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Abstract: The bearing-shear connector (B-SC) is a newly developed connector that exhibits excellent
shear behaviour and is easy to process. However, research on the application of B-SCs as substitutes
for grouped studs in prefabricated steel–concrete composite beams is rare, and systematically study-
ing their shear behaviour is necessary. Thus, a refined numerical model was developed to study the
shear behaviour of the B-SCs. The numerical model, validated by push-out tests, was conducted to
analyse the stress of the B-SCs and concrete slab during loading and to explore the failure mechanism
of B-SCs. Then, a parametric study was performed to identify the key factors influencing the shear
behaviour of the B-SCs. The concrete strength, and the thickness and the tensile strength of the
shear plate were found to significantly influence the shear behaviour of B-SCs. According to the
experiments and numerical analysis, calculation formulae for the ultimate shear resistance and slip
modulus were proposed.

Keywords: bearing-shear connectors; numerical analysis; failure mechanism; shear resistance; slip
modulus; calculation formulae

1. Introduction

Prefabricated steel–concrete composite bridges have been increasingly used in many
countries owing to their advantages, such as good economy, simple construction, and
convenient disassembly and replacement in the later stages [1–4]. The main components,
concrete decks and steel beams, are prefabricated in the factory and then transported to
the site for assembly, which dramatically shortens the construction period and minimises
traffic interference. The mechanical performance of prefabricated composite structures is
significantly affected by the behaviour of shear connectors [5].

Common shear connectors suitable for prefabricated composite bridges include studs,
bolts, and section-steel connectors. Studs are the most common choice for prefabricated
composite bridges. However, grouped studs were required to be compactly arranged
in bridges with large shear force at the S-C (steel beam–concrete slab) interface, which
would increase the size of the reserved holes in precast concrete decks [6–8] that not only
increase the difficulty of formwork but also cause the reinforcing bars and grouped studs
to interfere with each other in the reserved holes. In response to the above-mentioned
problems, multiple studies [9–12] suggest using large-diameter studs. Push-out tests have
demonstrated that the application of large-diameter studs improves the shear resistance per
stud but also increases the risk of concrete slab splitting [12]. Compared with studs, bolts
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are not only more convenient to install and disassemble but also have better fatigue strength
because they do not require welding [13]. The shear resistance of bolts is close to that of
studs of the same size, but their slip modulus is inferior to that of studs [13–16]. Channel
connectors [17–20] and C-connectors [21–23] have the advantages of easy processing, small
reserved holes, and high shear resistance. However, their initial slip modulus is lower and
they have different mechanical properties in opposite directions [20]. Additionally, owing
to the existence of a steel flange, concrete is prone to cracking during loading. T-perfobond
connectors have the advantages of high shear resistance and slip modulus [24]. However,
the failure of T-perfobond connectors is often accompanied by the brittle crushing failure
of concrete. The plastic deformation of T-perfobond connectors cannot be large enough to
redistribute the load in actual structures owing to their poor deformation ability.

The bearing-shear connectors (B-SCs), composed of pressure-bearing plates and shear
plates, have a simple structural design, as illustrated in Figure 1 [25]. Push-out and beam
tests are often performed to investigate the shear behaviour of connectors. However,
studying the shear behaviour of connectors through a large number of full-scale tests is
difficult because of time and cost. Finite element (FE) modelling, as an effective alternative,
has been used by many researchers to investigate the shear behaviour of connectors [26–30].
Therefore, this study aims at establishing an accurate FE model capable of providing further
insight into the shear behaviour of the B-SCs. Then, the FE model, verified by experimental
results, was applied to analyse the effect of the concrete strength, and the thickness and
tensile strength of the shear plate on the shear behaviour of the B-SCs. Finally, based on
the results of push-out tests and FE analysis, calculation formulae for the ultimate shear
resistance and slip modulus of the B-SCs were proposed.
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Figure 1. Bearing-shear connector (B-SC).

