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Abstract: In order to study the effect of TiB, particles on the mechanical properties of TiB, /6061 Al
composites, a series of 3D TiB,/6061Al representative volume elements (RVEs) were established
based on SEM photos. This model took into account the ductile damage of the matrix and the
traction separation behavior of the interface, and the linear damage evolution law was introduced to
characterize stiffness degradation in the matrix elements. Mixed boundary conditions were used in
the RVE tensile experiments, and the accuracy of the predicted result was verified by the agreement
of the experimental stress-strain curve. The results showed that the addition of TiB, particles can
effectively promote the load-bearing capacity of the composite, but elongation is reduced. When
the weight fraction of TiB; increased from 2.5% to 12.5%, the elastic modulus, yield strength, and
tensile strength increased by 8%, 10.37%, and 11.55%, respectively, while the elongation decreased by
10%. The clustering rate of the TiB, particles is also an important factor affecting the toughness of the
composites. With an increase in the clustering rate of TiB, particles from 20% to 80%, the load-bearing
capacity of the composites did not improve, and the elongation of the composites was reduced by 8%.
Moreover, the high-strain region provides a path for rapid crack propagation, and particle spacing is
a crucial factor that affects the stress field.

Keywords: PRAMCs; TiB; particles; numerical simulation; damage factor; linear damage evolution
law; 3D RVE

1. Introduction

Particle-reinforced aluminum matrix composites (PRAMCs) have been widely used
in aerospace engineering and transportation due to their characteristics of low density,
high specific strength, and low cost [1,2]. PRAMCs consist of an Al matrix phase and a
reinforcement phase. Commonly used reinforcement phases include SiC, ZrB,, and TiB,.
Among them, TiB, has been frequently introduced into various aluminum alloys as a
reinforcement phase, owing to its wettability, high modulus, and high hardness [3]. It
is widely accepted that the addition of a reinforcement phase can improve the strength
of PRAMC:s to a great extent; however, it has also been shown to reduce toughness [4].
Hence, in order to enhance the mechanical properties of PRAMCs as much as possible, the
mechanism by which reinforcement particles affect the composite’s mechanical properties
must first be understood. Quantifying and analyzing the characteristics of particles is a
great way to study this mechanism.

Recent research has shown that the proportion of particles in composites has a signifi-
cant influence on the load-bearing capacity of the composites [5,6]. Lv et al. [7] fabricated
hybrid aluminum matrix composites reinforced with SiC particles and carbon fibers and
showed that the addition of the reinforcement phase improved the composites” tensile
strength and elastic modulus. Yang et al. [8] fabricated ZrB, /6061Al nanocomposites and
showed that the strength of the composite was improved by approximately 1.52 times
when compared with a 6061Al alloy. Moreover, related studies show that the distribution
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of particles is also a crucial factor for the load-bearing capacity of the composites [9-11].
For example, Ma et al. [12] investigated the mechanical properties of in situ AI3Ti/A356
composites and showed that the clustering of AI3Ti particles caused a decrease in ductility
in the composite. Law et al. [13] investigated the effect of particle arrangement on the
mechanical response of MMCs and showed that non-clustered random and highly clus-
tered particle arrangements resulted in the highest and lowest flow stress, respectively.
Theoretical analytical methods are also used in parallel to predict the mechanical properties
of the composite. For instance, Weng [14] obtained values for the interfacial stress and
modulus of composites using a model in which the reinforced particles were considered to
be ellipsoidal. However, this method assumes particles to be simply shaped and uniformly
distributed, which does not correspond with the actual observed microstructure. The
accuracy of mechanical properties predicted by the theoretical analytical method needs to
be improved.

