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Street, 20-093 Lublin, Poland; krzysztof.sztanke@umlub.pl

* Correspondence: marta.worzakowska@mail.umcs.pl

Abstract: The thermal decomposition path of synthetically and pharmacologically useful hybrid
materials was analyzed in inert and oxidizing conditions for the first time and presented in this article.
All the imidazoline/dimethyl succinate hybrids (1–5) were studied using the simultaneous thermo-
gravimetry (TG) coupled with Fourier transform infrared spectroscopy (FTIR) and quadrupole mass
spectrometry (QMS). It was found that the tested compounds were thermally stable up to 200–208 ◦C
(inert conditions) and up to 191–197 ◦C (oxidizing conditions). In both furnace atmospheres, their
decomposition paths were multi-step processes. At least two major stages (inert conditions) and three
major stages (oxidizing conditions) of their decomposition were observed. The first decomposition
stage occurred between T5% and 230–237 ◦C. It was connected with the breaking of one ester bond.
This led to the emission of one methanol molecule and the formation of radicals capable of further
radical reactions in both used atmospheres. At the second decomposition stage (Tmax2) between
230–237 ◦C and 370 ◦C (inert conditions), or at about 360 ◦C (oxidizing conditions), the cleavage
of the second ester bond and N-N and C-C bonds led to the emission of CH3OH, HCN, N2, and
CO2 and other radical fragments that reacted with each other to form clusters and large clusters.
Heating the tested compounds to a temperature of about 490 ◦C resulted in the emission of NH3,
HCN, HNCO, aromatic amines, carbonyl fragments, and the residue (Tmax2a) in both atmospheres.
In oxidizing conditions, the oxidation of the formed residues (Tmax3) was related to the production
of CO2, CO, and H2O. These studies confirmed the same radical decomposition mechanism of the
tested compounds both in inert and oxidizing conditions. The antitumor activities and toxicities to
normal cells of the imidazoline/dimethyl succinate hybrids were also evaluated. As a result, the two
hybrid materials (3 and 5) proved to be the most selective in biological studies, and therefore, they
should be utilized in further, more extended in vivo investigations.

Keywords: imidazoline/dimethyl succinate hybrids; decomposition course; thermal behavior;
antitumor activity; antihemolytic activity; toxicity to normal cells

1. Introduction

Dimethyl 2-{2-[1-(R-phenyl)-4,5-dihydro-1H-imidazol-2-yl]hydrazinylidene}succinates
(1–5) (Figure 1) constitute a class of imidazoline-based hybrids with dimethyl succinate

Materials 2023, 16, 4638. https://doi.org/10.3390/ma16134638 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16134638
https://doi.org/10.3390/ma16134638
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-1576-097X
https://orcid.org/0000-0001-7628-313X
https://orcid.org/0000-0002-1898-5245
https://doi.org/10.3390/ma16134638
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16134638?type=check_update&version=1


Materials 2023, 16, 4638 2 of 21

whose structures in solution are known. The molecules of these less polar, possible diester
prodrugs should pass cell membranes more easily than their more polar dicarboxylic acid
analogues. All the title compounds found applications as alternative starting materials [1]
in the organic synthesis of pharmaceutically important fused triazinones containing the
functional moiety of methyl acetate or acetohydrazide at the C-3 [2,3].
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1H-imidazol-2-yl]hydrazinylidene}succinates: 1. R = H, 2. R = 4-CH3, 3. R = 4-OCH3, 4. R = 4- OCH2CH3,
and 5. R = 4-Cl.

The literature survey revealed several papers concerning the thermal analysis of suc-
cinic acid, sodium succinate, and its esters used in steroidal pharmaceutics. Caires et al. [4,5]
reported the thermal stability and combustion processes of succinic acid and its sodium
dibasic hexahydrate salt. Mihovec et al. [6] and Trissel and Zhang [7] studied the thermal
stability of hydrocortisone sodium succinate and methylprednisolone sodium succinate
in their dosage forms, respectively. In turn, the pharmaceutically important imidazo-
line derivatives were less thermally studied. Ghabbour et al. [8] characterized 2-(2,6-
dichlorophenylamino)-2-imidazoline tetraphenylborate—salt of clonidine (an antihyperten-
sive agent) by differential scanning calorimetry and thermogravimetry. Legendre et al. [9]
described the polymorphic nature of 2-(2-benzofuryl)-∆2-imidazoline (an antidepressant
and vasodilator agent). In turn, Marciniec et al. [10] performed the thermal study of some
irradiated imidazoline-containing drugs, such as antazoline and tymazoline hydrochlorides
(antihistaminic agents), xylometazoline, and naphazoline hydrochlorides (α-adrenergic
receptor agonists), to assess their resistance to radiation sterilization by observing changes
in their physicochemical properties. However, there is a research gap, as none of the imida-
zoline/dimethyl succinate hybrids were investigated by employing any thermal analysis
technique to date. Therefore, it is reasonable to carry out the thermal studies with the
goal of the detailed thermal characterization of our patented hybrid molecules (1–5) [1],
in which the 2-imidazoline (i.e., 4,5-dihydro-1H-imidazole) scaffold is connected through
the hydrazinylidene moiety to dimethyl succinate. The mechanism and path of thermal
degradation, the thermal behavior, and thermal properties of this class of hybrid materials
are unknown.