2. Summary of Push-Out Tests

Fifteen push-out specimen tests were performed by Zou [25] to study the effect of
the geometry of B-SCs on their shear behaviour. Figures 2 and 3 show the test setup
and geometric dimensions of the specimens manufactured in accordance with Eurocode
4 [31], respectively.

Each push-out specimen consisted of a 620 mm high H-steel beam
(260 × 160 × 20 × 20 mm), two precast concrete slabs (500 mm × 300 mm × 650 mm), and
two B-SCs. The pressuring-bearing plates and shear plates were made of Q345 and Q420,
respectively [32]. Full penetration welding and fillet welding were used between the B-SCs
and the steel beams, shear plates and pressure-bearing plates, respectively. The weld leg
length of fillet welding was 16 mm. Figure 4 shows the structural details of the B-SCs.
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Each precast concrete slab had a reserved hole (120 × 140 mm) to accommodate the B-
SCs and non-shrinkage high-strength mortar was cast into the reserved hole to achieve the
composite action. Take the specimen B-SC-r20-h120 as an example; “r20” denotes the radius
of the chamfer of the shear plate to 20; “h120” denotes the height of the pressure-bearing
plate to 120.

3. Finite-Element Modelling
3.1. Geometry Model and Mesh

The general static-analysis method available in ABAQUS [33] was applied to model
push-out tests [27–29]. A quarter FE model was developed for the biaxial symmetry of the
specimens, as shown in Figure 5. The FE model considered the material and geometric
nonlinearities. Taking the specimen B-SC-r20-h120 as an example, the complete process of
FE modelling was introduced in detail.
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Figure 5. Geometry model of the push-out specimens.

As shown in Figure 6, three types of elements were applied for meshing. The B-
SC, concrete slab, post-poured mortar, and steel beam were meshed with solid elements
(C3D8R), which not only prevented shear-locking difficulties but also provided reasonable
accuracy when compared with other element types [27–29]. The reinforcing bars were
meshed using truss elements (T3D2) [27–29]. The rigid element (R3D4) was meshed the for
base plate. The mesh size varied with the geometric size and importance of different parts.
For example, the global and local seed sizes for the concrete slab and steel beam were 15
and 5 mm, respectively. To maintain the continuity of the element sizes and improve the
convergence of the FE model, the mesh sizes of the B-SC and reinforcing bars were 5 and
15 mm, respectively.
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3.2. Boundary Conditions and Loading Protocol

Symmetric boundary conditions were considered in the quarter FE model. As pre-
sented in Figure 6, all nodes on Surfaces X and Z were restrained from moving in the X
and Z direction, respectively. The base plate was assumed fixed. A downward enforced
displacement in the Y-direction was applied at the “Loading point”.

3.3. Contact Modelling

In this study, two types of contact properties were employed for the interaction. First,
contact interactions were used at the interface of the above-mentioned components, as
shown in Figure 7. The normal “hard” contact and tangential “penalty” frictional formula-
tion were considered for the first contact interaction. The friction coefficient between the
steel beam and concrete slab was 0.6 [27,28], and that between the other components was
0.25 [28,29]. The reinforcing bars were “embedded” in their surrounding concrete.
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Second, the bonding force of the S-C interface significantly impacts the initial slip
modulus of the connectors in push-out tests [27,34]. Therefore, the influence of the bonding
force of the S-C interface on the shear performance of the B-SC should be considered.
In addition to the first-contact property, surface-based cohesive behaviour was adopted
to model the bonding force between the steel beam and concrete slab [34]. The bilinear
traction–separation relationship was used to model the cohesive behaviour, as illustrated
in Figure 8 [28,34,35]. The traction–separation model initially assumes a linear elastic
behaviour, followed by the initiation and evolution of damage [35]. The uncoupled traction-
separation type is given by Equation (1):

t =


tn
ts
tt

 =

 Knn 0 0
0 Kss 0
0 0 Ktt


δn
δs
δt

 = Kδ (1)

