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Abstract: Introduction: Today’s dentistry frequently employs bonded partial restorations, which are
usually fabricated in ceramic materials. In the last decade, hybrid materials have emerged that attempt
to combine the properties of composites and ceramics. Objectives: To evaluate in vitro, by means
of a microtensile test, the bond strength between CAD-CAM restorative materials and the cement
recommended by their manufacturer. Material and Method: From blocks of CAD-CAM restorative
material bonded to composite blocks (Filtek 500®), beams with a bonding area of approximately
1 mm2 were made and divided into four groups: EMAX (IPS e.max CAD® lithium disilicate), VE
(VITA Enamic® polymer-infiltrated ceramic matrix), LUA (Lava Ultimate® nano-ceramic resin with
sandblasting protocol) and LUS (Lava Ultimate® nano-ceramic resin with silica coating protocol).
In each group, perimeter (external) or central (internal) beams were differentiated according to the
position in the block. The samples were tested on the LMT 100® microtensile machine. Using optical
microscopy, the fractures were categorized as adhesive or cohesive (of the restorative material or
composite), and the data were analysed with parametric tests (ANOVA). Results: The LUS group had
the highest results (42 ± 20 MPa), followed by the LUA group (38 ± 18 MPa). EMAX had a mean of
34 ± 16 MPa, and VE was the lowest in this study (30 ± 17 MPa). In all groups, the central beams
performed better than the perimeter beams. Both EMAX and VE had the most adhesive fractures,
while LUA and LUS had a predominance of cohesive fractures. Conclusions: Lava Ultimate®

nanoceramic resin with the silica coating protocol obtains the best bond strength values.

Keywords: ceramic; sandblasted; dental materials; dental bonding; prosthodontics

1. Introduction

Bonded partial restorations are currently a therapeutic alternative for treating cases
of dental structure loss, regardless of their origin, avoiding the use of full veneer crowns
that entail a 20–30% higher loss of structure [1,2]. Ceramics have been classically used
to manufacture these restorations, as it provides adequate aesthetics but has a modulus
of elasticity that differs significantly from that of dentin [3]. Composites, thanks to their
modulus of elasticity [4], behave similarly to dentine, but they have lower mechanical
strength and are more susceptible to abrasion [5]. Hybrid materials have been developed
with the idea of combining the positive characteristics of ceramics and composites [6].

Currently, CAD-CAM (Computer-Aided Design—Computer-Assisted Manufacturing)
materials can be differentiated [7] between glass-matrix ceramics, polycrystalline ceram-
ics and resin-matrix ceramics, also labelled by some authors as hybrid materials [8–10].
Among the glass-matrix CAD-CAM ceramics, IPS e.max CAD® (Ivoclar Vivadent, Schaan,
Liechtenstein) made of lithium disilicate (LDS) stands out [11,12]. On the other hand, two
groups of hybrid materials can be distinguished: nano-ceramic resins (NCR) and polymer-
infiltrated ceramic network (PICN). NCR restorative materials contain silica nanomers
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(20 nm), zirconia nanomers (4 to 11 nm), nanocluster particles derived from the nanomers
(0.6 to 10 µm), silane coupling agent, and resin matrix [13]. The NCR used in this study
(Lava Ultimate®, 3M ESPE, St. Paul, MN, USA) is composed of 80% wt zirconia/silica
nanoceramic particles embedded in a highly cross-linked resin matrix (20% wt) [14]. VITA
Enamic® (VITA Zahnfabrik, Bad Säckingen, Germany) is the first PICN to appear on the
market. This material is composed of 86% wt of an inorganic feldspathic ceramic matrix,
infiltrated by a monomer and subsequently polymerised. The organic polymeric part
accounts for 14% wt and consists of UDMA (urethane dimethacrylate) and TEGDMA
(triethynel glycol dimethacrylate) [15,16].

The increasing variety of materials with different compositions and physical properties
leads to the development of new studies to better understand their behaviour and improve
clinical procedures. This study analyses the bond strength between the restorative material
and the cement.