The novelty of the present paper is to study the thermal decomposition path under
inert and oxidizing conditions of imidazoline/dimethyl succinate hybrids 1–5. Hence,
a whole set of these molecules is analyzed, using the simultaneous thermogravimetric
analysis (TG/DTG) coupled online with Fourier transform infrared (FTIR) spectroscopy
and quadrupole mass spectrometry (QMS) analyzers in helium and synthetic air atmo-
spheres, with the purpose of explaining for the first time their thermal decomposition
mechanism and path, as well as determining their thermal stability and identifying the
volatile degradants under inert and oxidizing conditions. The coupled and simultaneous
thermal analysis techniques used in our studies are recommended in the thermal testing
of molecular pharmaceuticals, as well as therapeutic agent candidates. They enable the
reliable interpretation of any phenomenon occurring with mass and energy changes in the



Materials 2023, 16, 4638 3 of 21

heated sample and the control of its purity [11–17]. The presented study is a significant con-
tribution to the current state of knowledge on the hitherto unknown thermal decomposition
path of 2-imidazoline/dimethyl succinate hybrid molecules. The practical usefulness of our
research lies in the fact that the thermal behavior results of these pharmacologically active
compounds will be helpful not only in determining the optimal storage and processing
conditions for this class of molecules, but also in assessing their impact on the environment
during thermal utilization.

In addition, the pharmacological activity of the tested imidazoline/dimethyl succinate
hybrids and their toxicity to normal cells are unknown. Therefore, the present biological
investigation is aimed at determining the antiproliferative activity of the studied com-
pounds against human tumor epithelial cells, as well as assessing their toxicity to normal
cells (being of the same origin) and erythrocytes, which is a novelty in our studies. This
should enable the selection of those molecules that are the most active and selective and
therefore suitable for further, more extended in vivo studies. The rationale for studying
the anticancer activity in this class of molecules is the fact that the heterocyclic hydrazones
designed and described earlier showed significant antiproliferative activity in human tu-
mor cells [18]. In turn, the justification for testing the ability to inhibit oxidative hemolysis
by these compounds is that the previously described hybrids containing the 4,5-dihydro-
1H-imidazole template showed the highest antioxidant activity among hydrazones with
various heterocyclic rings [19].

2. Materials and Methods
2.1. Chemicals and Instruments

Fetal bovine serum, RPMI 1640 medium, penicillin-streptomycin (100 U mL−1/
0.1 mg mL−1) stabilized solution, 2,2′-azobis(2-amidinopropane)dihydrochloride (AAPH),
hydrogen peroxide, ascorbic acid, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
(Trolox), Triton X-100, and dimethyl sulfoxide were purchased from Sigma-Aldrich (Saint
Louis, MO, USA). The 5-Bromo-2′-deoxy-uridine labeling and detection kit III was supplied
from Roche Diagnostics GmbH (Mannheim, Germany), while phosphate-buffered saline
(PBS; pH 7.4) was from Biomed (Lublin, Poland). The 96-well microtiter plates were bought
from Costar (Corning Inc., Glendale, AZ, USA).

A DSC 204 apparatus (Netzsch, Selb, Germany) was employed to evaluate the melting
temperatures of the tested compounds. A STA 449 Jupiter F1 instrument (Netzsch, Ger-
many) coupled on-line with a FTIR TGA 585 analyzer (Bruker, Mannheim, Germany) and
a QMS 403 C Aëolos (Netzsch, Germany) analyzer was applied to perform simultaneous
TG/DTG/FTIR/QMS analyses of the investigated compounds in order to evaluate their
thermal stability and to investigate their thermal decomposition path. A FTIR TGA 585
analyzer (Bruker, Germany) and the QMS 403 C Aëolos analyzer (Netzsch, Germany)
were used to collect the FTIR and mass spectra of the emitted volatiles. An ELISA reader
(BIO-TEK Instruments Inc., Winooski, VT, USA) was employed to measure the optical
densities of the samples to assess the anticancer activity and cytotoxicity to normal cells
of the tested compounds. A Hitachi U2800 UV-Vis spectrophotometer (Hitachi, Tokyo,
Japan) was used to measure the absorbance of the samples to evaluate the hemolytic and
antihemolytic properties of the investigated compounds.

2.2. The Investigated Compounds (1–5)

The panel of molecules (1–5) that was subjected to the detailed thermal studies is
shown in Figure 1. Each compound was synthesized in our laboratory by addition of
1-(R-phenyl)-2-hydrazinoimidazoline (where R denotes hydrogen, 4-methyl, 4-methoxy, 4-
ethoxy, or 4-chloro group, respectively) to unsaturated dimethyl but-2-ynedioate, according
to the general synthesis pathway patented previously [1]. The homogeneity of all the
compound samples was checked by TLC. Their structures were established on the basis
of consistent spectroscopic data (1H NMR and IR spectra) and elemental analyses (within
±0.4 of the theoretical values) [1,20]. The structure of dimethyl 2-{2-[1-(4-methylphenyl)-
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4,5-dihydro-1H-imidazol-2-yl]hydrazinylidene}succinate (2) is supported by its 13C NMR
spectrum [1,20]. All these hybrid molecules found application as the starting materials in the
synthesis of pharmacologically active functionalized fused 1,2,4-triazinone derivatives [2,3].

2.3. Differential Scanning Calorimetry (DSC)

The melting temperatures of the tested compounds by a use of a DSC analysis were
evaluated. The sample with a mass of about 10 mg in an aluminum crucible with a pierced
lid from room temperature to 200 ◦C was heated. The heating rate was 10 K min−1. Argon
with a flow rate of 40 mL min−1 as a furnace atmosphere was applied. The maximum
melting temperatures (Tpeak) were marked from the DSC curves.