According to the findings of a previous study [34], the parameters of cohesive be-
haviour were applied as follows: Knn was considered as 0.05 Ecm, Kss, and Ktt were
considered as 0.05 Gcm, where Ecm and Gcm are the elastic and shear modulus of con-
crete, respectively. Knn, Kss, and Ktt are the elastic stiffness of the cohesive contact prop-
erty [35]. The quadratic-stress criterion shown in Equation (2) was used as the damage-
initiation criterion for cohesive behaviour. The parameters associated with the damage
to cohesive behaviour were determined as follows: t0

n = 0.05, t0
s = t0

t = 0.3 [34,35] and
δf

n = 0.8 mm [34]; tn, ts and tt are the tractions of the cohesive contact property [35].(
〈tn〉
t0
n

)2
+

(
〈ts〉
t0
s

)2
+

(
〈tt〉
t0
t

)2
= 1 (2)
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3.4. Material Models
3.4.1. Concrete

“Concrete Damaged Plasticity” (CDP) was employed to model the uniaxial behaviour
of concrete, as shown in Figure 9 [35]. The CDP assumes that the two primary failure modes
of concrete are tensile cracking and compressive crushing, which are highly consistent with
the failure modes of the concrete in these specimens.
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Figure 9a,b present the uniaxial compression and tension behaviours of concrete,
respectively. The stress–strain curve of the concrete under uniaxial compression is separated
into three stages, as illustrated in Figure 9a. The first stage is linear (0 ≤ σc ≤ 0.4 fcm) [36].

σc (1) = Ecmεc (3)

In Equation (3), σc and εc are the compressive stress and compressive strain of con-
crete, respectively; f cm is the cylinder compressive strength of concrete. The cylinder
compressive strength of concrete and non-shrinkage high-strength mortar were 44.5 MPa
and 55.7 MPa, respectively. Ecm is the concrete elastic modulus, Ecm = E0αE( fcm/10)1/3,
E0 = 21.5 GPa, and αE = 1.0. E0 and αE are the undamaged concrete elastic modulus
and concrete aggregates factor, respectively. The second (ascending) stage is quadratic
(0.4 fcm<σc ≤ fcm) [37].

σc (2) = −
(

kη − η2

1 + (k− 2)η

)
fcm (4)

In Equation (4), k = Ecmεcm/ fcm. The peak strain εcm corresponding to the peak stress
f cm was equal to 0.025 [36]. η(= εc/εcm) is a coefficient. The third (descending) stage
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considers the dependency of the specimen geometry to ensure almost mesh-independent
simulation results [37,38]:

σc (3) =

(
2 + γc fcmεcm

2 fcm
− γcεc +

ε2
cγc

2εcm

)−1

(5)

γc =
π2 fcmεcm

2
[

Gch
lck
− 0.5 fcm

(
εcm(1− b) + b fcm

E0

)]2 (6)

In Equation (6), Gch represents the crushing energy per unit area, Gch = ( fcm/ ftm)2Gf;
f tm is the tensile strength of concrete and is given in the literature [39,40]; Gf represents the
fracture energy per unit area, Gf = 0.073 f 0.18

cm (N/mm) [38]. lck is the characteristic element
length, which depends on the type of element and mesh size. For three-dimensional
solid elements, lck is the cube root of the element volume [37]. The value of b (εpl

c /εin
c )

was 0.7, assuming that the majority of the inelastic compressive strain remained after
unloading [37]. ε

pl
c and ε

pl
c are the compressive plastic strain and compressive inelastic

strain of concrete, respectively.
The tensile behaviour of concrete exhibited two distinct stages. When the principal

tensile stress of concrete did not exceed its peak tensile stress, no cracks in the concrete
were assumed, and uncracked concrete kept elastic under tension. For cracked concrete,
ABAQUS expresses the tensile-softening behaviour of concrete in three ways: stress–
strain, tensile stress-crack width, and fracture energy [35]. A nonlinear tensile stress-crack
width equation was applied to express the tensile brittle behaviour of concrete in this
study [39–41].

