
Citation: Du, J.; Ren, Y.; Liu, X.; Xu,

F.; Wang, X.; Zhou, R.; Baker, I.; Wu,

H. Microstructural Evolution,

Mechanical Properties and

Tribological Behavior of

B4C-Reinforced Ti In Situ Composites

Produced by Laser Powder Bed

Fusion. Materials 2023, 16, 4890.

https://doi.org/10.3390/

ma16134890

Academic Editor: Abdollah Saboori

Received: 21 April 2023

Revised: 4 June 2023

Accepted: 13 June 2023

Published: 7 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Microstructural Evolution, Mechanical Properties and
Tribological Behavior of B4C-Reinforced Ti In Situ Composites
Produced by Laser Powder Bed Fusion
Jingguang Du 1, Yaojia Ren 1, Xinyan Liu 1,2, Feng Xu 1,2, Xiaoteng Wang 3, Runhua Zhou 4, Ian Baker 5

and Hong Wu 1,*

1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
2 Farsoon Technologies, Changsha 410205, China
3 Research Institute of Smart Manufacturing, China Railway Construction Heavy Industry Co., Ltd.,

Changsha 410100, China
4 School of Mechanical and Aerospace Engineering, Nanyang Technological University,

Singapore 639798, Singapore
5 Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
* Correspondence: hwucsu@csu.edu.cn

Abstract: Based on the advantage of rapid net-shape fabrication, laser powder bed fusion (LPBF) is
utilized to process B4C-reinforced Ti composites. The effect of volumetric energy density (VED) on the
relative density, microstructural evolution, tensile properties and wear behaviors of B4C-reinforced Ti
composites were systematically investigated. The LPBF-ed samples with high relative density (>99%)
can be achieved, while the pores and un-melted powders can be observed in the sample owing to the
low energy input (33 J/mm3). The additive particulates B4C were transformed into needle-like TiB
whiskers with nano-scale while C dissolved in the Ti matrix. Fine-scale grains (<10 µm) with random
crystallographic orientation can be achieved and the residual stress shows a downtrend as the VED
increases. Through the analysis of the tensile and wear tests, the sample at 61 J/mm3 VED showed a
good combination of strength and wear performance, with an ultimate tensile strength of 951 MPa
and a wear rate of 3.91 × 10−4 mm3·N−1m−1. The microstructural evolution in VED changes and the
corresponding underlying strengthening mechanisms of LPBF-ed Ti + B4C composites are conducted
in detail.

Keywords: laser powder bed fusion; titanium composite; microstructural evolution; mechanical
property; tribological behavior

1. Introduction

Titanium and its alloys have the advantages of high specific strength and stiffness com-
bined with superior corrosion resistance, suitable for many industries including aerospace,
marine, and automotive. However, the wear resistance of Ti limits the application of the
areas mentioned above. To date, much attention has been devoted to titanium matrix
composites (TMCs), which utilizes particulate reinforcement technology for strengthening
the tribological properties, such as TiB, TiC, and TiN [1–3]. Nevertheless, the limited bond
strength between ex situ category reinforcements and the Ti matrix may cause premature
failure. As one of the ceramic particulates used, B4C shows superior stability combined
with low density (2.52 g/cm3) and high hardness (~3000 HV) [4,5]. The introduction
of B4C can efficiently reduce the weight of TMCs and the in situ formed TiB and TiC
ceramic-reinforcement phase in TMCs leads to good interfacial bonding, outstanding ther-
modynamic stability, and fine-scale distribution [6–9]. In addition, the in situ reinforcement
phase can provide an improvement in the mechanical properties of TMCs. For instance,
Zhang et al. [10] demonstrated that the strength and high-temperature creep behavior of
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the Ti matrix increased with in situ TiB formation. Yu et al. found that fine in situ TiC
particles can be obtained in TiC/Ti coatings processed by induction cladding, which is
beneficial to harden the Ti matrix [11].

Many traditional manufacturing processes, such as vacuum casting or powder metal-
lurgy, have been utilized to prepare Ti + B4C composites [12–14]. However, several issues,
e.g., poor wettability, inferior densification response, and cracks, restrict the application
of TMCs traditional processes. Besides, coarse carbide and boride particles are formed
in TMCs through conventional processing methods owing to the low cooling rate after
processing. These brittle phases are the origin of crack initiation and propagation [12,15].

