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Abstract: Antennas dedicated to RFID systems created on textile substrates should maintain strictly
defined parameters. During washing, the materials from which such antennas are made are exposed
to mechanical and chemical exposure—degradation of the parameters characterizing those materials
may occur, which in turn may lead to a change in the parameters of the antenna. For research
purposes, four groups of model dipole antennas (sewn with two types of conductive threads on two
fabrics) were created and then they were subjected to several washing processes. After each stage
of the experiment, the impedance parameters of the demonstration antennas were measured using
indirect measurements. Based on the obtained results, it was found that these parameters change
their values during washing, and that this is influenced by a number of factors, e.g., shrinkage of the
substrate fabric.

Keywords: RFID textronic transponder; textronics; textile antennas; wearable antennas; wash-
able electronics

1. Introduction
1.1. Textiles in Electronics

Progress in various fields of technology and its interdisciplinary uses cause an in-
crease in the popularity and accessibility of intelligent technologies. In recent years, smart
wearable devices used, among others, in the medical [1–6], sports [7–10] or military and
emergency services [11,12] sectors have become extremely popular. In order to meet the
growing requirements for the comfort of using such devices, designers’ attention has been
turned towards intelligent textiles and electronic textiles (e-textiles) [13,14]. The latter
turn out to be particularly interesting because they have new functionalities based on the
electronic elements [13,15,16] implemented in their structure.

Modern electronic textiles are based on the integration of classic fabrics with con-
ductive materials—most often foils, threads, yarns or conductive polymers—and their
production does not differ from standard methods used in the textile industry, such as
printing, weaving, embroidery or sewing, during which non-conductive fibers are re-
placed. It is possible to create conductive paths, diodes or detectors of chemical or physical
parameters on the fabrics constituting the substrate [13,16–18].

Electronic textiles have found particular application in communication systems, where
they are used to create various types of antennas [19,20]. The geometry of the antenna
is created using conductive material on a textile dielectric substrate. As a rule, such an
antenna is integrated with a piece of everyday or protective clothing, due to which it must
meet certain conditions. One of them is to make the antenna in a way that does not spoil
the aesthetics of the product with which it is integrated. Equally important, if not the most
important aspect, is the fact that such an antenna must have a certain level of resistance
to washing.
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When washing classic textiles, negative effects may occur as a result of temperature,
detergent or mechanical factors (friction, spinning)—this can be a change in the appearance
of the material (change in shade or texture) or a change in its size (shrinkage, stretching).
In the case of e-textiles, there is also the issue of changing the electrical parameters of the
conductive material, which in turn may disrupt or even prevent the operation of the entire
system of which they are a part [21,22].

1.2. UHF RFID Transponder

The possibility of creating antennas on textile substrates has opened the prospect of de-
veloping radio frequency identification (RFID) devices, especially in the area concentrated
around the human body. The use of textile antennas in RFID transponders enables the
permanent integration of such a device with textile industry products, thanks to which it is
possible to construct a system that operates throughout the life cycle of a specific product.

Also, the widespread availability of portable electronic devices supports the rapid
spread of RFID systems in the market, as it is extremely easy for such devices to connect
with each other to obtain available information.

The RFID system for the UHF (ultra-high-frequency) band typically operates in the
860–960 MHz range. The determination of the appropriate frequency value depends on the
region of the world in accordance with the regulations enforced in a given area.

Passive solutions account for a large share of the market for RFID devices, as the lack
of batteries allows for significant cost reductions. A typical passive RFID tag consists of a
chip and an antenna—in the vast majority of cases, both of these elements are permanently
connected to each other. The patent PL 231291 B1 “Textronic RFID transponder” by
Jankowski-Mihułowicz P., Węglarski M. [23] presents a concept based on the galvanic
separation of both elements by means of a special coupling circuit (Figure 1).
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Figure 1. Block diagram of textronic RFID transponder (RFIDtex tag).

Both the chip and the antenna have a coupling circuit in the form of properly profiled
loops, between which there is mutual induction. Its value is sufficient to ensure proper
impedance matching of the chip and the antenna.

The presented structure enables the aesthetic integration of the textile antenna with
the target product while making a microelectronic system in the form of, for example,
a button. Not only does the lack of a physical connection of both elements increase the
reliability of the transponder, it also prevents a number of problems from occurring at the
production stage.