σt

ftm
=

[
1 +

(
c1

w
wc

)3
]

exp
(
−c2

w
wc

)
− w

wc

(
1 + c3

1

)
exp(−c2) (7)

In Equation (7), c1 = 3 and c2 = 6.93 [37,38], where wc is the cracking width correspond-
ing to the zero tensile stress and wc = 5.14Gf/ ftm. The concrete-compression damage
variable dc and the tensile-damage variable dt are used to express the deterioration of
the concrete under compression and tension (Figure 10), respectively, and are given by
Equations (8) and (9):

dc = 1− 1
2 + αc

[
2(1 + αc) exp

(
−bcεch

c

)
− αc exp

(
−2bcεch

c

)]
(8)

dt = 1− 1
2 + αt

[
2(1 + αt) exp

(
−btε

ck
t

)
− αt exp

(
−2btε

ck
t

)]
(9)

bc =
1.97 fcm

Gch
lck (10)

bt =
0.453( fcm − 8)2/3

Gf
lck (11)

In Equations (8) and (9), αc = 7.873, αt = 1 εch
c = εc − σc/E0, εck

t = εt − σt/E0,
εt = εtm−w/lck, where αc, αt, bc, and bt are the dimensionless coefficients, εtm is the tensile
peak strain of concrete. εch

c and εck
t are the compressive crushing strain and tensile cracking

strain of concrete, respectively.
To accurately define the plastic-damage model of concrete, the following five addi-

tional parameters are required: dilation angle ψ = 37◦ [13]; flow potential eccentricity
ε = 1; raio of biaxial to uniaxial compressive strength σbo/σco = 1.16; ratio of K = 2/3, and
viscosity parameter µ = 0.005 [34]. The application of the CDP yields an unsymmetric
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material-stiffness matrix. Thus, an unsymmetric matrix storage and solution scheme should
be adopted in the step module to achieve an appropriate convergence rate in ABAQUS [35].

Materials 2023, 16, x FOR PEER REVIEW 8 of 23 
 

 

variable dc and the tensile-damage variable dt are used to express the deterioration of the 

concrete under compression and tension (Figure 10), respectively, and are given by Equa-

tions (8) and (9): 

( ) ( ) ( )ch ch

c c c c c c c

c

1
1 2 1 exp exp 2

2
d b b   


 = − + − − −
 +

 (8) 

( ) ( ) ( )ck ck

t t t t t t t

t

1
1 2 1 exp exp 2

2
d b b   


 = − + − − −
 +

 (9) 

cm
c ck

ch

1.97 f
b l

G
=  (10) 

( )
2/3

cm

t ck

f

0.453 8f
b l

G

−
=  (11) 

In Equations (8) and (9), c 7.873 =  , t 1 =   ch

c c c 0E  = −  , 
ck

t t t 0E  = − , t tm ckw l = − , where αc, αt, bc, and bt are the dimensionless coeffi-

cients, εtm is the tensile peak strain of concrete. ch

c  and ck

t  are the compressive crush-

ing strain and tensile cracking strain of concrete, respectively. 

 

(a) Compressive stress vs. crushing strain (b) Tensile stress VS crack width 

Figure 10. Material constitution of concrete. 

To accurately define the plastic-damage model of concrete, the following five addi-

tional parameters are required: dilation angle ψ = 37° [13]; flow potential eccentricity ε = 

1; raio of biaxial to uniaxial compressive strength σbo/σco = 1.16; ratio of K = 2/3, and viscos-

ity parameter μ = 0.005 [34]. The application of the CDP yields an unsymmetric material-

stiffness matrix. Thus, an unsymmetric matrix storage and solution scheme should be 

adopted in the step module to achieve an appropriate convergence rate in ABAQUS [35]. 