2.4. Simultaneous Thermogravimetric Analysis Coupled On-Line with FTIR and QMS Analyzers
(TG/DTG/FTIR/QMS)

The thermal stability and the decomposition path of the tested compounds with the
use of a simultaneous TG/DTG/FTIR/QMS analysis were evaluated. The compounds were
heated from 40 ◦C to 750 ◦C in an inert atmosphere (helium with a flow rate of 40 mL min−1)
and in an oxidizing atmosphere (a synthetic air with a flow rate of 100 mL min−1). The
sample with a mass of about 10 mg in an open Al2O3 crucible was heated. The heating
rate was 10 K min−1. Simultaneously, the FTIR and mass spectra of the emitted volatiles
were collected. The FTIR spectrometer equipped with the IR cell maintained at 200 ◦C
was connected on-line to a STA instrument by a Teflon transfer line with a diameter of
2 mm. It was heated to 200 ◦C to avoid a condensation process of the volatiles. The FTIR
spectra from 600 cm−1 to 4000 cm−1 with 16 scans per spectrum and with 4 cm−1 resolution
were collected. The QMS analyzer was connected on-line to a STA instrument by a quartz
capillary heated to 300 ◦C. The QMS instrument was operated under electron ionization of
70 eV. The QMS spectra in the range of 10–150 m/z were gathered.

2.5. An Assessment of the Anticancer Activity and Toxicity for Normal Cells of the Tested Compounds

All the imidazoline/dimethyl succinate hybrids, i.e., the unsubstituted compound 1
(the parent structure) and its four derivatives 2–5 (differing in a substituent at the phenyl
moiety in the para position), were assessed for their in vitro growth inhibitory potency
against two tumor cell lines: TOV112D (ATCC CRL-11731; human ovarian primary malig-
nant adenocarcinoma cells) and HeLa (ECACC 93021013; human Negroid cervix epitheloid
carcinoma cells), as well as cytotoxicity for normal cell line: Vero (ECACC 88020401; African
Green Monkey kidney cells). The three reference cell lines that were recruited had the same
epithelial origin. Each cell line was grown at 37 ◦C in the 5% CO2 atmosphere in the growth
medium containing RPMI 1640 medium with 10% fetal bovine serum and a commercially
available penicillin-streptomycin stabilized solution. Each cell culture was plated onto
96-well plates. All the compounds were tested at a concentration of 0.05 mg mL−1 after
24-, 48-, and 72 h incubation periods in the bioassay assessing the DNA synthesis and cell
proliferation using the commercial 5-bromo-2′-deoxy-uridine labeling and detection kit III,
according to the procedure described earlier [21]. The cytotoxicity of each compound was
expressed as the percentage growth inhibition, which was calculated from at least three
independent experiments.

2.6. Study of the Effect of the Investigated Compounds on Red Blood Cells

The evaluation of the hemolytic and antihemolytic activities of the compounds was
performed ex vivo on a 4% suspension of red blood cells in phosphate-buffered saline (PBS).
Erythrocytes were obtained by the centrifugation (1500 rpm; 10 min; 4 ◦C) of whole blood
from rats (male Wistar rats; 8–9 weeks old; 200–250 g; the Experimental Medicine Centre,
Medical University of Lublin, Poland). The hemolytic potential of the compounds (at a
concentration of 0.15 mM) was assessed in the hemolytic assay, and their antihemolytic
activity was tested in the oxidative hemolysis inhibition assay according to the procedures
described earlier [22].
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3. Results and Discussion
3.1. Melting Temperatures of the Tested Compounds

According to the DSC studies, Figure 2, the melting process of compounds 1, 2, and 5
is described by one endothermic signal. This means that there is only one assigned isomeric
form in their molecules. An interesting melting behavior in the case of two compounds sub-
stituted in the para position by an electron-donating alkoxy group is observed. The melting
process of para-methoxy derivative (compound 3) is described by three endothermic, asym-
metrical peaks. The para-ethoxy derivative (compound 4) melts in two temperature ranges.
No mass loss at temperatures up to 180 ◦C is observed. This directly indicates the melting
processes of the tested compounds. The previous spectroscopic and chromatographic in-
vestigations [1,20] confirmed that compounds 3 and 4 are homogeneous substances of high
purity. Hence, it follows that the presence of three or two endothermic DSC peaks is not
related to their contamination. Compounds 3 and 4, due to the attendance of an electron-
donating alkoxy group in the para position, may have low thermal isomerization barriers.
Thus, these DSC peaks most probably referred to the melting of constitutional isomers that
can be easily interconvertible during heating (Figure 3). This statement is supported by
previous experimental findings. Le Count and Greer [23] were the first who described an
analogous behavior with the consecutive and separate melting events during identification
of an unknown dimethyl 2-[2-(4,5-dihydro-1H-imidazol-2-yl)hydrazinylidene]succinate
using a melting point apparatus.
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Figure 3. The possible structural isomers of compounds 3 and 4. I. Dimethyl (2E)-2-{2-[1-(4-methoxy/
4-ethoxyphenyl)-4,5-dihydro-1H-imidazol-2-yl]hydrazinylidene}butanedioate. II. Dimethyl (2E)-2-{2-
hydrazinyl}but-2-enedioate. III. Dimethyl (2E)-2-{(2Z)-[1-(4-methoxy/4-ethoxyphenyl)imidazolidin-
2-ylidene]hydrazinylidene}butanedioate. IV. Dimethyl (2E)-2-{(2Z)-2-[1-(4-methoxy/4-ethoxyphenyl)
imidazolidin-2-ylidene]hydrazinyl}but-2-enedioate. R = CH3 (compound 3) or CH2CH3 (compound 4).
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3.2. Thermal Stability of the Tested Compounds (Inert Conditions)

The TG/DTG curves of the tested compounds obtained in inert conditions are pre-
sented in Figure 4. In addition, the values of the initial decomposition temperature (T5%),
peak maximum temperature (Tmax1), mass loss (∆m1), and the residual mass at 750 ◦C (rm)
are placed in Table 1.
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Figure 4. The TG/DTG curves for the tested compounds in inert conditions.