In the scientific literature, a lot of attention is devoted to RFID transponders for the
UHF band, and the directions of research are constantly being developed—solutions based
on e-textiles are becoming more and more popular [24–28]. As mentioned in Section 1.1,
textile transponders (and especially their antennas, which are usually a textile element)
must be resistant to the same exposures as the textile products with which they are in-
tegrated. On account of that, aspects such as the impact of moisture or washing on the
parameters and operation of transponders [29–33] are tested.
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The main purpose of this publication Is to present the effect of the washing process on
the impedance of the textile RFID tag antenna for the UHF band. The study of the impact
of washing on tags with textile antennas has already been a subject of research, but in the
available literature only results regarding its impact on the read range (main effect) [29,34]
can be found. The authors decided to delve deeper into this topic and investigate the
impedance of the tag antennas (the cause of that effect), which affects that read range.

2. Materials and Methods
2.1. Textile Antenna

The idea and problems arising during the design of an antenna for a textile RFID tag
are described in detail in publications [23,35].

In the case of this publication, the object of research is a simple dipole with a length
shorter than half the wavelength (16 cm) with a coupling circuit in the form of a loop with
a diameter of 5.6 mm. Figure 2 shows the design of the transponder built on the patent
“Textronic RFID transponder”, made in the EMCoS Studio 2021 program.
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Figure 2. Model of the antenna with microelectronic module.

For the transponder to work properly, the antenna must be impedance-matched to
the chip and the quality of this match is determined by the power transfer coefficient
(Equation (1)) [23,36].

τ =
4Re(zTA)Re(zTC)

(Re(zTA + zTC))
2 + (Im(zTA + zTC))

2 (1)

According to the design assumptions, the real part of the antenna impedance should
be equal to several ohms, while the imaginary part to several hundred. These values
are determined by the chip parameters, because in the case of a perfect matching both
impedances are conjugate (ZTA = ZTC*).

Antenna modules (radiator with a coupling circuit) were constructed with two types
of conductive threads—litz wire PACKLitzWire 10 × 0.04 mm (Rudolf Pack GmbH & Co.
KG, Gummersbach, Germany) and Syscom Agsis (Syscom Technology Inc., Columbus,
OH, USA) (nylon thread covered with a layer of silver, characterized by its resistance to
washing). The samples were embroidered on two types of fabrics, the composition of which
is shown in Table 1.

Table 1. Basic specifications of the used fabrics.

WL4715 WL4948

Composition cotton 97%
spandex 3%

cotton 52%
polyester 48%

GSM (grams per square meter) range 230 260
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The WL4715 (Tkaniny24, Iława, Poland) material is a cotton fabric with a linen struc-
ture. The presence of lycra in its composition provides slight elasticity. WL4948 (Tkaniny24,
Iława, Poland) is a denim fabric with high abrasion resistance.

Used substrate materials were selected on the basis of experience from previous
research on textronic RFID tags described in other authors’ publications [35,37]. The
research that is the subject of this article is a continuation of research on antennas for which
a high convergence of results with the theoretical model has been determined.

The samples were embroidered on an embroidery machine, in which the conduc-
tive thread is the bobbin thread and the upper thread is ordinary polyester thread. The
appearance of exemplary samples is shown in Figure 3.
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Figure 3. The RFIDtex transponder examples.

Created for the research were

- Ten samples sewn on WL4715 fabric with Agsis thread (group A, marked as Ax1–
Ax10);

- Eleven samples sewn on WL4715 with litz wire (group B, marked as Bx1–Bx11);
- Five samples sewn on WL4948 with Agsis thread (group C, marked as Cx1–Cx5);
- Five samples sewn on WL4948 with litz wire (group D, marked as Dx1–Dx5).

The varying number of samples between the four groups is due to the different
availabilities of the materials they are composed of.

The electronic module was created on a flexible substrate made of DuPont Pyralux
copper-clad laminated composite (constructed of kapton polyimide film) LF9150R (DuPont
de Nemours, Inc., Wilmington, DE, USA). The dielectric layer of this laminate was covered
with a layer of copper with a thickness of 35 µm.

2.2. Measurement Procedure

When measuring the parameters of RFID transponders, the measurement methods
used in the case of classic radio systems cannot be used, because the impedance of the chip
and the antenna is expressed in complex form (Equation (2)) [36].