Aside from experimental and theoretical analytical methods, the microstructure-based
representative volume element (RVE) has also been increasingly adopted to study double-
phase composites [15-17]. Wang et al. [16] proposed a 2D RVE of SiC/ Al and studied its
mechanical behavior by introducing the discrete distribution function of reinforcement.
Gad et al. [18] proposed a 2D FE model to investigate the effects of particle size and vol-
ume fraction on the deformation, damage, and failure behaviors of SiC/A356. However,
2D RVE cannot accurately reconstruct the actual microstructure, resulting in inaccurate
outcomes [19]. Related work shows that 3D microstructure-based modeling has an ad-
vantage when studying complicated and heterogeneous microstructures [20-24]. Zhang
et al. [25] proposed a 3D enhanced FE model and successfully simulated the mechanical
behavior of SiCp/2009Al. Nan et al. [26] proposed a computational structural model of
TiB, /Cu composites based on the geometric characteristics of TiB, particles. The accuracy
of the model was verified by comparison with the experimental stress-strain curve, and the
mechanical properties of the composite were studied. However, there is still a drawback
to this work: the stiffness of a constitutive element is directly removed when it meets the
damage criterion without applying the damage evolution law, resulting in the stress-strain
curves being underestimated when element removal occurs. To avoid this problem, Ma
et al. [27] proposed a 3D RVE model that adopts the linear damage evolution law. A series
of computational experiments were successfully carried out to study the influence of clus-
tering degree and volume fraction of particles on the mechanical properties of A13Ti/A356
composites. However, this method is unsuitable for predicting the mechanical properties
of Al3Ti composites reinforced with TiB; particles due to the difference in the component
particles” morphology, which will affect the field of stress. In addition, most of the afore-
mentioned literature focused on aluminum alloys or other alloys; there is still a lack of
research on composites of TiB, /6061Al.

To overcome the issues and limitations discussed above, the microscopic geometric
characteristics of TiB, /6061Al were extracted from the actual SEM photos in this study. A
series of 3D RVEs with different weight fractions and clustering rates were established for
TiB, /6061Al composites. The model took into account the ductile damage of the matrix
as well as the traction separation behavior of the interface, and a linear damage evolution
law was introduced to characterize the stiffness degradation of the element. Furthermore,
mixed boundary conditions were used for the RVE tensile experiments. The accuracy of
the model was verified using experimental curves. Finally, the effects of particle weight
fraction and clustering rate were studied, and the mechanical properties of TiB, /6061Al
were predicted and assessed from three aspects: the interface damage, the load-bearing
capacity of particles, and the matrix damage.

2. Finite Element Model
2.1. Material Constitutive and Fracture Behavior

A stable and reliable FE model is useful for obtaining accurately predicted results, for
which it is particularly important to obtain accurate material parameters. Based on previous



Materials 2023, 16, 4786

30f19

works, the mechanical properties of TiB; particles and the 6061Al matrix are presented in
Table 1. The plastic hardening behavior of 6061Al is described by the exponential formula
expressed as [28]:

E n
o=0y(1+ —¢p) ¢y
%y
where ¢ is stress, E is the elastic modulus, and Ty and gp are the yield strength and plastic
strain, respectively. The exponent n is 0.17, which was obtained by fitting a uniaxial tensile
stress-strain curve for the 6061Al alloy.

Table 1. Properties of components in TiB, /6061 Al composites.

Properties Symbols Unit 6061A1 [3] TiB; [25]
Elastic modulus E GPa 69 540
Density o g/cm3 2.7 452
Poisson’s ratio U - 0.33 0.11
Yield strength ay MPa 94 -

The fracture behavior of TiB, particles is normally not taken into account by FE
models due to the fact that the fracture of particles is not observed in tensile tests of the
composites [29,30]. Hence, only the linear elastic behavior of TiB, particles was considered
in this paper. Ductile damage is the main cause of failure in the matrix of Al alloys. Based
on the Rice and Tracey criterion [31], the damage factor D was used to characterize the
degree of ductile damage in the Al matrix:

gpl N
D= / o3 gg?! @)
JO

tpl ol (2
! :/0 & e = ge’”’:e’”’ 3)

where 17 = 07,/ 0y, is stress triaxiality, 0, is the hydrostatic pressure, 0y, is the total stress, &

is an equivalent plastic strain (PEEQ), and &" 'is the plastic strain rate tensor.