As a promising 3D printing method, laser powder bed fusion (LPBF) can produce
complex-shaped parts with almost fully dense structure, which enables to reduce the cost
and improves the efficiency of the TMCs process [16–19]. During the LPBF process, a high
laser power melts individual layers of material. Transient high temperature (~105 K) and
ultra-high cooling rate (104~106 K/s) can be obtained from a high beam scanning speed
(500–1500 mm/s), leading to fine microstructures and superior mechanical properties [20–23].
These indicate that LPBF is likely to be an optimal process to produce TMCs with B4C addition.

Despite the benefits, LPBF fabrication of TMCs is limited by quality defects includ-
ing pores and cracks due to its complex thermal history [24–26]. To obtain an in-depth
understanding of the LPBF processing parameters–microstructure–properties relationship,
manipulating the LPBF processing parameters, e.g., laser power and scanning speed, can
be used to control the quality of LPBF processed components [27,28]. However, there are
numerous LPBF processing parameters, which are interactive. To summarize, volumetric
energy density (VED) has been used as an engineering parameter to predict the microstruc-
ture and properties of LPBF-ed alloys [29]. In the study of Wu et al. [30], the influence of
VED on microstructural evolution and mechanical behaviors of LPBF-ed AlSi10Mg was
investigated. They found that the relative density and yield strength of LPBF-ed AlSi10Mg
decreased as VED increased from 40 to 90 J/mm3. Liu et al. systematically studied the
effects of the VED on LPBF-ed Ti6Al4V and showed that the tensile strength increased
and then dropped with increasing VED (32.7 to 132.4 J/mm3) [31]. This indicates that the
effect of VED on different alloy systems is different. Currently, optimization of the LPBF
processing parameters for Ti + B4C is rarely reported [32]. The influence of VED on the
microstructure and properties of Ti + B4C composites needs further exploration. Thus, this
paper aims to obtain an understanding of solidification microstructural evolution and the
mechanical properties and tribological behavior of these composites.

In the present study, B4C-reinforced Ti in situ composites produced by LPBF were used
as a model to investigate the effect of VED on the microstructural evolution, mechanical
properties, and tribological behavior. As a parametric study, an optimal LPBF processing
parameter was determined to produce Ti composites with high density and enhanced
properties. In addition, the corresponding strengthening mechanisms of LPBF-ed Ti + B4C
composites are studied.

2. Experiments
2.1. Powder Preparation

Spherical unalloyed titanium powders (TA1, D10 = 18.4 µm, D50 = 30.6 µm,
D90 = 47.1 µm, purchased from TIJO Inc., Changsha, China) and nano-sized B4C powders
(TIJO Inc., Changsha, China) with an average diameter~500 nm was used in this study.
The chemical composition of unalloyed Ti powder was detected using an inductively cou-
pled plasma atomic emission spectrometer (ICP-AES), seen in Table 1. The powders were
blended under argon in a mixer at room temperature for 12 h with a rotation rate of 20 rpm,
and its distribution of particle size was seen in Figure 1a. The B4C content was 0.5 wt.%. A
secondary electron (SE) image of the as-mixed powders is shown in Figure 1b.
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Table 1. The chemical composition of unalloyed Ti powder.

Unalloyed Ti Powder H C N O Ti

Chemical composition (wt.%) 0.006 0.007 0.023 0.098 Bal.
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Figure 1. (a) Distribution of particle size for the Ti + B4C mixture, (b) SE image of the Ti + B4C
mixture, and (c) schematic illustration of the laser scanning strategy.

2.2. LPBF Process

Both cubic (10 × 10 × 10 mm3) and dogbone-shaped tensile samples (gauge length
9.525 mm, gauge width 2 mm and thickness 2 mm) of the titanium-based composite were
produced using an FS121 M LPBF machine equipped with a 500 W fiber laser (Farsoon
Inc., Changsha, China). Several samples were built on Ti base plates with area dimensions
of 110 mm × 110 mm. Stripes in subsequent layers were rotated by 67◦ with respect to
the previous layer, and sample borders were outlined with a separate perimeter scan. A
schematic of the laser scanning strategy is shown in Figure 1c. During the LPBF processing,
high-purity argon was used to fill the processing chamber, resulting in less than 100 ppm
oxygen present. The VED can be calculated using equation (1) from the LPBF parameters
used, i.e., the laser power (P, 160–280 W), the scanning speed (v, 1000–2000 mm/s), the
hatch distance (h, 80 µm), and the layer thickness (t, 30 µm).

