorporation of a pre-canulation wire built into the SMA fenestration within
the delivery device. This would allow the insertion of a stabilization wire into the
SMA at the beginning of the deployment of the device to allow both for orientation
of the endograft and also to ensure that the SMA can be easily stented near the
end of the procedure as the last visceral vessel to be treated for the above-stated
reasons. The development of more precise imaging techniques will also facilitate
this intervention [32]. Ultimately, manufacturing devices available for off-the-shelf
usage will become feasible as the range of diameters required to serve side branches
is limited. However, there is still a long way to go.

In situ fenestration remains a bailout technique, and intensive research to achieve
better optimization of the procedure with the development of more sophisticated fabric
structures of the main body of the endograft remains paramount. To create the initial
orifices, clinicians can select between energy fenestration (laser or radiofrequency) and
mechanical fenestration (needles) [33–35]. Lasers are restricted to polyester fabrics, whereas
directional needles can be used in all polymeric sleeves, including expanded polytetrafluo-
roethylene. The production of hazardous chemicals created by lasers in the fenestration of
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ePTFE remains a serious concern [36]. The following fenestrations can be safely achieved
with non-compliant balloons 6 or 8 mm in diameter, as the tearing cannot extend beyond
the limits of the corona [37–42]. Balloons of larger diameters are likely to cause significant
and irregular tears, leading to an increased risk of endoleaks.

2. Biodurability. This characteristic allows the device to maintain biofunctionality in the
long term, i.e., maintaining blood supply to the downstream end organs. There must
be a minimal risk of endoleak development. The branching orifice will remain a site of
weakness unless an appropriate design for a branch graft interface becomes commercially
available. As the site of fenestration is seriously constrained in the corona, extensive
tearing is highly unlikely based on the specific structure of the corona.

The polyester sleeve becomes impervious shortly after deployment, and blood oozing
is prevented based on the capacity of the polyester to hold blood’s flow and the blood’s
properties [43,44]. This is the result of the wicking characteristics of the polyester yarns.
For the reasons mentioned above, the selection of multifilament yarns is considerably
advantageous compared to monofilaments. In the absence of iatrogenic damages caused by
suturing the stents or during the insertion of the device in the sheaths, the imperviousness
of the polyester sleeve is undisputable, even in the absence of fabric encapsulation. The
branch must maintain its position at the site of fenestration to ensure blood flow without
kinking [45]. Practically, the diameter of the branch shall be moderately wider in diameter
than the orifice of the vessel being treated, and the size selected will extrude approximately
10 to 15% into the aortic lumen. In summary, any risk of endoleakage or kinking within the
branch grafts, risking thrombosis, must be eliminated.

3. Blood compatibility. Very little attention is paid to the biocompatibility of stent grafts.
Encapsulation of the walls of the stent-grafts remains an enigma [46]. Good biointegra-
tion would mean the development of an external capsule penetrating the interstices
between the yarns. Such a capsule would be made of collagen and elastin sinusoidal
fibers. At best, an external capsule consists of stretched fibers of collagen and elastin
that transform the blood conduit into a pipe devoid of compliance [47]. The devel-
opment of an internal capsule whose flow surface is endothelialized represents an
ideal that remains out of reach [48]. At best, some endothelium can develop a few
millimeters in continuity with the aorta endothelium. The capture and integration
of endothelial cells from the flowing blood are insufficient [49]. Practically, there is
no connection between the internal and external capsules. As observed in animals,
transmural communication at a subcellular level cannot play a critical role in fall-
out-based endothelialization [50]. New strategies for improving blood compatibility
and endothelialization of cardiovascular devices are being developed. The chal-
lenge of achieving this goal is immense, although research in this area has continued
for decades [51].

As priority is given to maintaining graft integrity and guaranteeing blood flow, discov-
ering a perfect blood-compatible surface soon is very unlikely based on the complexities
involved [52].

5. Conclusions

The successful design of novel fabrics incorporating the corona (reinforced zone) as
well as a cluster (fenestrated zone) resulted in a thickness equivalent to or even less than
the Zenith graft fabric but with much higher resistance to tearing. Prototypes A and B
with fenestrated and reinforced zones effectively prevented fabric tearing caused by dilation
with the non-compliant balloons. With fabric thickness being a primary consideration, the
reinforced prototype B with the plain weave for the body (basic zone), the basket weave for
the corona, and the 2/2 twill weave for the cluster may be the optimal choice. However, such
an innovative fabric with a safe, specific “corona,” specially designed into a tubular sleeve
fitted with stents, deserves additional validation in bench studies and animal experimentation.
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