During the experimental process, the damage factor D accumulates continuously in
each element with the increase in strain. When D reaches a specified value, failure of the
matrix elements occurs. It should be noted that the post-failure behavior of the matrix
plays a significant role in predicting the stress-strain curves of the failure stage. However,
in previous work on composites [32], the element that retained stiffness was immediately
deleted when it satisfied the failure criterion during the failure stage. Although this
method can simulate the process of crack propagation, the predicted stress-strain curve
is underestimated compared to the experimental result. In this study, a linear damage
evolution criterion was used to characterize the post-failure behavior of composites [23].
The expression of this linear damage evolution criterion [33] is:

d= min(l,kdgeqe_go> 4)
0

where ¢ is the initial equivalent failure strain, ¢, is the current equivalent strain, and k is
a parameter controlling the degradation rate of the material’s stiffness. When d reaches 1,
the element’s stiffness becomes 0, and it is deleted. In order to characterize the interfacial
failure in the microscale RVE model, a bilinear cohesive model (as shown in Figure 1)
was introduced at the interface between the Al matrix and TiB, particles to characterize
its debonding behavior. A cohesive element of zero thickness was used to discretize the
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interfacial layer. The linear elastic behavior of the interface layer is defined by the traction
separation criterion:

tn Kiw 0 0 On
t= ts - 0 Kss 0 55 - K§ (5)
t 0 0 Kg O

where t is the nominal stress vector. t,, t;, and t; are the normal and the two shear tractions,
respectively, and the corresponding separations are denoted by J,, J; and J;. K is the
stiffness coefficient of the interface and J is the nominal strain of the interface.

Traction

I
1 Normal
; l 1‘ response
¥ /\
! } \ m
! n
Shear | | ‘ 6}‘0 > Normal
response / O Separation
é‘vc (6°)
o) /B0
Shear 0"--- the effective displacement at complete failure

Separation 8" the effective displacement at the initiation of damage

Figure 1. Bilinear cohesive model.

The QUADS stress criterion was applied to characterize the damage evolution behavior
of the cohesive elements. When the stress on the interface satisfies the QUADS stress
criterion, the failure of a cohesive element in the interface layer occurs, and this criterion is

expressed as:
{tn }2+{ts }2—|—{tt }2 =1 (6)
t9z t(s) t?

where t?,, tg, t? are maximum tractions in the normal and two shear directions, respectively.

However, it is difficult to obtain the material parameters of the cohesive elements
of the interface layer experimentally. Generally, due to the limitations of the present
experiments [34], the most reasonable parameters of cohesive elements are obtained by
comparing the simulated stress-strain curve with the experimental curve [19,26,29,35-38].
By comparing the experimental curve, the parameters of the cohesive element were fixed
as follows: 700 MPa for the interfacial strength and 0.05 um for the initial separation
displacement. As ABAQUS does not provide the required constitutive model, a Vumat
subroutine was developed for the material.

2.2. Quantitative Characterization of Damage Behavior

During the process of failure, the damage behavior of the matrix and interfacial layer
is different. In order to quantitatively characterize the damage degree of the interface and
matrix, the interface damage ratio Dy terface and matrix damage ratio D,yq1i were introduced.
The corresponding expressions are as follows:

Ny
Y A
i=1

Dinterface = N; x 100% @)
21 A

i
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where N; and N; represent the number of failed elements and the total number of elements,
respectively. The A; and V; are status values for elements of the interface layer and the
matrix.

2.3. Establish the RVE Model

Figure 2 is the bright-field TEM image of TiB;. It shows that TiB, is a hexagonal prism
particle with a diameter of approximately 800 nm.

TiB, [011]

Figure 2. The bright-field TEM image of TiB, [5].

Based on the random adsorption algorithm (RSA) [39], a three-dimensional RVE model
for TiB, /6061 Al composites was established. To be adsorbed into the RVE, the location of
each micro-particle is required to meet two conditions: (1) no overlapping between two
particles; and (2) the distances between particles, as well as the distances from particles to
the RVE faces, should exceed a certain threshold to ensure the quality of the finite elements
during meshing.

The control equations of RSA can be written as follows:

I’ = x| > 1+ 1+ dy )
[~ r| > (10)
x;;+ri—L‘ > d (11)

where x, r, and L represent the coordinate vector of the particle center, the particle radius,
and the side length of the RVE, respectively. 4 and d; are user-selected distances.