VED =
P

vht
(1)

2.3. Microstructural Characterization

For microstructural characterization, specimens were mirror polished using SiC paper
and 0.25 µm SiO2 suspension successively, which are etched using Kroll’s reagent (2 mL HF,
6 mL HNO3, and 92 mL H2O) for ~10 s. Optical microscopy (OM, LEICA DM4500P, LEICA,
Deerfield, IL, USA) was used to characterize the microstructure at low magnification. Phase
identification was performed using an X-ray diffractometer (XRD, Advance D8, Bruker,
Billerica, MA, USA) with Cu-Kα radiation and a step size of 0.02◦. Further microstructural
characterization was performed using a scanning electron microscope (SEM, MAIA3 TES-
CAN, Brno, Czechia) at an accelerating voltage of 20 kV. Texture analysis of the samples
was performed using electron backscattered diffraction (EBSD) at a step size of 0.7 µm.
Transmission electron microscope (TEM, FEI Titan G2, FEI, Hillsboro, OR, USA) analysis
was performed at an accelerating voltage of 200 kV, and the compositions were determined
using energy dispersive spectrometer (EDS).
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2.4. Mechanical and Tribological Tests

The physical and mechanical properties of the LPBF-ed specimens were investigated
via density measurements, nanoindentation measurements, tensile tests, and tribological
studies. The density (ρ) was determined using the Archimedes method from:

ρ =
Wa × ρw

Wa −W
(2)

where Wa and W are the weights of the sample in air and water, respectively, and ρw is the
density of the water. The density machine is Sartorius MSA324S-000-DU and each reported
value is the average of three measurements. The theoretical density of Ti composite is
4.486 g/cm3. After analyzing the relative density results (Figure 2), the three specimens
(named S1, S2, and S3) with VED values ranging from 33 to 117 J/mm3 are selected and
discussed in this paper: the processing parameters associated with these specimens are
listed in Table 2.
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Table 2. LPBF processing parameters for Ti + B4C composite specimens.

Specimen P (W) v (mm/s) h (µm) t (µm) VED (J/mm3)

S1 160 2000 30 80 33
S2 220 1500 30 80 61
S3 280 1000 30 80 117

The nanoindentation measurements were undertaken using a MCT + UNHT machine
(CSM Company, Kaisten, Switzerland) at room temperature. The load was set at 30 mN
load with a loading time of 15 s and a Berkvoich indenter was used. Each specimen was
measured at least 3 times. The reduced Young’s modulus is defined as:

1
Er

=
1 − v2

E
+

1 − v2
i

Ei
(3)

where E and v are the elastic modulus and Poisson’s ratio for the specimen, while Ei and vi
are the corresponding values for the indenter.
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Tensile tests were performed at room temperature at an initial strain rate of
1 × 10−3s−1 on specimens cut using a wire electrical discharge machine perpendicular to
the building direction and ground to a surface finish using 3000 grid SiC paper. The strain
was measured with a video probe. Dry sliding wear tests were performed on specimens’ flat
ground. A 4 mm diameter Si3Ni4 ball was used as the counter-material. The load, rotation
speed, rotation radius, and time were at 10 N, 10 Hz, 1 mm, and 30 min, respectively. The
tensile fracture surfaces and worn surfaces were examined using the secondary electron
mode in the SEM.