The aim of this work was to analyse the microtensile bond strength of three materials
indicated for indirect posterior restorations. The working hypothesis was that the ceramic
material would have a higher bond strength to resin than the hybrid materials tested.

2. Material and Methods

A lithium disilicate (IPS e.max CAD®) and two hybrid materials were evaluated:
an NCR (Lava Ultimate®) and a PICN (VITA Enamic®). Each of them was bonded to
a composite block using the cement selected by the manufacturer, and four test groups
were formed: EMAX (IPS e.max CAD®), which was used as the control group; VE (VITA
Enamic®); LUA (Lava Ultimate® with surface sandblasting); and LUS (Lava Ultimate®

with surface silica coating).
The composite blocks were manufactured with Filtek 500® (3M ESPE) in 2 mm incre-

ments over a custom-made silicone mold (Elite® HD+, Zhermack S.p.A, Badia Polesine,
Italy) left by the restorative block.

All bonding surfaces were polished with a 500-grit silicon carbide disc (Struers®

LaboPol-1. Struers ApS, Ballerup, Denmark). The bonding of the restorative material to the
composite blocks was performed according to each manufacturer’s protocol. The materials
used in the study and the listed steps followed in the cementation sequence are shown in
Table 1. (Figures 1–4).
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Table 1. Materials used in the study (BisGMA, Bisphenol A-glycidyl methacrylate; HEMA, polymacon; TEGDMA, triethylene glycol dimethacrylate).

Group Material and
Cementation Sequence Type Chemical Composition Duration Manufacturer’s

Data Lot Number

EMAX

1. IPS Ceramic etching gel Ceramic acid etching Hydrofluoric acid 4.9% 20 s Ivoclar Vivadent T76221

2. Monobond Plus Silane Adhesive monomers 4%, Ethanol 96% 60 s Ivoclar Vivadent X43365

3. Excite Bonding agent
Phosphonic acid acrylate, dimethacrylates, hydroxyethyl

methacrylate, highly dispersed silicon dioxide, ethanol, catalysts,
stabilizers, and fluoride

20 s agitate Ivoclar Vivadent Z33289

4. Variolink Esthetic DC
Neutral Dual resin cement

Barium glass filling, mixture of oxide 52.2%, dimethacrylate 22%,
high dispersion silica, ytterbium trifluoride 25%, initiators and

stabilizers 0.8%, pigments <0.1%
60 s each side Ivoclar Vivadent W95568

VE

1. VITA Adiva Cera-Etch Ceramic acid etching Hydrofluoric acid 5% 60 s VITA Zahnfabrik G32620

2. VITA Adiva C-Prime Silane Metracrylsilane solution in ethanol 60 s VITA Zahnfabrik I18534

3. VITA Adiva F-Cem Dual resin cement Mixture of bis-GMA-based resins, catalysts, stabilisers, pigments,
and inorganic filler particles in a distribution of 0.05–1 µm 60 s each side VITA Zahnfabrik F72621

LUA

1. Rondoflex Sandblasting powder Aluminium oxide powder, particle size: 50 µm, pressure: 2.0 bars 15 s KaVo 041025

2. Scotchbond Universal Universal bonding agent

HEMA 2-hydroxyethyl methacrylate; MDP 2-methyl-,
2-propenoic acid, reaction products with 1, 10-decanediol and

phosphoric oxide (P2O5), (1-methylethylidene)bis
[4,1-phenylenxy(2-hydroxy-3,1-propanediyl) bismethacrylate,

Decamethylene dimethacrylate

20 s agitate 3M ESPE 4636140

3. RelyX Ultimate Dual resin cement

Base paste: silane-treated glass powder, 2-propenoic acid,
2-methyl, reaction products with 2-hydroxy-1,3-propanedyl

dimethacrylate and phosphorus oxide, TEGDMA, silane-treated
silica, oxide glass chemicals, sodium persulfate, tertbutyl

peroxy-3.5,5-trimethylhexanoate, copper acetate monohydrate
Catalyst paste: silane-treated glass powder, substituted

dimethacrylate, 1.12-dodecane dimethacrylate, silane-treated
silica, 1-benzyl-5-phentyl-barbic-acid, calcium salt, sodium

p-toluenesulfinate, 2-propenic acid, 2-methyl-, di-2.1-ethanediyl
ester, calcium hydroxide, titanium dioxide

60 s each side 3M ESPE 4751537
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Table 1. Cont.