In order to analyze the influence of microstructural parameters on the mechanical
properties of composites, the TiB, particle was assumed to be a hexagonal particle with a
diameter of 800 nm, and the 6061 Al matrix was assumed to be a continuous homogeneous
material. Based on these assumptions, the RVE models were established with different
particle weight fractions (wf) ranging from 5% to 12.5%, and different clustering rates (J)
ranging from 20% to 80%, as shown in Figures 3 and 4 (the dark green part represents
clustered particles, and the dark red part represents non-clustered particles). In order to
quantitatively characterize the degree of particle clustering, based on the reconstructing
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algorithm, several box-like subdomains were randomly generated in the cubic RVE, and a
B parameter was introduced [40]. Its expression is as follows:

é’i Vsub
v _thY

B = 7; = (12)

where V; and V;, are the volume of clustered particles and total particles, respectively. ¢
and { are the particle volume fraction in the subdomains and the nominal particle volume

fraction in the whole RVE, respectively. V5"’ is the volume of each subdomain. V is the
total volume of RVE.

Figure 3. RVE models with different particle weight fractions. (a) wt = 2.5%. (b) wt = 5%. (c) wt =7.5%.
(d) wt = 10%. (e) wt =12.5%.

M clu
I non-clu

Figure 4. Cont.
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()

Figure 4. RVE models with different clustering rates. (a) B = 20%. (b) B = 40%. (c) B = 60%.
(d) B =80%.

The boundary conditions of the RVE can be divided into two types: periodic boundary
conditions (PBCs) and mixed boundary conditions. Although some previous works [41]
adopted periodic boundary conditions and obtained relatively accurate results, a study [19]
shows that PBCs are only applicable to static and implicit numerical simulations. When
they are used in explicit dynamic simulations, not only is the calculation cost high, but high-
frequency oscillations occur in the model, affecting the accuracy of the numerical solution.
Considering the above disadvantages of PBCs, mixed boundary conditions were adopted
in this work. As shown in Figure 5, based on the previous simulation works [26,27,35,42],
the RVE with a size of 5 um is established. All degrees of freedom on the bottom surface of
the RVE were constrained, and the coupling command was used to couple all degrees of
freedom on the top surface to the reference point. The linear displacement load was applied
to the reference point, the load amplitude curve was defined by the Tabular command, and
the total time of the analysis step was set to 0.01 s.

+
:
|

5um

|

|

I

|

|
A

\L’ .

Figure 5. Boundary conditions of RVE.

In this paper, the ABAQUS/Explicit Dynamic Method was used to investigate the
quasi-static tensile process of composites. The stability of the model is an important factor
affecting the accuracy of the simulation results, and the above settings can ensure that the
ratio of kinetic energy (KE) to internal energy (IE) of the model is less than 5% and that it is
stable, as shown in Figure 6.
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Figure 6. The ratio of kinetic energy to internal energy.

2.4. Model Verification

To ensure the computational accuracy and efficiency of the RVE model, the effect of
mesh size should be excluded before the simulation begins. However, as the mesh size
decreases and the number of elements increases, the scale of the calculation also increases.
Therefore, it is necessary to consider the balance between computational accuracy and
the time taken when choosing the mesh size. As shown in Figure 7, the simulation times
corresponding to the mesh sizes of 0.55 um, 0.6 um, and 0.65 um are 19.23 h, 14.38 h, and
10.33 h, respectively.

19.23 .

— —_ )
o) N o S
T

Computation time/(h)
=

0.055 0.06 0.065
Mesh size/(um)

Figure 7. The computation time for RVE simulations with different mesh sizes.

The stress-strain curves of the RVE model at different mesh sizes are shown in Figure 8.
It can be seen that, when the composite is in the elastoplastic stage, the effect of different
mesh sizes on the stress-strain curves is not obvious. When the composite enters the
failure stage, there are still no obvious differences between the stress-strain curves with the
mesh sizes of 0.055 um and 0.06 um, and the FE results agree well with the experimental
results [3]. However, the stress-strain curve with a mesh size of 0.065 um shows a large
error. Hence, the mesh size of 0.06 um was chosen for the subsequent simulation analysis
based on the balance between computing accuracy and time cost.
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Figure 8. The results of RVE simulations with different mesh sizes.