Table 1. The TG/DTG data collected in inert conditions.

Sample

Degradation Process

First Decomposition Stage Second Degradation Stage

T5%/◦C Tmax1/◦C ∆m1/% Tmax2/◦C Tmax2a/◦C ∆m2+ ∆m2a/% rm/%

1 200 206 11.0 289/305 378/414 69.6 19.4
2 208 209 9.5 287/313 377/413/439/495 65.4 25.1
3 206 209 9.0 289/317 379/414/499 66.9 24.1
4 203 209 9.7 290/319 377/414/444/501 65.7 24.6
5 201 207 9.8 278/326 378/407 65.9 24.3

According to the TG/DTG curves, the tested compounds are thermally stable up to
temperatures of 200–208 ◦C (T5%). The thermal resistance of all the tested compounds is
similar and does not depend on the type of the substituent at the phenyl moiety in the
para position or its absence at this moiety. No mass loss due to the decomposition of the
tested compounds in this temperature range is observed; only the mass loss related to the
evaporation of moisture absorbed by the samples during their storage is observed.

Above the temperatures of T5%, the first decomposition stage is visible. This stage
spreads to temperatures of 230–235 ◦C, with a similar peak maximum temperature (Tmax1)
for all the tested compounds. A slight mass loss (∆m1) within the limits of 9.0–11.0% is
observed. Immediately, after the first decomposition stage, the second decomposition
stage of the tested compounds begins. This decomposition stage is composed of at least
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5–6 unseparated steps. This means that there are many simultaneous processes of breaking
bonds in the structure of the tested compounds connected with the emission of volatiles.
Moreover, this decomposition stage extends over a wide range of temperatures (from
230–235 ◦C to 750 ◦C). The mass loss (∆m2+ ∆m2a) is significant and amounts to 65.4–69.6%.
This is most likely related to the decomposition of the main skeleton of the tested com-
pounds. In addition, heating the compounds to 750 ◦C does not cause their complete
decomposition. The residual mass (rm) is from 19.4% to 25.1%.

3.3. Thermal Stability of the Tested Compounds (Oxidizing Conditions)

The TG/DTG curves for the compounds collected in oxidizing conditions are pre-
sented in Figure 5. In turn, the TG/DTG data are inserted into Table 2.
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Table 2. The TG/DTG data collected in oxidizing conditions.

Sample

Degradation Process

First Decomposition Stage Second Degradation Stage Third Degradation Stage

T5%/◦C Tmax1/◦C ∆m1/% Tmax2/◦C Tmax2a/◦C ∆m2+ ∆m2a/% Tmax3/◦C ∆m3/%

1 195 202 11.7 281/325 373/386 56.3 625 32.0
2 197 203 8.9 282/321 349/381/490 50.4 594 40.7
3 194 196 9.5 273/326 372 38.3 579 52.2
4 195 203 8.7 284/334 410 49.1 578 42.2
5 191 200 10.6 275/338 398 49.2 574 40.2

According to the thermal data, the tested compounds are thermally stable up to the
temperatures of 191–197 ◦C in an oxidizing atmosphere. In light of the current knowledge,
pharmaceuticals that are stable at a temperature much higher than ambient temperature
can be stored in a wide range of temperatures (in the range of 20–45 ◦C) without fear of
losing their shelf life [24,25]. The mass loss below T5% is connected with the evaporation
of moisture. In an air atmosphere, the compounds decompose in three main stages. The
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first decomposition stage starts at temperature above T5% and ends at a temperature of
225–235 ◦C. The mass loss (∆m1) is similar to the mass loss observed in an inert atmosphere;
it is from 8.9% to 11.7%. The DTG curves show that the first decomposition stage takes place
in one main step. This indicates the cleavage of one type of bond present in the structure
of the tested compounds. The second decomposition stage spreads from 225–235 ◦C to
440–500 ◦C. This stage is composed of at least 5–6 steps. The mass loss (∆m2+ ∆m2a) is
lower in this stage (from 38.3% to 56.3%) as compared to the mass loss observed in inert
conditions. This indicates the possibility of chemical reactions between the core of the
intermediates with a higher molecular masses, which are less volatile in this temperature
range. The third and last decomposition stage is visible from 440–500 ◦C to 750 ◦C with a
mass loss (∆m3) from 32% to 52.2%. The presence of the third decomposition stage indicates
the emission of volatiles formed by the reaction of intermediates or residues with oxygen.
The tested compounds decompose completely at 750 ◦C in an air atmosphere.

3.4. Decomposition Course of the Tested Compounds (Inert Conditions)

The exemplary 3D FTIR spectra for the selected compounds (compound 1 and 4) are
presented in Figure 6.
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The 2D FTIR spectra for all the tested compounds collected at Tmax1, Tmax2, and Tmax2a
are placed in Figure 7. As it can be seen, the first decomposition stage for all the tested
compounds proceeds in the same way. The presence of the stretching vibrations of the
C-O at 1002, 1031, and 1060 cm−1, the deformation vibrations of the C-H in the range of
1600–1195 cm−1, the stretching vibrations of the C-H in the range of 2993–2817 cm−1, and
the stretching vibrations of the OH above 3550 cm−1 at Tmax1 is confirmed. This suggests the
emission of one major decomposition product. According to the NIST database, this major
decomposition product is methanol (Figure 8) [26]. It is formed as a result of the breaking of
the ester bonds (C-O) present in the structure of the tested compounds (Scheme 1). As it is
confirmed, the mass loss is in the range of 8.7–11.3% in this decomposition stage. Therefore,
the cleavage of one of the ester bonds, which requires less energy, is suspected in this
decomposition stage.