3. Results
3.1. Microstructure

Figure 3 shows typical OM images of S1, S2 and S3 viewed in the x–y plane. The
melt track, also known as the melt pool, can be clearly observed. It is evident that the
rotation angle between melt tracks is about 67◦, as expected. Micropores were presented
in S1 resulting in lower relative density (~96%), which may be attributed to insufficient
energy penetration at the lowest VED. The morphology of S2 was similar to that of S3. The
excellent track-to-track bonding suggested that the alloys with a near-dense structure show
good mechanical properties.
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Figure 4 shows the surface morphologies of S1, S2 and S3. There were both un-
melted powders and island-shape phenomenon on the surface of S1 (Figure 4a), arising
from the limited energy penetration at a VED of 33 J/mm3. As the VED increased to
61 J/mm3 (specimen S2), both the number of un-melted powders and the surface island-
shape phenomenon decreased substantially. When the VED further increased to 117 J/mm3

(specimen S3), the surface became smoother and free of any evident defects, a result that
can be attributed to the greater laser power penetrating the powder-bed [33].

Figure 4d–f show typical microstructures of LPBF-ed samples in the x–y plane. The
VED exerts a significant influence on the microstructure of the Ti + B4C composites. Unlike
the other specimens, S1 exhibited cellular microstructure. As the VED increased from
61 J/mm3 to 117 J/mm3, a change to a columnar structure can be observed. The difference
in microstructure is dependent on the complex solidification behaviors in the molten pool
caused by various VED, which is discussed in Section 4.1. In addition, needle-like TiB
whiskers of different sizes can be seen in all three samples. Clusters composed of TiB
whiskers were present in the LPBF-ed microstructure, where parallel whiskers were stuck
to each other. The TiB whiskers grew into this morphology due to the faster growth rate in
the [010] axis than that in other directions [34].
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3.2. EBSD Characterization

The effect of VED on the grain size and crystallographic orientations of the LPBF-
ed B4C-reinforced Ti in situ composites was studied using EBSD. Inverse pole figures
(IPF) viewed perpendicular to the building direction (BD) of S1, S2, and S3 are shown in
Figure 5. The grains in the three samples were mostly smaller than 10 µm, while a few
more coarse grains were observed in S3. The average α lath width of three samples was
determined to be 0.67 µm, 0.75 µm, and 0.89 µm, respectively. The small increase in lath
width can be attributed to the greater heat input from the increased VED. Besides, the top-
viewed crystallographic orientations of three specimens in Figure 5 show crystallographic
directions were random.
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3.3. TEM Analysis

To further clarify the microstructure of the LPBF-ed Ti + B4C composites, specimen S2
was examined in the TEM. Figure 6a shows that the needle-like whiskers with sizes ranging
from 50 to 100 nm were randomly distributed in the matrix. However, TiC and TiB are
hardly observed in TEM-EDS maps. In α-Ti alloys, the solid solubility of C is 0.458 wt.%
at 1173K and drops to 0.126 wt.% at 873K [35]. During the LPBF process, 0.104 wt.% of C
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dissolved into S2, where the carbon content is below the maximum carbon solubility. This
is the reason that TiC particles are not observed at room temperature.
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High-resolution TEM (HRTEM) was performed to examine the interface between the
TiB whisker and the α-Ti matrix. Figure 7a shows a clean interface between the matrix and
the reinforcing phase, illustrating good bonding between the TiB whisker and the α-Ti. The
α-Ti matrix and TiB whiskers were identified via determining the lattice parameters to be
0.159 nm and 0.250 nm, respectively. However, the theoretical lattice spacing of α-Tid{110} is
known to be 0.147 nm, which is smaller than the experimental results. Kværndrup et al.
reported that the interstitial atoms (O, N, or H) dissolution into α-Ti leads to the increase of
lattice parameter [36]. The results indicated that C is dissolved into Ti, leading to lattice
spacing expansion. The corresponding fast Fourier transform (FFT) patterns of the LPBF-ed
Ti + B4C composite are shown in Figure 7b,c, which further confirms the existence of the
TiB whisker and the α-Ti phase. In addition, intense streaking in the direction of TiB (110)
was observed, demonstrating the existence of stacking faults (SF) in the TiB (110) plane.
Kooi et al. reported a similar structure in laser-clad Ti-TiB [34].
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3.4. Phase Identification

XRD patterns from S1, S2 and S3 are shown in Figure 8. Strong diffraction peaks from
hexagonal Ti (HCP) and weak diffraction peaks from the small volume fraction of TiB were
found. According to the Ti-B-C ternary phase diagram [37], an in situ reaction occurred
during the solidification processing of LPBF-ed samples:

Ti + B4C → β-Ti + TiB → α-Ti + TiB (4)
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3.5. Mechanical Properties

Tensile tests were conducted to evaluate the LPBF-ed B4C-reinforced Ti in situ compos-
ites and their representative engineering stress-engineering strain responses are displayed
in Figure 9: values for the yield strength (YS), ultimate tensile strength (UTS), elongation
(ε) is summarized in Table 3. S1 had the lowest relative density (95.6%) and exhibited the
lowest ε, but had the highest YS at 768 ± 10 MPa. Compared with S1, the YS value of
S2 was ~30 MPa less at 738 ± 6 MPa, but its ε increased from 1.7 ± 0.4% to 6.3 ± 1.1%,
presumably due to a lower number of defects. Compared with S2, S3 had the similar ε at
7.4 ± 1.9%. However, S3 had a lower YS value (664 ± 9 MPa) than those of the other two
specimens. As increasing VED, the pore morphology in Ti alloys changed from irregular
shape to near-spherical shapes [31]. During tensile test, samples with spherical pores have
a more uniform distribution of strain, which may lead to better ductility performance than
that of samples with irregular pores. The decrease of YS can be attributed to the coarse
grain in S3 caused by large energy input. As shown in Table 3, the introduction of B4C to
pure Ti can achieve high tensile strength and reasonable elongation with comparison of
pure Ti produced by LPBF, wrought or cast [38–42].

Nanoindentation tests were conducted on the three specimens and the smooth load-
displacement curves obtained are shown in Figure 10a. It can be observed that the indenta-
tion depth of the LPBF-ed Ti + B4C composites becomes slightly deeper with increasing
VED. Figure 10b is a histogram of the hardness (H) and reduced Young’s modulus, (Er) for
the three samples. The increasing VED led to a slight decrease in H from 4.6 GPa to 3.8 GPa.
The reduced Young’s moduli of S1 and S2 were similar (~128 GPa) but were ~8% greater
than that of S3.
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Table 3. Summary of the relative density and average mechanical properties.

Sample Condition YS (MPa) UTS (MPa) ε (%) Reference

S1 LPBF 768 821 1.7 This work
S2 LPBF 738 951 6.3 This work
S3 LPBF 664 771 7.4 This work
Ti LPBF 521 607 10.4 [38]
Ti LPBF 590 665 19 [39]
Ti LPBF 407 469 14.7 [40]
Ti LPBF 420 510 18 [41]
Ti Wrought 317 481 28.9 [38]
Ti Cast 351 466 30 [42]
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3.6. Tribological Behavior

Figure 11 presents the friction coefficient and wear rate from wear tests of the LPBF-ed
Ti + B4C composites. The wear rate coefficient (Kc) was calculated from (5):

Kc =
2πrA

FS
(5)

where r and A are the radius and area of wear tracks, respectively, and F and S are the
load and sliding distance, respectively. The friction coefficient curves of the three samples
experienced a short fluctuation within an unstable period (about 3 min) and then became
more stable. The average friction coefficients of S1, S2, and S3 were calculated during the
steady period (3-30 min). S1 exhibited both a high friction coefficient (0.25 ± 0.01) and a
high Kc (6.2 ± 2.1 × 10−4 mm3·N−1m−1). A similar friction coefficient (0.25 ± 0.01), but the
lowest Kc (3.9 ± 0.6 × 10−4 mm3·N−1m−1) was obtained for S2. Interestingly, S3 exhibited
the lowest friction coefficient (0.22 ± 0.01) but the highest Kc (12.4 ± 1.5 mm3·N−1m−1).
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The worn surfaces (typical morphologies and 3D surface profiles) and corresponding
EDS mapping of S1, S2, and S3 are presented in Figure 12. The shallower grooves along the
sliding distance on S1 and S2 surfaces were clear while the severer grooved scratches and
more debris can be observed on the S3 surface. Based on the EDS mapping result, it was
demonstrated that wear debris were tribological oxides and the tribological layers were
composed of oxides. In addition, white debris detected in Figure 12 were considered an
oxidative wear character because of the exposure to the air during the dry sliding wear
test [43,44].
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4. Discussion
4.1. Microstructural Evolution