3. Results and Discussion
3.1. Effects of Different Particle Weight Fractions on TiB,/6061Al Composites

For PRAMCs, the fraction and size of reinforcement particles in composites are consid-
ered crucial factors that affect the mechanical properties of composites. However, several
published papers [18,27,29,36] showed that the refinement of particles would improve the
strength of composites. Therefore, in this paper, we only investigate the effect of parti-
cle weight fraction on mechanical properties. Figure 9 shows the stress-strain curves of
composites with different particle weight fractions. Although all the stress-strain curves
initially increase and then decrease, there is a clear difference between the stress values of
curves with different particle weight fractions. The composite with a higher particle weight
fraction enters the failure stage earlier, and damage occurs earlier. With the increase in
particle weight fraction from 2.5% to 12.5%, the elastic modulus, yield strength, and tensile
strength of the composites increased from 73.33 GPa to 79.19 GPa, 164 MPa to 181 MPa,
and 199 MPa to 222 MPa, respectively, whereas the elongation decreased from 25% to 15%.
The experimental results show that the increase in particle weight fraction improved the
load-bearing capacity of the composites.

T T T ' ' I I
200+ |
)
EQ_‘ 150 ‘ 210 i
205
< g 5200
E % 195
2 100t 2190 |
v ——t=2.5% & 185
B 180
=0,
N e wi=5% 0.180.190.20 0.21 0.22
50 | wt=7.5% Strain T
L | —v— wt=10%
J —— wt=12.5%
Ot .

000 005 0.10 015 020 025
Strain

Figure 9. Stress-strain curves for composites with different particle weight fractions (wt).



Materials 2023, 16, 4786

10 of 19

The total stresses on the particles at different weight fractions are shown in Figure 10.
And different colors in the curves correspond to different weight fractions of particles in
the RVE model. The von Mises stress of the TiB, particles, the SDEG of the damage to the
interfacial layer, and the equivalent plastic strain (PEEQ) of the matrix phase are shown in
Figure 11.

@ b
o
o
5 et
|
T

_ 72
.0 L I It
0.0 3.0x10* 6.0x10* 9.0x10*
Load time/(s)

Figure 10. Total stress on reinforcement particles with different weight fractions.

As shown in Figure 11a—e, when the strain was 10%, the number of particles loaded
with high stress (more than 5377 MPa) increased. This indicates that the particles with
a higher weight fraction can better bear the stress from the matrix. When the plastic
deformation of composites occurs, a geometric mismatch caused by the varying degrees
of strain on different parts of the composites also occurs, which causes the particles to
move in different directions. It changes the original particle spacing, resulting in higher
stress on neighboring particles that are close to each other and lower stress on particles
that are further apart. This means that particle spacing is an important factor affecting
the stress distribution. At the same time, most of the stress is concentrated on the edges
and corners of the hexagonal prism particles due to the geometric discontinuity. Figure 10
shows that the total stresses borne by the particle phase increase with the increase in the
particle weight fraction, which means that a higher particle weight fraction transfers stress
from the matrix to the particle. Therefore, composites with higher particle weight fractions
can bear higher loads.

As shown in Figure 11f-j, when the strain was 18.9% and the particle weight fraction
increased from 2.5% to 12.5%, the interfacial damage ratios of TiB, /6061 Al composites
were 6.59%, 6.74%, 9.8%, 13.04%, and 16.1%, respectively. This indicates that a higher
particle weight fraction leads to more severe interfacial damage. Because most of the stress
is concentrated on the edges and corners of the particles, the interfacial layers in these
areas are prone to damage. Hence, it can be concluded that excessive stress is an important
causal factor in interfacial failures.

As shown in Figure 11k-o, when the strain was 24.3% and the particle weight fraction
increased from 2.5% to 12.5%, the damage ratios of the matrix were 0%, 0.14%, 1.71%, 3.76%,
and 6.47%, respectively. Due to the increase in the number of particles, the continuity of the
particles leads to a further increase in the stress on the particles [36] and the region between
neighboring particles. This causes the composite with a higher particle weight fraction
to become damaged earlier and more severely. Combined with Figure 11a—e, this shows
that the largest stress is concentrated on the particles” edges and corners, which eventually
leads to the occurrence of matrix damage.
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Figure 11. (a—e) The von Mises stress of TiB, particles at the strain of € = 10%. (f—j) The SDEG of the
damage of the interfacial layer at the strain of € = 18.9%. (k—o0) The PEEQ of the matrix phase at the
strain of € = 24.3%.
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It is necessary to study the mechanism of crack generation and propagation because
it strongly affects the elongation of composites. Figure 12 shows the PEEQ distribution
contour of the composite matrix with particle weight fractions of 7.5% at strains of 16.3%,
21.3%, and 24.6%. When the strain was lower than 16.3%, no cracks were generated.
However, when the strain reached 16.3%, excessive stress became concentrated on the
particle edges and corners, creating high strain in these areas. This can lead to interfacial
debonding and matrix damage in the high-strain area, which can further evolve into fine
cracks inside the matrix. At the same time, there is also severe stress concentration at
the crack tip, which causes crack propagation during the loading process. Additionally,
with the increase in strain, the fine crack shown in Figure 12a,b propagated further along
the edges of particles; as the strain reached 21.3%, the fine crack continued to propagate
along the high-strain area and merged with other fine cracks caused by the other particles,
forming a main crack (as shown in Figure 12c). Furthermore, when the strain reached
24.6%, the main crack continued to propagate and merged with the fine cracks around
the other particles, forming a larger crack damage area (as shown in Figure 12d), which
eventually led to the macro-level weakening of the composite’s load-bearing capacity.