In turn, at Tmax2, the stretching and deformation vibrations characteristic for the
groups present in methanol molecules are still observed. In addition to the emission of
methanol, the emissions of HCN (the characteristic absorption signal at 713 cm−1) and
CO2 (the absorption signals at 2300–2365 cm−1 and 669 cm−1) are confirmed based on the
FTIR analysis. The mass loss is in the range of 35.3–39.8% in this decomposition stage.
This indicates further pyrolysis reactions, such as the cleavage of the second ester bond
requiring more energy and the simultaneous cleavage of the N-N and C-C bonds in the
structure of the tested compounds.
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Figure 7. The gaseous FTIR spectra for the tested compounds 1–5 (a helium atmosphere).
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Scheme 1. The decomposition path of the tested compounds in inert conditions.

At Tmax2a, the emission of HCN (713 cm−1), NH3 (the presence of the deformation vibra-
tions of the N-H groups at 931 cm−1 and 966 cm−1 [27–32]), CO2 (bands at 2300–2365 cm−1

(valence vibration) and 669 cm−1 (deformation vibration)), HNCO (bands at 2270–2290 cm−1),
H2O (several, jagged, weak bands in the range of 3450–4000 cm−1), aromatic amines, and
carbonyl compounds is well visible from the gaseous FTIR spectra. If we look at the initial
structure of the tested compounds, the presence of HNCO as the decomposition product
is unexpected. Therefore, it is believed that the pyrolysis process proceeds by the radical
mechanism. The resulting radicals can react with each other and/or participate in polymer-
ization processes to form intermediate products with higher molecular masses (clusters and
large clusters) and with a higher evaporation temperature than the starting compounds, as
shown in Scheme 1.

At Tmax2a, a slow evaporation of the decomposition products, in particular, aromatic
compounds, takes place. The most expected aromatic decomposition product for com-
pound 1 is aniline. Aniline emission by the presence of the stretching vibrations of the
CAr-H at 3054–3100 cm−1, the deformation vibrations of the N-H at 1633 cm−1, the stretch-
ing vibrations of the CAr=CAr at 1502–1580 cm−1, the stretching vibrations of the C-N
at 1284 cm−1, and the out-of-plane deformation vibrations of the N-H and the CAr-H at
754–831 cm−1 is confirmed. The appearance of the stretching vibrations of the CAr-H at
3050–3074 cm−1, the deformation vibrations of the N-H at 1620–1643 cm−1, the stretch-
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ing vibrations of the CAr=CAr at 1515–1565 cm−1, the stretching vibrations of the C-N at
1297–1317 cm−1, and the out-of-plane deformation vibrations of the N-H and the CAr-H at
784–830 cm−1 on the FTIR spectrum for compound 2 confirms the emission of p-toluidine.
The formation of p-anisidine as a result of the decomposition process of compound 3 is
visible as the following FTIR absorption bands: the stretching vibrations of the CAr-H
at 3047–3061 cm−1, the deformation vibrations of the N-H at 1677 cm−1, the stretching
vibrations of the CAr=CAr at 1519–1573 cm−1, the stretching vibrations of the C-N at
1253 cm−1, and the out-of-plane deformation vibrations of the N-H and the CAr-H at
757–856 cm−1. The absorption signals at 3039–3068 cm−1 (the stretching vibrations of the
CAr-H), at 1630–1670 cm−1 (the deformation vibrations of the N-H), at 1500–1565 cm−1

(the stretching vibrations of the CAr=CAr), at 1214–1247 cm−1 (the stretching vibrations of
the C-N), and at 767–944 cm−1 (the out-of-plane deformation vibrations of the N-H and
the CAr-H) indicate the formation of p-phenetidine for compound 4. Finally, the emission
of p-chloroaniline is well visible as a result of the decomposition of compound 5 at the
following absorption bands: at 3060 cm−1, 1658–1664 cm−1, 1504–1565 cm−1, 1234–1280,
and at 788–848 cm−1 [33–35]. The formed residues are associated with some of the aromatic
compounds with higher masses that do not evaporate at temperatures above 740 ◦C. A
slow mass loss observed from temperatures around 540 ◦C also confirms the formation
of condensed aromatic compounds that decompose gradually to aromatic amines and
their derivatives.

The obtained FTIR results are also confirmed based on the QMS analyses. As is well
visible in Figure 9, at Tmax1 and Tmax2, the main decomposition product of the tested
compounds is methanol. This is confirmed by the presence of the following m/z ions:
32 (CH3OH+), 31 (CH3O+), 30 (CH2O+), 29 (CHO+), and 15 (CH3

+). In addition to the
emission of methanol, at Tmax1, the formation of a small amount of CO2 (m/z 44 CO2

+,
28 CO+) is confirmed. The emission of methanol and the beginning of HCN emission
at Tmax2 is observed. HCN emission by the attendance of the m/z ions 27 (HCN+) and
26 (CN+) is confirmed. In addition, the emission of N2 at Tmax2 is very likely. The N2
molecule is a symmetrical molecule invisible to the FTIR radiation. However, the structure
of the formed intermediates in polymerization processes or other chemical reactions during
the heating of the tested compounds and the presence of m/z ions 28 (N2

+) and 14 (N+) in
the QMS spectrum suggest the emission of nitrogen.
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Figure 9. The QMS spectra collected at Tmax1 and Tmax2 for all the tested compounds.