ZTA = RTA + jXTA (2)

where RTA—antenna resistance; XTA—antenna reactance (inductive).
In addition, the value of the chip’s impedance changes depending on the amount

of power supplied to it from the antenna and the antenna’s impedance is susceptible to
changes due to environmental conditions. Furthermore, there are other problems, e.g., with
the connection of measuring equipment (no compatible connectors in transponders [36]).

The publication in [36] presents in detail the procedure for measuring the impedance
of the RFID tag antenna operating in the HF and UHF bands. After adapting to the available
conditions, it is widely used in both scientific and industrial centers.
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In order to determine the impedance of the transponder antenna, indirect measure-
ments should be made using a passive differential probe with signal-to-signal contact tips
and two 50 Ω ports of a vector network analyzer (VNA). The measurement system is a
linear two-port network, in which pairs of terminals are the antenna power terminals and
virtual ground.

The measurement procedure should be started with the calibration of the measuring
chain. A dedicated calibration substrate with short-, open- and matched-load standards
can be used for this purpose. The probe tips were attached to the appropriate elements on
the substrate and the relevant parameters were measured and corrected using the VNA.

The probe tips were connected to the terminals of the coupling circuit of the microelec-
tronic system, and then the parameters of the scattering matrix (S) were measured using
the VNA.

However, this matrix does not contain direct information about the sought antenna
impedance, so it should be determined as the differential impedance between the two ports
of the analyzer (Equation (3)) [36].

ZTA =
U1 − U2

I0
(3)

After introducing the voltages U1 and U2 to the parameters of the impedance matrix,
the equation takes the form of (4) [36].

ZTA = Z11 − Z12 − Z21 + Z22 (4)

After taking into account the relationship between the Z and S matrices, the equation
describing the measured antenna impedance takes the form of (5) [36].

ZTA =
2Z0(S12S21 − S11S22 − S12 − S21 + 1)

(1 − S11)(1 − S22)− S12S21
(5)

where Z0 = 50 Ω.
In order to facilitate and accelerate the measurement data acquisition process, the

EMCoS SimDAT tool was used to determine the antenna impedance, which is used to
process and analyze simulation data; however, it is possible to import external data to it and
this option was used. After importing the measurement data in the form of S parameters,
it was possible to automatically convert it to the Z matrix and select the desired parameter.

3. Results
3.1. Impedance Measurements of Model Antenna

In accordance with the measurement procedure provided in Section 2, the impedance
measurements of model antenna modules in the frequency range from 0.5 to 1.2 GHz were
taken. Figure 4 shows the view of the laboratory stand used during the tests.

The station is equipped with a Keysight PNA-X N5242A vector network analyzer with
a special PacketMicro DPSS201505 SS05–0053 probe. The acquisition of measurement data
was performed using a PC. The orientation of the microelectronic system on the antenna
and the attachment of the probe to the microelectronic module were controlled using a
microscope.

Figures 5 and 6 show the waveforms of the real and imaginary parts of the impedance
as a function of frequency. Measurements were taken before washing.
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Figure 6. Waveforms of the imaginary part of the impedance of the model antennas from group (a) A;
(b) B; (c) C; (d) D.

Within individual groups (A, B, C, D), there is a certain dispersion of impedance
values, especially in the real part. This can be due to either the production process (the
embroiderer stretches the thread, which may cause a difference in geometric dimensions
in relation to the design) or the measurement procedure carried out, or both. While the
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elements of the measurement path are taken into account during the calibration of the
measurement system, there is some randomness in the position of the microelectronic
system on the antenna.

The creation of model antenna systems with machines guarantees an appropriate
level of repeatability of the production process. The samples were treated as a statistical
sample, and the obtained results were averaged. Sufficiently good metrological parameters
of the apparatus used at the measuring station enable the analysis of the dispersion of
the collected data by means of statistical analysis, taking into account only random errors,
such as, for example, an inaccurate position of the microelectronic system on the antenna.
This dispersion is characterized by the sample standard deviation (s), which is defined by
Equation (6).

s =

√
∑(Zi − Zav)

2

n − 1
(6)

where Zi—sample impedance value for a specific frequency, Zav—average impedance value
in a given group of samples for a specific frequency, n—number of samples in a group.