@

DTN
PEEQ

(Avg: 75%)

1.63
E 152

1.40
1.28
117
1.05
0.93
0.81
0.70
0.58
0.46
0.34
0.23

(d)

e=21.3% £=24.6%

Figure 12. The process of crack propagation in the matrix with the particles weight fraction wt = 7.5%.
(a) PEEQ of matrix at the strain of € = 16.3%. (b) The partial enlarged view. (c) PEEQ of matrix at the
strain of € = 21.3%. (d) PEEQ of matrix at the strain of ¢ = 24.6%.

3.2. Effect of Different Clustering Rates on TiB,/6061Al Composites

According to previous works [27,43,44], the damage to composites is related to not
only the particle weight fraction but also the degree of particle clustering. As shown in
Figure 9, the RVE with a particle weight fraction of 7.5% has the most balanced mechanical
properties. This section takes composites with a weight fraction of 7.5% as an example
to investigate the effect of particle clustering rates on mechanical properties. Figure 13
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shows the stress-strain curves corresponding to different particle clustering rates. As the
particle clustering rates increase, the damage occurs earlier, and the stress on the composites
decreases more rapidly during the failure stage. With the increase in particle clustering
rates, the elastic modulus, yield strength, and tensile strength of the composites do not
show any obvious difference. However, the elongation of the composites decreases from

22% to 14%.

T T I_ T T T T T T
200 } .
<150+ § E .
§ %210%
= £ 205
2100 [ ° .
L 008 010 012
a Strain —-—,B=20%
50 + —— =40% .
L —— =60% ]
0 _l —v— [~=80% i
0.00 0.05 0.10 0.15 0.20 0.25

Strain

Figure 13. Stress-strain curves with different clustering rates (j).

Figure 14 shows the total stresses on the clustered particles with different clustering
rates at the strain of 8.1%. It shows an approximately linear increase in stress in terms of 8.
Figure 15 shows the von Mises stress of TiB, particles at the strain of 8.1%, the SDEG of
the interfacial layer damage at the strain of 21.6%, and the PEEQ of the matrix phase at the
strain of 21.6%.

T

8 —
Lex10%y 1.46x10°

20 40 60 80
(%)

Figure 14. Total stress of clustered particles at the strain of € = 8.1%.
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Figure 15. (a—d) The von Mises stress on TiB, particles at the strain of ¢ = 8.1%. (e-h) The SDEG of
the damage of the interfacial layer at the strain of € = 21.6%. (i-1) The PEEQ of the matrix phase at the
strain of € = 21.6%.



Materials 2023, 16, 4786

15 0f 19

As shown in Figure 15a—d, with the increase in particle clustering rate, the number
of clustered particles increases. Most of the stress on the particles within the clustered
particle area is between 3383 MPa and 5362 MPa, while most of the stress on the particles
within the non-clustered particle area is below 3383 MPa, which indicates that the clustered
particles bear a greater amount of stress than the non-clustered particles. Due to the
geometric discontinuity, most of the stress is concentrated on the edges and corners of the
TiB, particles. Along with Figure 14, this shows that the stress borne by clustered particles
increases with the clustering rate. This implies that a higher clustering rate of particles will
result in a greater amount of stress borne by clustered particles.