3.4.2. Steel Materials 

The yield strength, ultimate tensile strength, and elastic modulus of Q345 were 361.3 

MPa, 479.6 MPa, and 200.3 GPa, respectively. The yield strength, ultimate tensile strength, 

and elastic modulus of Q420 were 449.6 MPa, 600.2 MPa, and 201.5 GPa, respectively. 

HRB400 was used for the reinforcing bars, and the yield strength, ultimate tensile strength, 

and elastic modulus of HRB400 were 439.3 MPa, 577.1 MPa, and 203.7 GPa, respectively. 

Figure 11 presents the stress–strain relationship for steel. As shown in Figure 11a, the 

descending branch of the stress–strain curve of the shear plate was used to simulate shear-

plate failure [27,30]. The ultimate strain εu and fracture strain εf of the shear plate used in 

the FE model were 0.13 and 0.135, respectively. As shown in Figure 11b, the ideal 

 

0.000 0.005 0.010 0.015 0.020

10

20

30

40

50

60

 Concrete

 Mortar
c 

(M
P

a)

ch
c  

0.000 0.005 0.010 0.015 0.020

10

20

30

40

50

60

 Concrete

 Mortar
c 

(M
P

a)

ch
c  

Figure 10. Material constitution of concrete.

3.4.2. Steel Materials

The yield strength, ultimate tensile strength, and elastic modulus of Q345 were
361.3 MPa, 479.6 MPa, and 200.3 GPa, respectively. The yield strength, ultimate ten-
sile strength, and elastic modulus of Q420 were 449.6 MPa, 600.2 MPa, and 201.5 GPa,
respectively. HRB400 was used for the reinforcing bars, and the yield strength, ulti-
mate tensile strength, and elastic modulus of HRB400 were 439.3 MPa, 577.1 MPa, and
203.7 GPa, respectively.

Figure 11 presents the stress–strain relationship for steel. As shown in Figure 11a,
the descending branch of the stress–strain curve of the shear plate was used to simulate
shear-plate failure [27,30]. The ultimate strain εu and fracture strain εf of the shear plate
used in the FE model were 0.13 and 0.135, respectively. As shown in Figure 11b, the ideal
elastoplastic bilinear model was adopted to model other steel components except the shear
plate [30,31].
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Figure 11. Stress–strain relationship of steel.

4. Verification of the Numerical Model
4.1. Comparison of Shear Resistance and Slip Modulus

The results of push-out tests were used to validate the effectiveness of the numerical
model. A comparison between the ultimate shear resistance and slip modulus of the
B-SCs in tests and numerical analysis, listed in Table 1, shows a high agreement for all
push-out specimens, with a maximum deviation of 6% found for B-SC-r20-h160-3. The
mean value of Pu, test/Pu, FE was 0.99 with a standard deviation of 0.03 and the mean
value K0.2, test/K0.2, FE was 1.00 with a standard deviation of 0.03. This demonstrates that
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the established numerical model can effectively perform a parametric study on the shear
resistance and slip modulus of the B-SCs.

Table 1. Comparison between experimental results and FE results.

Specimens Pu,test Pu,FE K0.2,test K0.2,FE Pu, test
Pu, FE

K0.2, test
K0.2, FE(kN) (kN) (kN/mm) (kN/mm)

B-SC-r20-h120-1 1230.0
1217.4

2076.2
2073.7

1.01 1.00
B-SC-r20-h120-2 1210.5 2013.7 0.99 0.97
B-SC-r20-h120-3 1162.2 1997.6 0.95 0.96

B-SC-r20-h80-1 1180.9
1135.8

1987.3
2008.2

1.04 0.99
B-SC-r20-h80-2 1146.2 2056.6 1.01 1.02
B-SC-r20-h80-3 1089.6 2051 0.96 1.02