Group Material and
Cementation Sequence Type Chemical Composition Duration Manufacturer’s

Data Lot Number

LUS

1. Cojet Sand Silica coating powder Silica-coated aluminium oxide powder, particle size: 30 µm,
pressure: 2.0 bars 15 s 3M ESPE 3454446

2. Scotchbond Universal Universal bonding agent

HEMA 2-hydroxyethyl methacrylate; MDP 2-methyl-,
2-propenoic acid, reaction products with 1, 10-decanediol and

phosphoric oxide (P2O5), (1-methylethylidene)bis
[4.1-phenyleneiminoxy(2-hydroxy-3.1-propanediyl)]

bis-methacrylate, Decamethylene dimethacrylate

20 s agitate 3M ESPE 4636140

3. RelyX Ultimate Dual resin cement

Base paste: silane-treated glass powder, 2-propenoic acid,
2-methyl, reaction products with 2-hydroxy-1.3-propanedyl

dimethacrylate and phosphorus oxide, TEGDMA, silane-treated
silica, oxide glass chemicals, sodium persulfate, tertbutyl

peroxy-3.5,5-trimethylhexanoate, copper acetate monohydrate
Catalyst paste: silane-treated glass powder, substituted

dimethacrylate, 1.12-dodecane dimethacrylate, silane-treated
silica, 1-benzyl-5-phentyl-barbic-acid, calcium salt, sodium

p-toluenesulfinate, 2-propenic acid, 2-methyl-, di-2.1-ethanediyl
ester, calcium hydroxide, titanium dioxide

60 s each side 3M ESPE 4751537
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The cemented blocks were kept for 72 h in saline solution at 37 ◦C and then sectioned
with a cutting machine (Struers® Accutom-10) to obtain beams with cross-sectional areas
of 1 mm2. Each beam was numbered, calibrated, and identified as central or perimetral
(Figure 5).
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Figure 5. Manufacture of the test beams. (a) Cemented block in the cutting machine. (b) Cut-up block
with marked beams: perimetral (black) and central (red). (c) Separation of the beams from the base of
the block. (d) Group of beams.

The microtensile bond strength testing was carried out with an LMT100® machine
(LAM Technologies, Florence, Italy), with a crosshead speed of 0.5 mm/min until fracture
occurred (Figure 6). The data obtained in the machine were expressed in N, and by relating
them to the adhesion area of each beam, the results were obtained in MPa.
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Figure 6. Microtensile test. (a) Schematic representation of a plate and a beam. (b) LMT100® machine
before test. (c) Broken beam.

The fractured beams were observed under light microscopy (10×) (Nikon® SMZ-10,
Nikon, Tokyo, Japan), and the type of failure was classified as an adhesive (Figure 7b) or
cohesive, from the restorative material (Figure 7a) or composite (Figure 7c).
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Figure 7. Fracture types: (a) material cohesive, (b) adhesive, (c) composite cohesive.

All the data obtained were subjected to statistical analysis using SPSS Statistics soft-
ware v22.0. The normality of the strength measures was tested using the Kolmogorov–
Smirnov test and confirmed in all groups. In addition, the homogeneity of variances was
verified using Levene’s test. A one-way general linear analysis of variance (ANOVA) model



Materials 2023, 16, 4796 7 of 12

with group factor (protocol type) was developed, applying Bonferroni as a post-hoc test
to compare the mean strength between groups. To assess the effect of beam position, the
model was extended to a two-way ANOVA, evaluating the interaction effect between
position and group and with the same type of comparisons (Bonferroni). The chi-squared
test was used to measure the degree of association between fracture type and material
group. On test F of the variance analysis model, with a confidence level of 95% and taking
into account the size of the effect f = 0.25, the power achieved was 94.5%.