Materials 2023, 16, 4638 12 of 21

At Tmax2a, the formation of HCN, CO2, and H2O is also observed. The new decomposi-
tion products visible only at Tmax2a are ammonia (m/z 17 (NH3

+), 16 (NH2
+) and 15 (NH+)),

carbonyl compounds (m/z ions: 43 (CH3CO+), 42 (CH2CO+), 41 (CHCO+), 40 (CCO+),
30 (H2CO+), 29 (HCO+) and 28 (CO+)), HNCO (m/z ions: 43 (HNCO+), 42 (NCO+)), and
aromatic compounds. Additionally, further emission of nitrogen at Tmax2a cannot be ruled
out due to the presence of m/z ions 28 and 14.

As is well visible from Figure 10a, the emission of aniline by the presence of the
m/z ions 93 (C6H7N+), 92 (C6H6N+), 66 (C5H6

+), 65 (C5H5
+), 51 (C4H3

+), and 39 (C3H3
+)

in the QMS spectra is confirmed. By the ionization of aniline, the elimination of one
HCN molecule from its structure can occur. This leads to additional emission of HCN
and the formation of the m/z ion 65 (cyclopentadienyl ion), the presence of which is
confirmed from the QMS spectra collected at Tmax2a. The QMS data confirm the creation of
p-toluidine as a result of the decomposition of compound 2. Its presence is visible as the
following m/z ions: 107 (C7H9N+), 106 (C7H8N+), 79 (C6H7

+), 78 (C6H6
+), 77 (C6H5

+), and
53 (C4H5

+). Additionally, in this case, the ionization of p-toluidine leads to the formation
of the aminotropylium ion (m/z 106). This ion loses one HCN molecule and forms the
C6H6

+ (m/z 78) [36], Figure 10b. The decomposition of compound 3 results in the emission
of p-anisidine as a main aromatic volatile product at Tmax2a. The ionization of p-anisidine
causes the formation of m/z ions: 123 (C7H9ON+) at Tmax2a. The homolytic cleavage of
the ether bond (-O-CH3) results in a loss of the methyl group and the formation of m/z
ion 108 (C6H6ON+). In addition, the other m/z ions characteristic of p-anisidine, such as
80 (C5H6N+), 65 (C5H5

+), 53 (C4H5
+), 52 (C4H4

+), and 39 (C3H3
+), confirm its formation

(Figure 10c). Compound 4 breaks down to form the aromatic compound p-phenetidine: m/z
137 (C8H11ON+), 109 (C8H6O15N+), m/z 108 (C8H6ON+), 81 (C5H6

15N+), and 80 (C5H6N+)
(Figure 10d). Finally, in the case of compound 5, the emission of p-chloroaniline is confirmed
by the presence of the m/z ions: 129 (C6H6N37Cl+), 127 (C6H6N35Cl+), 92 (C6H5NH+),
65 (C5H5

+), 64 (C5H4
+), and 63 (C5H3

+) (Figure 10e).
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3.5. Decomposition Course of the Tested Compounds (Oxidizing Conditions)

The exemplary gaseous 3D FTIR spectra are given in Figure 11. The extracted 2D
gaseous FTIR spectra at Tmax1, Tmax2, Tmax2a, and Tmax3 are presented in Figure 12. In
addition, the QMS spectra collected at Tmax1, Tmax2, Tmax2a, and Tmax3 are placed in
Figures 13 and 14.

The main decomposition product of the tested compounds is methanol (FTIR: the
stretching vibrations of the C-O at 1002–1060 cm−1, the deformation vibrations of the C-H at
1600–1195 cm−1, the stretching vibrations of the C-H at 2993–2817 cm−1, and the stretching
vibrations of the OH above 3550 cm−1; m/z: 32 (CH3OH+), 31 (CH3O+), 30 (CH2O+),
29 (CHO+), and 15 (CH3

+)) in an oxidizing atmosphere. At Tmax1, the emission of small
amounts of CO2 and H2O is also observed. These results indicate the same decomposition
products in oxidizing and inert atmospheres.
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Figure 11. The exemplary gaseous 3D FTIR spectra for compounds 1 and 4.
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Figure 12. The gaseous FTIR spectra for the tested compounds 1–5 (a synthetic air atmosphere).
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Figure 13. The QMS spectra at Tmax1, Tmax2, and Tmax3 for all the tested compounds (common graphs).

In the second decomposition stage (Tmax2), the emission of methanol, HCN (FTIR:
the absorption signal at 713 cm−1; m/z: 27 (HCN+) and 26 (CN+)), CO2 (FTIR: the peaks
at 2300–2365 cm−1 and 669 cm−1; m/z: 44 CO2

+, 28 CO+)) and H2O (FTIR: the signals at
3450–4000 cm−1; m/z: 18 H2O+), 17 (OH+), and 16 (O+) is confirmed. The QMS spectra
show the presence of the characteristic m/z ions for N2 emission, namely 28 and 14. This
leads to the conclusion that the first and the second decomposition stages of the tested
compounds in the presence of oxygen proceed in the same or similar way as compared
to these observed without access to oxygen. In these two stages, the C-O, C-C, and N-N
bonds are broken. As a result, the emission of the previously mentioned low-mass products
and the clusters and large cluster formations in radical reactions are observed. The creation
of ammonia (FTIR: two bands at 931cm−1 and 966 cm−1; m/z: 17 (NH3