The deviation was calculated for each frequency at which the measurement was taken
and calculations were performed for the real and imaginary parts of the impedance—the
results obtained in graphical form are presented in Figures 7 and 8.
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The orange curves represent the standard deviations determined at each measurement
point, defining the dispersion of the measured values around the mean at a given point.
The largest dispersion of measured values is observed near the resonance frequency, which
is a direct result of the characteristics of the occurring phenomenon. In resonance, even
a small change in the parameters in the tested circuit can cause significant deviations
in the measured impedance. In the case of samples sewn with Agsis thread, a greater
dispersion is observed than in the case of samples sewn with the litz wire. This is caused
by the characteristics of the materials from which the threads are made and their electrical
parameters. The influence of the skin effect, which is very limited in the case of the litz
wire, also cannot be ruled out.

Before proceeding to the next stage of research, the average waveforms of the real and
imaginary impedances from all analyzed groups were compared (Figure 9).

Such a juxtaposition makes it possible to assess the credibility of the results obtained in
the subsequent stages of the research, because it can be seen that the substrate parameters
do not affect or have a relatively small impact on both parts of the impedance waveforms.
The same conclusions are presented in publication [35], where the influence of textile
substrates on the performance of textronic RFID tags was thoroughly investigated. The
obtained values, however, strongly depend on the parameters of the thread that the antenna
is made of (the similarity of the samples from groups A and C, as well as B and D, being
most visible in the waveforms of the imaginary part).
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Figure 9. Waveforms of the (a) real part; (b) imaginary part of the impedance of the model antennas
from all groups.

3.2. The Effect of Washing on the Impedance of Model Antennas

As presented in Section 3.1, the impedance values of the model antennas were taken
as reference values and the study of the impact of the repeated washing process on the
obtained results was started. The samples from all groups were washed in an automatic
washing machine with the following washing program settings: cotton, temperature 30 ◦C,
washing time 1 h, spinning 1100 rpm. This program has been selected based on the most
common recommendations of manufacturers of textile products, which are placed on their
labels. The detergent was also used in recommended amounts.

After 1, 4 and 10 washing cycles, the impedance of all samples was tested again. Same
as before, the results obtained within each group were averaged—the resulting waveforms
of the real and imaginary parts of the impedances in relation to the reference waveforms
(before washing) are shown in Figures 10 and 11.

The letter A, B, C or D in the curve description indicates the group of samples for
which the results are presented. Numbers 00, 01, 04 and 10 indicate the number of washing
cycles performed—successively before washing, after 1 wash, after 4 washes and after
10 washes.
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from group (a) A; (b) B; (c) C; (d) D.
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The testing of samples from groups B and D was completed after the first wash. The
analysis of the obtained characteristics clearly indicates damage to the antennas (lack of
resonance on the plotted curve)—the litz wire with which they were sewn was broken,
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often in many places (yellow markings in Figure 12). This was to be expected, because
litz wire is not intended for applications subjected to this type of stress. These damages
are most likely due to the mechanical stress caused by the rotating drum of the washing
machine [38].
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Figure 12. Example of a damaged sample.

The waveforms of the real and imaginary impedances of the samples embroidered
with Syscom Agsis thread changed their shapes with successive washing cycles—the value
of the resonant frequency successively increased, which suggests a change in the geometric
dimensions of the tested antennas. Changes in the maximum values of both components
near resonance frequencies were also noted—this may be the result of changes in the
resistance of the conductive thread. However, the changes in resistance are different for
different threads. According to the documentation of the Agsis thread manufacturer, this
thread is characterized by an approximately constant resistance value for the analyzed
number of washing cycles. This is suggested by the results presented in publication [39], in
which the authors examined the effect of washing on the resistance of conductive threads.

For samples from groups A and C, the dispersion of both impedance components
around the averaged values was determined. The values of standard deviations at se-
lected points (calculated after every stage of the experiment) are presented graphically in
Figures 13 and 14.
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The presented graphs do not show unequivocal increases in the dispersion of the
measured values after successive washing cycles. On this basis, it can be concluded that
subsequent washing cycles do not cause uncontrolled changes in the measured parameters
within a given group at individual stages of the experiment. The reported dispersion of
values results rather from random errors occurring during the measurements.
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Figure 14. Standard deviation of the imaginary part of the impedance of the model antennas at
selected points of frequency from group (a) A; (b) B.

To confirm these assumptions, a random sample was selected and measurements of its
impedance were taken three times. Figure 15 shows the waveforms obtained during each
measurement. The obtained characteristics were averaged and, similarly to the previous
stages of experiments, the dispersion of the measured values around the average was
determined—the obtained results are presented in graphical form in Figure 16.
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The results obtained during repeated testing of the same sample using the same mea-
surement method and the same apparatus and under constant conditions are characterized
by the repeatability of the shape of the resulting curve as a function of frequency, but there
is still a scatter of values. The only element that changed during this experiment was
the position of the microelectronic circuit on the tested antennas—this clearly suggests a
significant impact of this factor on the obtained results.