B-SC-r20-h160-1 1231.5
1219.0

2051.2
2060.7

1.01 1.00
B-SC-r20-h160-2 1180.1 1984.7 0.97 0.96
B-SC-r20-h160-3 1140.9 1927.9 0.94 0.94

B-SC-r20-h50d-1 1228.1
1216.7

2142.3
2075.7

1.02 1.03
B-SC-r20-h50d-2 1198 2165.0 0.94 1.04
B-SC-r20-h50d-3 1197.6 2125.1 0.97 1.02

B-SC-r0-h120-1 1168.8
1149.2

1975.4
1940.0

1.01 1.02
B-SC-r0-h120-2 1079.2 1928.7 0.98 0.99
B-SC-r0-h120-3 1116.1 1951.6 0.98 1.01

Mean 0.99 1.00
Standard deviation 0.03 0.03

where Pu is the ultimate shear resistance and K0.2 is the secant slope of the load-slip curves at a slip of 0.2 mm.

4.2. Comparison of Load-Slip Curves

As shown in Figure 12, the load-slip curves derived from the FE model were observed
to be in close agreement with the push-out tests. Figure 12 also reveals that the load-slip
curves of all push-out specimens followed a similar trend, and they can be divided into
three distinct stages. At the initial elastic stage, the shear load increased rapidly with little
slip, indicating that the B-SCs had a high slip modulus at the initial stage. Subsequently,
the slip increased rapidly, while the shear load slowly increased to the peak load. Finally,
the load gradually decreased as the slip continued to increase. Therefore, the FE model can
effectively evaluate the overall trend of the load-slip curves of the B-SCs.
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Figure 12. Cont.
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4.3. Comparison of Failure Modes

As shown in Figure 13, the failure modes derived from the FE model closely matched
those observed in push-out tests. The distribution and development law of the concrete-
slab cracks in the FE model matched well with the experimental response. As illustrated
in Figure 13b, the shear plate exhibited significant shear deformation along the loading
direction in both the experiments and FE modelling, whereas the pressure-bearing plate
exhibited no evident deformation. According to the studies reported above, the FE model
can accurately predict the shear behaviour of the B-SCs.
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4.4. Failure Process of B-SCs

In Section 4.3, the failure modes of the push-out specimens were primarily proved as
splitting and shear failures of the concrete slab and shear plate, respectively. In addition,
push-out tests have demonstrated that shear deformation of the shear plate provides the
majority of the shear resistance of the B-SCs [25]. Therefore, an analysis of the failure
mechanisms of concrete slabs and shear plates is necessary.

According to the B-SC-r20-h120 FE model, the complete failure process of the B-SCs
was analysed as follows. The load-slip curve for specimen B-SC-r20-h120 is shown in
Figure 14, on which five typical points are marked, with points I and II representing
the elastic stage and points III and IV representing the elastic–plastic stage, and point V
representing the ultimate state [42]. Figure 15 presents the deformation of the concrete slab
and the stress of the shear plate at these five key points, which illustrates the complete
failure process of the push-out specimens in detail.

Materials 2023, 16, x FOR PEER REVIEW 12 of 23 
 

 

 

Figure 14. Load-slip curve of the specimen B-SC-r20-h120 (FE model). 

 

Figure 15. Deformation and stress distribution of concrete slab and shear plate. 

When P = 0.04 Pu and slip = 0.02 mm, the specimen exhibited the elastic stage. As 

shown in Figure 15a, the shear-plate stress did not exceed 20 MPa, and no cracks appeared 

in the concrete slab. 

When P = 0.32 Pu and slip = 0.18 mm, the specimen still exhibited an elastic response. 

The stress in the anchorage and shear zones of the B-SC was significantly greater than that 

in other areas, as illustrated in Figure 15b. In addition, the concrete slab at the root of the 

B-SC exhibited small cracks owing to the extrusion of the shear plate, which is consistent 

with the phenomenon of splitting cracks in the concrete slab owing to the extrusion of the 

stud connector [11]. 