+), 16 (NH2
+)

and 15 (NH+)), carbonyl fragments (the absorption band at 1706–1787 cm−1; m/z ions:
43 (CH3CO+), 42 (CH2CO+), 41 (CHCO+), 40 (CCO+), 29 (HCO+), and 28 (CO+)), HNCO
(FTIR: peaks at 2270–2290 cm−1, m/z ions: 43 (HNCO+), 42 (NCO+)), HCN (FTIR: peak at
713 cm−1, m/z ions: 27 (HCN+) and 26 (CN+)) and aromatic compounds is confirmed from
the temperature Tmax2a.
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Finally, the third decomposition stage (Tmax3) above a temperature of 460 ◦C is ob-
served in an oxidizing atmosphere. In this stage, mainly the emission of CO2 (FTIR: the
peaks at 2300–2365 cm−1 and 669 cm−1; m/z: 44 CO2

+, 28 CO+), CO (FTIR: 28 CO+), and
H2O (FTIR: the signals at 3450–4000 cm−1; m/z: 18 H2O+), 17 (OH+), and 16 (O+)) [26,36]
is indicated (Figures 13 and 14). The emission of these inorganic gases is the result of the
oxidation and combustion processes of aromatic compounds and higher-molecular mass
intermediate compounds formed as a result of the radical reactions. Based on the obtained
results, it can be assumed that the decomposition mechanism of the tested compounds
in the presence of oxygen is similar to their decomposition in an oxygen-free atmosphere.
This means that the attendance of oxygen does not affect the chemical reactions between
the formed intermediate products, including radicals. The same gaseous decomposition
products are released in both atmospheres. This confirms the same decomposition path of
the tested compounds in the presence or in the absence of oxygen.

3.6. Antitumor Activity and Cytotoxicity to Normal Cells of the Investigated Compounds

The investigated class of hybrid materials includes the unsubstituted compound (the
parent structure 1) and its para-substituted derivatives (2–5). The antiproliferative activity
of all the compounds (1–5) was assessed against two tumor cell lines, i.e., human ovarian
primary malignant adenocarcinoma (TOV112D) cells and human Negroid cervix epitheloid
carcinoma (HeLa) cells. In turn, their cytotoxicity to normal cells was evaluated using
the African green monkey kidney (Vero) cell line. The vast majority of imidazoline-based
hybrids with dimethyl succinate (1–4) revealed the remarkable in vitro growth inhibitory
potency against human tumor cells of the ovary, suggesting that unsubstituted electron
reach phenyl moiety or electron-donating alkyl (such as methyl) and alkoxy (such as
methoxy or ethoxy) groups at the para position of this moiety are necessary for the potency
against this type of tumor cell. In turn, only one imidazoline-based hybrid with dimethyl
succinate (5) proved to be effective against human tumor cells of the cervix, suggesting
that an electron-withdrawing chloro group placed para to the benzene ring is necessary
for the potency against this type of tumor cell. The antitumor activity of all the studied
compounds (1–5) is presented in Figure 15.
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Figure 15. Antiproliferative activity of all the investigated compounds (1–5) against human tumor cells,
as well as their cytotoxicity towards normal cells. Normal cell line: Vero—(ECACC 88020401)—African
green monkey kidney cells. Tumor cell lines: TOV112D (ATCC CRL-11731)—human ovarian primary
malignant adenocarcinoma cells; and HeLa (ECACC 93021013)—human Negroid cervix epitheloid
carcinoma cells. Compound 5 was not active against TOV112D cells, while compounds 1–4 were not
active against HeLa cells.
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Analyzing the activity of the para-substituted derivatives in relation to the parent com-
pound, it was shown that introducing an electron-donating methyl group para to the phenyl
moiety in 2 was successful in terms of selectivity due to a decrease in cytotoxicity towards
normal Vero cells after all incubation periods. This modification was also responsible for a
slight increase, only after 24 h of incubation, in antiproliferative activity against ovarian
cancer cells when compared to 1. Placing an electron-donating methoxy group para to the
phenyl moiety in 3 was beneficial due to a decrease in cytotoxicity towards normal Vero
cells, especially after 48 and 72 h incubation periods. Simultaneously, this substitution was
responsible for a slight decrease in antiproliferative activity against ovarian cancer cells
after 48 and 72 h of incubation. Introducing an electron-donating ethoxy group para to the
phenyl moiety in 4 was favourable due to a significant decrease in cytotoxicity towards
normal Vero cells after 72 h of incubation. Unfortunately, this modification was responsible
for a decrease in antiproliferative activity against ovarian cancer cells, especially after 48 h
of incubation. In turn, placing an electron-withdrawing chloro group para to the phenyl
moiety in 5 was advantageous for normal Vero cells (decreasing the cytotoxicity) and cervi-
cal cancer cells (evoking the antitumor potency), but resulted in a loss of antiproliferative
activity against ovarian cancer cells, when compared to the parent compound (1).

The methoxy and chloro groups in para-substituted derivatives were found to be the
best choice of substitution patterns due to their increased selectivity.

Concluding, the two imidazoline-based hybrids with dimethyl succinate, i.e., those
containing the para-methoxy and para-chloro substituent at the phenyl moiety (3 and 5,
respectively), proved to be the least toxic to normal Vero cells. Therefore, these compounds
may be utilized in further, more extended in vivo investigations.

3.7. Assessment of the Effect of the Tested Compounds (1–5) on Red Blood Cells

Taking into account the high thermal stability and biological activity of the title
compounds, their impact on red blood cells, the most numerous cells in the living organism,
was also assessed.