When the laser penetrates the powder-bed, the Ti powders first melted and then
reacted with the B4C particles in the molten pool. However, inadequate penetration led
to un-melted powder and island-shape phenomenon, which produced a rough surface,
as observed in specimen S1. With increasing VED, the composite powders could be fully
melted and the surface became smooth. In general, the viscosity of the fluid is strongly
determined by the temperature in the molten pool, which has a significant influence on
surface quality. According to Takamichi [45], the viscosity of fluid (µ) in the molten pool
can be calculated from (6):

µ = α

√
m
kT

γ (6)

where α is a constant, m is the atomic mass, k is the Boltzmann constant, γ is the surface
tension of fluid and T is fluid temperature. The surface tension of fluid dropped with
increasing fluid temperature [46]. Therefore, the viscosity of fluid decreased caused by a
higher VED. The fluid in the molten pool spreads easily and a high-quality surface without
defects was obtained for higher VEDs.

Characteristic solidification microstructures in Figure 4 were formed in the LPBF
process. When the laser interacted with the powder bed, B4C is prone to react with Ti
and transforms into in situ formed TiB whiskers. TiB whiskers are melted into the liquid
over its melting point (2473 K) or partially dissolved in the region below 2473 K. During
the solidification process, the solute atoms were ejected at the solid/liquid interface front,
which led to a higher concentration of solute. The retained TiB whisker was captured to act
as grain boundaries and eutectic TiB whiskers solidified between the Ti grains. Besides,
the length of TiB whiskers became larger, which may be caused by longer solidification
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time as VED increased. The solidification morphology is determined by the ratio of the
temperature gradient (G) to solidification rate (R) while G×R governs the microstructural
scale. G is given by the temperature field caused by the laser and R is related to beam
velocity and the melt pool shape. A change from cellular to columnar structures occurred
due to differences in G and R in the molten pool caused by different VEDs. The metastable
cell structure of S1 formed in the LPBF process can be attributed to the moderate G/R. At
the higher VED in S3, a lower G/R was obtained, which led to columnar dendrites [47].
Therefore, it was seen that increasing VED may lead to a reduced G/R, which changes the
microstructure.

4.2. Mechanical Properties Analysis

The increment in the strength of LPBF-ed Ti + B4C in situ composites can be attributed
to three strengthening mechanisms: (1) grain refinement caused by the heterogeneous
nucleation on TiB; (2) TiB whiskers acting as reinforcements; and (3) solid-solution strength-
ening from dissolved carbon. For a better understanding of the strengthening mechanisms,
S2 was chosen to quantitatively estimate these effects.

Upon the addition of the B4C powders, the grain size decreased compared to LPBF-ed
Ti [41]. Based on the Hall–Petch relationship, the increase in yield strength by grain size
reduction is expressed as:

∆σH-P= K
(

d−
1
2

1 − d−
1
2

2

)
(7)

where K is a constant as 328 MPa µm1/2 [48], d1 and d2 are α-Ti grain size of the Ti + B4C
composite and the titanium matrix, respectively.

Because of the limited solid solubility in the matrix (~0.02 wt.%), most of the boron
was presented in the TiB whiskers. The fiber strengthening effect from the TiB whiskers
can be calculated from:

∆σTiB= 0.5σYSmVTiB
l
d
ω0 (8)

where σYSm is the yield strength of the Ti matrix, VTiB, l/d, and ω0 are the volume frac-
tion, aspect ratio, and whisker orientation factor for the TiB whiskers, respectively. The
orientation of TiB whiskers is random and henceω0 = 0.27 [49–51].

The solid solution strengthening from carbon in the Ti matrix can be expressed as [49]:

∆σS =
1√
3

mT
1

2(1 + υ)
Erη

3
2 c

1
2 (9)

where mT, υ, Er are the Taylor factor, Poisson’s ratio, and elastic modulus of the Ti alloy,
respectively. η is related to the change in the lattice constants with carbon concentration in
the Ti matrix [52] and c is the atom fraction of carbon (~0.43 wt.%).