For control purposes, after successive washing cycles, measurements of the length
of the tested samples were taken, as the geometric dimensions of the antenna have a
significant impact on the impedance parameters of the antenna. The measurements were
taken digitally using image analysis for this purpose—determining the length of the
scanned samples after subsequent washes and comparing them to the pattern (scanned
sample before washing). The results for the samples are shown in Table 2.
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Table 2. Measurements of geometric dimensions of the model antennas.

Sample
Total Length/Loop
Diameter before
Washing in cm

Total Length/Loop
Diameter after

1 Washing in cm

Total Length/Loop
Diameter after

4 Washings in cm

Total Length/Loop
Diameter after

10 Washings in cm

Ax1 16.03/0.54 15.73/0.51 15.67/0.51 15.58/0.51
Ax2 16.00/0.53 15.71/0.51 15.62/0.51 15.57/0.50
Ax3 16.00/0.53 15.71/0.51 15.63/0.50 15.56/0.50
Cx1 16.04/0.54 15.75/0.52 15.69/0.52 15.60/0.51
Cx2 15.99/0.55 15.73/0.53 15.64/0.52 15.61/0.52
Cx3 16.01/0.57 15.75/0.56 15.64/0.56 15.59/0.55

It was observed that each tested sample successively shortened, which is the direct
cause of the change in the frequency of the antenna’s self-resonance—the shorter the
antenna, the higher the value of the resonant frequency. The largest recorded changes in
the length concerned the radiators of the tested antennas, but a change in the geometric
dimensions of the coupling circuit was also observed. This affects the quality of the
antenna coupling with the microelectronic system and, consequently, the values of the
tested parameters.

4. Discussion

The analyzed solution of the textronic RFID transponder for the UHF band is already a
useful construction, which is confirmed by the publications of this research team including
the co-authors of this article. However, this topic is still being developed and further aspects
that may have a measurable impact on improving the project are being investigated.

The production of a textronic RFID tag for the UHF band requires consideration
of many aspects regarding both the electronic and textile layers. Before integrating this
element, e.g., with clothing, the transponder’s resistance to the same factors that affect the
product to which it will be connected has to be considered.

This article analyzes the effect of the washing process on the impedance of the textronic
transponder antenna, which is one of the key parameters, because the correct operation of
the transponder requires proper impedance matching of the antenna and the chip. Four
groups of samples sewn with two types of conductive threads on two base fabrics were
prepared for the tests.

First of all, based on the obtained results, it should be stated that not every conductive
thread is suitable for creating textile antennas subjected to the washing process. All samples
sewn with the litz wire were destroyed after the first wash—the breakage of the model
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antennas in many places suggests mechanical damage resulting from the rotation of the
washing machine drum.

The second thread used—Syscom Agsis—in accordance with the manufacturer’s
declaration, is resistant to washing. All the samples sewn with this thread were not
mechanically damaged; therefore, it was possible to analyze the changes occurring in the
waveforms of the real and imaginary parts of the antenna impedance. The obtained data
show that the value of the self-resonance frequency of all samples changed with successive
washing cycles, which is caused by a change in the geometric dimensions of the tested
antennas and this change is mainly due to the shrinkage of the substrate.

Impedance values within individual groups of samples are characterized by a certain
dispersion. Based on the research carried out so far, it can be concluded that they are more
the effect of random errors occurring during the measurements than of the degradation
of, e.g., the thread parameters. These errors may result from the imperfect location of the
microelectronic circuit above the coupling circuit of the antenna or appear already at the
stage of sample production.

The results obtained so far lead to the conclusion that the washing process significantly
affects the impedance components of the textronic RFID tag antenna. This impact may
change with an increase in the number of washing cycles performed, which is a further
stage of future research. It is also worth considering the aspects of reducing or completely
eliminating this impact, e.g., by securing antennas with protective materials.

The quality of the coupling of the antenna with the microelectronic circuit also has
a significant impact on the obtained results; therefore, during the measurements, special
attention should be paid to the exact position of this system over the coupling loop in the
antenna. This can be achieved by automating this process.
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