Evaluation of the hemolytic potential of the synthesized compounds is an important
part of the assessment of their toxicity. Mammal non-nucleated red blood cells represent a
good model for studying this cytotoxicity. Therefore, we performed ex vivo hemolysis test
to determine possible interactions of the tested imidazoline/dimethyl succinate hybrids
with blood components as a necessary part of their biocompatibility in the preclinical
phase of drug development. When examining their impact on erythrocytes, it turned out
that none of the tested compounds promoted any significant hemolytic effects. We found
that the hemolytic activity of the molecules was less than 5% compared to Triton X-100 (a
positive control with 100% hemolytic activity); therefore, all the tested hybrid materials are
safe for red blood cells. This hemocompatibility of the compounds is an important feature
of drug candidates.

Additionally, we assessed the ability of the title compounds to inhibit oxidative
hemolysis. For this purpose, red blood cells were pre-treated with the test compounds
and then exposed to reactive oxygen species, such as AAPH-derived peroxyl radicals or
hydrogen peroxides. It was shown that, among all the imidazoline/dimethyl succinate
hybrids tested, compounds 3 (the p-methoxy derivative) and 1 (the parent structure) showed
the highest ability to protect the erythrocyte cells from AAPH/H2O2-induced hemolysis.
The antihemolytic activities of these compounds (3 and 1) were comparable to the activities
of standard antioxidants, showing 108% and 99% of ascorbic acid activity (in the case of
AAPH-induced hemolysis), and 102% and 99% of Trolox activity (in the case of H2O2-
induced hemolysis). This proves that these hybrid materials are able to effectively protect
red blood cells from the oxidative stress-induced damage.

3.8. Predicting Molecular Targets for the Investigated Compounds (1–5)

On the basis of the Therapeutic Target Database (TTD) (http://db.idrblab.net/ttd/,
accessed on 6 May 2023), it was found that none of imidazoline/dimethyl succinate hybrids

http://db.idrblab.net/ttd/
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(1–5) had a Tanimoto coefficient above 0.6. This means that each molecule is not structurally
similar to any approved/investigational pharmaceutic.

In order to assess the possible molecular targets for the investigated compounds (1–5), the
Molinspiration Cheminformatics free web server (available online at www.molinspiration.com,
accessed on 6 May 2023) was used. Results of this in silico screening are presented as
bioactivity scores (Table 3). The higher the value of bioactivity score, the higher the
probability of the molecule to be active. The imidazoline-based hybrids with dimethyl
succinate (1–5) were virtually screened as potential G-protein-coupled receptor (GPCR)
ligands, ion channel modulators, enzyme inhibitors, protease inhibitors, kinase inhibitors,
and nuclear receptor ligands. It turned out that these molecules can act on a variety of
molecular targets. Taking into account the bioactivity scores shown in Table 3, they have the
highest probability to be moderately active as ligands modulating GPCRs and ion channels.

Table 3. Prediction of the bioactivity score for various molecular targets.

Compound

Bioactivity Score

GPCR
Ligand

Ion Channel
Modulator

Enzyme
Inhibitor

Protease
Inhibitor

Kinase
Inhibitor

Nuclear
Receptor Ligand

1 −0.17 −0.24 −0.34 −0.46 −0.70 −0.81
2 −0.20 −0.31 −0.39 −0.48 −0.72 −0.80
3 −0.18 −0.28 −0.36 −0.44 −0.67 −0.74
4 −0.23 −0.30 −0.39 −0.46 −0.71 −0.70
5 −0.16 −0.24 −0.37 −0.47 −0.69 −0.79

GPCR—G-protein-coupled receptor. The bioactivity score interpretation for organic molecules: above 0.00—active;
in the range from −5.00 to 0.00—moderately active; and below −5.00—inactive [37–39].

4. Conclusions

The performed TG/FTIR/QMS studies confirmed a similar thermal stability of the
tested imidazoline/dimethyl succinate hybrids (1–5) in inert (200–208 ◦C) and in oxidizing
(191–197 ◦C) conditions. They were thermally stable at temperatures much higher than
ambient conditions. Such thermostability of these compounds will be of importance in the
case of their approval as pharmaceutics. It can be assumed that no special recommendations
regarding the conditions of their storage and processing will be required. In addition, their
thermal resistance was independent of the type of substituent attached in the para position
of the phenyl moiety or its absence at this moiety. The tested compounds decomposed in
two main stages in inert conditions and in three main stages in oxidizing conditions. The
first decomposition stage was connected with a breaking of one ester bond, and thus the
emission of the methanol molecule and the formation of radical fragments in both furnace
atmospheres. However, the second decomposition stage was associated with multi-step
processes. The cleavage of the second ester bond, N-N, C-C bonds, and radical reactions
between intermediate fragments resulted in the emission of volatiles such as CH3OH, NH3,
HCN, HNCO, aromatic amines, carbonyl fragments, CO2, and H2O in both atmospheres
and the formation of the residue in inert conditions. In oxidizing conditions, the reactions
between residue and oxygen led to the full decomposition of the tested compounds and
the emission of CO2, CO, and H2O.

These studies confirmed the same radical decomposition mechanism of the tested
compounds in both furnace atmospheres. They also proved that the presence of oxygen
did not change the decomposition course of these compounds but only reduced the initial
decomposition temperature and influenced the total degradation of the tested compounds
(oxidation and combustion of the residue).

Taking into account the results of biological studies, the two hybrid materials (3 and 5),
as the most selective and therefore the best compounds, may be utilized in further, more
extended in vivo investigations. In addition, it was proven that the molecules 1 and 3
were able to effectively protect red blood cells from the oxidative stress-induced damage.
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Therefore, these molecules may be utilized as lead structures for the development of
potential adjuvant agents in the prevention of free radical-mediated diseases.
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