Therefore, the theoretical YS of S2 can be calculated from:

σYS = σYSm + ∆σH-P + ∆σTiB + ∆σS (10)

Using the Equations (7)–(10), the YS of S2 was calculated to be 698 MPa with parame-
ters listed in Table 4, which agreed relatively well with the experimental value of 712 MPa.
Notably, ∆σH-P, ∆σTiB, and ∆σS are 134 MPa, 22 MPa, and 136 MPa, respectively. The largest
increase in strength was from solution strengthening, accounting for 48%. Note that the
tensile strength of S3 was significantly lower than that of others, which may be attributed
to higher energy penetration resulting in coarser grains.



Materials 2023, 16, 4890 13 of 16

Table 4. Parameters value for calculation.

Parameter Value Reference

K 328 MPa µm1/2 [48]
d1 0.75 µm Measured
d2 1.8 µm [41]

σYSm 420 MPa [41]
l/d 20 Measured
mT 3.16 Measured
ω0 0.27 [53]
Er 128 GPa Measured
η 0.08 [49]
υ 0.27 [49]

Secondary electron images of the fracture surfaces of the LPBF-ed Ti + B4C composites
are shown in Figure 13. There were several pores and cleavage steps evident in S1 caused
by insufficient VED (Figure 13a). During tensile testing, crack propagation may begin at
such defects, leading to worse ductile performance [54,55]. Such pores were not evident for
S2 and S3, which explained the higher ductility for these two specimens. A combination of
cleavage steps and dimples can be observed in Figure 13b, which demonstrated that the
fracture mechanism was a mixture of brittle fracture and plastic deformation. However,
the dimples were small and shallow, compared with that in Figure 13c. This phenomenon
explained the plastic deformation in S2 was limited. The main fracture mechanism of S3
was plastic deformation because of the full dimples. In summary, the mechanism of fracture
changed from brittleness to ductile failure with the enhanced VED.
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4.3. Tribological Behavior Analysis

Different wear mechanisms of the LPBF-ed samples led to different tribological behavior.
The shallow grooves along the sliding distance and tribological layers of S1 and S2 indicated
that adhesive and abrasive wear mechanisms predominate during the wear test. The dominant
wear mechanism of S3 was abrasive wear, demonstrated by severer grooved scratches and
more white debris. The contact and relative sliding between materials and Si3N4 generated
high tribological heat and local pressure, leading to the formation of tribological oxides and
layers on the composite surface. During a long period of high-stress contact, cracks and
delamination occurred on the tribological layers. In S1 and S2, tribological layers composed of
wear debris were formed due to the applied stress during the wear test. Layers composed of
tribological oxide existing on the sample surface can efficiently reduce wear rate and improve
wear resistance [44]. In addition, the hardness and strength of materials were considered
important indices judging wear resistance [56]. It can be inferred that tribological layers
composed of oxide and better strength of S1 and S2 led to better tribological performance than
that of S3 (12.4 ± 1.5 mm3·N−1m−1). While the lower relative density of S1 led to an unstable
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tribological performance (6.2 ± 2.1×10−4 mm3·N−1m−1), which may be due to un-melted
powders and pores acting as crack initiation [57].

5. Conclusions

In situ Ti composites reinforced by B4C were successfully processed by LPBF. The
effect of VED on relative density, microstructure, tensile properties, and wear behaviors
have been investigated. The following conclusions are:

(1) A relative density higher than 99% was achieved in S2 and S3. The island-shape
phenomenon and un-melted powders in S1 can be attributed to the lower viscosity of fluid
caused by inadequate lower energy input.

(2) The microstructural evolution was influenced by VED. The cellular microstructure
changes gradually to columnar morphology with VED increment. A small increase of grain
size due to more heat input by VED and the crystallographic orientations are random

(3) A superior UTS of 951 ± 21 MPa combined with reasonable ductility (6.3 ± 1.1%)
was achieved in the S2. The improved strength was attributed to grain refinement strength-
ening caused by TiB whiskers, TiB reinforcement mechanism, and solution strengthening
of carbon in the Ti matrix. The fracture mechanism changed gradually from brittleness to
ductile failure with the VED increases.

(4) A low wear rate and friction coefficient of S2 were reached 3.91× 10−4 mm3·N−1m−1

and 0.252, respectively. Owing to tribological layers on the sample surface and better strength,
S1 and S2 had a better wear behavior than that of S3.
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