3. Results

The bond strength averages are shown in Table 2. The group with the best mean value
was LUS (42 ± 20 MPa), followed by LUA (38 ± 18 MPa). The group with the lowest values
was VE (30 ± 17 MPa), and EMAX had values of 34 ± 16 MPa. The LUS group showed
notable differences with both VE and EMAX, and the LUA group only showed appreciable
differences with the VE group. The numerical variety in the N of each group was due
to the complexity of the sample preparation and the fracture of some beams during the
preparation.

Table 2. Bond strength (MPa) as a function of group.

GROUP

EMAX VE LUA LUS

N 70 57 77 65

Mean 33.68 29.68 38.17 42.07

SD 16.27 17.26 18.36 19.67

After the Weibull calculation and analysis, the fracture probability of the different
groups was estimated, and a graphical representation of the probability curve as a function
of stress was made to allow comparison between the different materials (Figure 8). The
LUS group is shown to be the best of all, as its curve is the rightmost. In addition, its slope
is the smoothest of the four, with the highest Weibull modulus (m) (10.76), which indicates
that the stress must be increased considerably to achieve a significant increase in fracture
probability.

Table 3 shows the values obtained for the characteristic stress (σ0) of each of the
materials and the Weibull modulus (m). EMAX is the one with the highest value in
characteristic stress (202.05 MPa), which indicates that it is the strongest of all the materials
studied.

Table 3. Fracture probability by group: characteristic stress values (MPa) and Weibull modulus (m).

GROUP

EMAX VE LUA LUS

Characteristic stress σ0 202.05 33.76 177.63 156.28

Weibull modulus m 7.59 1.48 8.64 10.76

When analysing the effect of beam position on bond strength, a two-way ANOVA
model again showed that the group of material has an influence on the average strength,
and that this influence is similar whether working with a perimeter or central beams.
Furthermore, it showed that there is a position effect, as the central beams resist more than
the perimeter beams (41 ± 18 MPa versus 28 ± 16 MPa). As Figure 9 shows, in any group,
the test with central beams presents higher strength values than perimeter beams.
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When analysing the relationship between the type of fracture and the study group, as
shown in Figure 10, in the two groups of Lava Ultimate®, there is a clear predominance of
cohesive fractures, while in the ceramic and the hybrid material that most resemble it, VITA
Enamic®, there is a majority of adhesive fractures, exceeding 75% in the EMAX group.
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4. Discussion

This study was designed to evaluate the microtensile bond strength of two hybrid
restorative materials (Vita Enamic® and Lava Ultimate®) by comparing them with the
adhesion of lithium disilicate (IPS e.max CAD®), whose bond strength has been extensively
tested [3,16–18]. The chosen hybrid materials are the ones that have been on the market
for the longest time, and there are sufficient scientific publications supporting their correct
properties [19,20]. For all materials, the protocol recommended by the manufacturer was
applied, which, a priori, will give the best results [21–23].