As shown in Figure 15e-h, when the strain was 21.6%, the interfacial damage ratios of
the composites were 17.21%, 26.6%, 30.21%, and 35.73%, respectively, and the clustering rate
was 20%, 40%, 60%, and 80%. With the increase in particle clustering rates, the interfacial
damage ratios increase, which indicates that high particle clustering rates lead to severe
interfacial damage. Similar to the conclusion of Section 3.1, the damage to the edges and
corners in the interface layer is more severe than in other parts. As discussed above, the
clustered particles bear a greater amount of stress than the non-clustered particles. The
degree of damage to the interface layer in the clustered particle area is therefore higher than
that in the non-clustered particle area. By comparing the damaged area of the interface
layer with the stress distribution area of the particle in Figure 15a—d, it can be seen that
the damaged area of the interfacial layer is basically consistent with the area of high stress
on the clustered particles, which indicates that the clustered particles are more prone to
bearing high stress that exceeds the strength limit of the interfacial layer under the influence
of the clustering effect, eventually leading to the failure of the interfacial layer elements.

As shown in Figure 15i-1, the matrix damage ratios gradually increase as the particle
clustering rates increase, which indicates that the increase in particle clustering rates can
increase the damage ratios of the matrix. Considering that the RVE model is stretched in
the vertical direction, when the matrix is loaded, inward contraction strain in the horizontal
direction is simultaneously generated. This contraction strain causes the particle spacing in
the clustered particle area to decrease, and the stress on the particles to further increase
due to the clustering effect. This causes the stress on the edges and corners of the particles
in the clustered area as well as the region between the neighboring particles to exceed the
strength limit of the matrix, which eventually leads to the occurrence of matrix damage.

As Figure 16 shows, when the strain reached 16.3%, the excessive local stress in the
clustered particle area caused matrix damage to occur. As discussed above, due to the
clustered particles bearing large stresses, the region between neighboring particles turns
into a high-strain region. It results in the generation of an initial fine crack in the matrix
(as shown in Figure 16a,b). When the strain reached 21.3%, the crack propagated further
along the high-strain area and merged with other particle-induced fine cracks, eventually
forming the main crack (as shown in Figure 16¢). Furthermore, when the strain reached
24.6%, the main crack continued to propagate rapidly in the high-strain area and merge
with the fine cracks around the other particles outside the high-strain area, forming a larger
crack damage area (as shown in Figure 16d), which leads to the macro-level weakening
of the composite’s bearing capacity. We conclude that the high-strain area between the
clustered particles provides a fast expansion path for crack propagation.
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Figure 16. The process of crack propagation in the matrix with the clustering rate g = 80%. (a) PEEQ

of matrix at the strain of € = 16.3%. (b) The partial enlarged view. (c) PEEQ of matrix at the strain of
€ = 21.3%. (d) PEEQ of matrix at the strain of € = 24.6%.

4. Conclusions

In this paper, a 3D RVE model based on the actual microstructure acquired by SEM

was developed for TiB, /6061 Al composites. The mechanical behavior was predicted, and
the process of fracture was simulated. By comparing the experimental results of previous
studies, the accuracy of the RVE was verified. The effect of microstructural parameters of
composites on the mechanical properties of PRAMC was discussed. Some conclusions are
summarized below:

).

Q).

3).

).

The RVE model comprehensively considers the ductile fracture of the matrix and the
traction separation behavior of the interface. It also introduces the linear damage evo-
lution law to characterize the stiffness degradation of the element. It was successfully
applied to predict the mechanical properties of composites.

For TiB, /6061 Al composites, increasing the particle weight fraction improves strength
but reduces toughness. With an increase in the weight fraction of TiB; from 2.5%
to 12.5%, the elastic modulus, yield strength, and tensile strength increased by 8%,
10.37%, and 11.55%, respectively, whereas elongation decreased by 10%.

Clustered particles also have an important effect on the internal stress field of com-
posites. The results show that the clustering rate of particles has a great effect on
toughness. With an increase in the clustering rate from 20% to 80%, the rate of de-
crease in stress increases constantly, and the elongation of composites decreases by
8%. However, it has little effect on yield strength, tensile strength, or elastic modulus.
The mechanism of crack generation and propagation was also studied. A fine crack is
first generated around the particles. Then, this fine crack merges with other fine cracks
nearby, forming a main crack and eventually leading to the fracture of the composites.
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(5). The high-strain region in the matrix provides a fast expansion path for crack propaga-
tion. The reduction in particle spacing causes the stress on the particles to increase
and the damage to occur earlier.
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