Analysing the results, VE achieves similar values to EMAX. Since the lithium disilicate
ceramic bond to a resin cement has been shown in numerous in vitro and clinical studies to
be strong, durable, and predictable [18,24], it can be inferred that the VE bond will have
similar behaviour. Furthermore, the bond values achieved by LUS and LUA allow us to
state that their NCR-cement bond will have these same characteristics or even better since
their bonding values are superior. The results obtained in this test led to the partial rejection
of the working hypothesis since the Lava Ultimate® material, with any of the protocols,
obtained better results than the ceramic material. An analysis of the scientific literature
reveals a wide disparity in bonding protocols, which makes it difficult to compare bond
strength results. Regarding the influence of different types of surface treatments, Franken-
berger compared IPS e.max CAD®, VITA Enamic®, and Lava Ultimate® using different
bonding protocols for each of them [21]. The best values for each group were obtained
using the protocols recommended by each manufacturer. The lithium disilicate ceramic
achieved the highest bond strength value, with the nanoceramic resin having the lowest
values, unlike those obtained in the present study. Elsaka compared the bond strength of
Lava Ultimate® and VITA Enamic® bonded to a self-adhesive cement (Bifix SE, VOCO;
Cuxhaven, Germany), applying different surface treatment protocols [25]. In that study,
VITA Enamic® showed a similar behaviour to the one found in the present study. However,
Lava Ultimate® obtained lower values, possibly due to the type of cement used. Colombo
analysed the bond strength obtained by IPS e.max CAD® and VITA Enamic® by performing
different etching protocols, varying the concentration and application time of hydrofluoric
acid [26]. His results do not coincide with the manufacturer’s recommendations, as the
best values in each of the groups were obtained with the use of 10% hydrofluoric acid for
20 s. Peumans carried out a study similar to ours with a different statistical model, and
his results were the same: the etching and silane protocol is the one that shows the best
results with IPS e.max® CAD and VITA Enamic® [27]. Bayazit tested VITA Enamic® and
Lava Ultimate© with a different methodology, and his best results were achieved via area
treatments different from those recommended by the manufacturer [28].

In the surface treatment of the nanoceramic resin, the manufacturer of Lava Ultimate®

recommends either sandblasting or silica coating of the resin. Therefore, in this research,



Materials 2023, 16, 4796 10 of 12

two groups were created to assess whether there were differences between the two. The
values obtained by silica coating were slightly higher, although the difference was not
significant. Sandblasting is normally used to increase the bonding surface of the restoration
and thus improve adhesion. Depending on the particle size chosen for sandblasting, the
surface roughness will be different, and the larger the particle size used, the more irregular
the surface [29]. In this study, the manufacturer’s recommendations were followed, the
LUA group was sandblasted with 50 µm aluminium oxide particles, and the LUS group
was treated with 30 µm silica-coated aluminium oxide particles. By using the latter type of
particles, the silica remains incorporated into the outermost layer of the material [16] and
enables better ceramic-cement chemical bonding due to the bond between the silica, the
silane, and the resin cement [30]. This could be the reason for a slightly better result in the
silica-coated group.

Adhesive fractures were predominant in both the EMAX and VE groups, while LUA
and LUS had a majority of cohesive fractures. These results, together with the statistical
analysis confirming that cohesive composite fractures were associated with significantly
higher mean strength, lead to the conclusion that the bond strength of Lava Ultimate® is
even higher since if the weak element, the composite, did not fail in the experiment, even
better values would be obtained. Only the hybrid materials had cohesive failures, while
the IPS e.max CAD® group, as expected, did not have any cohesive material failure since
lithium disilicate is stronger than the hybrid restorative materials [31].

The differentiation of the study samples into perimetral or central, depending on
where they were located within the beam preparation block, was done to analyse whether
there was a difference in the behaviour of the outermost part of the restorations. In previous
similar studies, it was found that there were two tendencies, either to discard the perimeter
beams [25–27] or to include them without differentiating from those located in the central
area [21,22,28]. The results obtained in this study showed that in all groups, the central
beams obtained notably higher bond strength than the perimeter beams. The reasons
for lower bond strength on the margins probably should be related to the specimen’s
manufacturing process, like gaps around the margin blocks.

One of the limitations of this study is that only the bond strength between the cement
and the restorative material has been analysed. It would be necessary to extend this test by
incorporating the cement-tooth interface in the adhesion study and a cyclic fatigue test [32].
Due to the difficulty of extrapolating in vitro results to a clinical situation, in vivo studies
would be necessary to analyse the behaviour of these new-generation materials.

5. Conclusions

With the limitations presented in this study, the following can be concluded:

1. All materials used with the bonding protocols recommended by their manufacturers
and evaluated in this study achieve clinically adequate bond strengths.

2. Lava Ultimate® is the material that, when used with its bonding protocol, achieves the
best results in bond strength. Slightly higher values are obtained when silica coating
rather than sandblasting.

In all groups, the central beams obtain better values than the perimeter beams.
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