When P = 0.63 Pu and slip = 0.58 mm, plastic deformation occurred locally in the push-

out specimen. As shown in Figure 15c, the local stress in the anchorage and shear zones 

of the B-SC was larger than the yield strength owing to the combined action of bending 

and shear. The existing cracks in the concrete slab near the B-SC continued to extend un-

der the action of the load and the cracked area extended from the post-poured high-

strength mortar to the precast concrete slab. 

When P = 0.90 Pu and slip = 2.27 mm, as shown in Figure 15d, the stress in the shear-

plate zone was greater than the yield strength. Cracks in the concrete slab developed sig-

nificantly and cracks near the B-SC extended to the bottom and top of the concrete slab. 

When P = 1.0 and slip = 8.55 mm, the specimen reached its ultimate state. The local 

stress in the shear zone of the B-SC reached the ultimate tensile strength of steel, as shown 

in Figure 15e. The stress in the anchorage zone was less than that in the shear zone, which 

ensured that the failure of the shear zone of the B-SC preceded that of the anchorage zone. 

At this time, the cracks spread throughout the precast concrete slab, indicating that the B-

Slip(mm)

L
o
a

d(
k

N
)

Ⅰ

Ⅱ

Ⅲ

Ⅳ    

Ⅴ

0 5 10 15 20

0

200

400

600

800

1000

1200

1400

(P=0.04 Pu)

(P=0.32 Pu)

(P=0.63 Pu)

(P=0.90 Pu)

(P=1.0 Pu)

 

 

(e) P=1.0 Pu

        S=8.55 mm
(d) P=0.90 Pu

       S=1.02 mm
(c) P=0.63 Pu

       S=0.58 mm
(b) P=0.32 Pu

       S=0.18 mm
(a) P=0.04 Pu

       S=0.02 mm
 

Unit: MPa

Figure 14. Load-slip curve of the specimen B-SC-r20-h120 (FE model).

When P = 0.04 Pu and slip = 0.02 mm, the specimen exhibited the elastic stage. As
shown in Figure 15a, the shear-plate stress did not exceed 20 MPa, and no cracks appeared
in the concrete slab.

When P = 0.32 Pu and slip = 0.18 mm, the specimen still exhibited an elastic response.
The stress in the anchorage and shear zones of the B-SC was significantly greater than that
in other areas, as illustrated in Figure 15b. In addition, the concrete slab at the root of the
B-SC exhibited small cracks owing to the extrusion of the shear plate, which is consistent
with the phenomenon of splitting cracks in the concrete slab owing to the extrusion of the
stud connector [11].

When P = 0.63 Pu and slip = 0.58 mm, plastic deformation occurred locally in the
push-out specimen. As shown in Figure 15c, the local stress in the anchorage and shear
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zones of the B-SC was larger than the yield strength owing to the combined action of
bending and shear. The existing cracks in the concrete slab near the B-SC continued to
extend under the action of the load and the cracked area extended from the post-poured
high-strength mortar to the precast concrete slab.
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Figure 15. Deformation and stress distribution of concrete slab and shear plate.

When P = 0.90 Pu and slip = 2.27 mm, as shown in Figure 15d, the stress in the shear-
plate zone was greater than the yield strength. Cracks in the concrete slab developed
significantly and cracks near the B-SC extended to the bottom and top of the concrete slab.

When P = 1.0 and slip = 8.55 mm, the specimen reached its ultimate state. The local
stress in the shear zone of the B-SC reached the ultimate tensile strength of steel, as shown
in Figure 15e. The stress in the anchorage zone was less than that in the shear zone, which
ensured that the failure of the shear zone of the B-SC preceded that of the anchorage zone.
At this time, the cracks spread throughout the precast concrete slab, indicating that the
B-SC reached the ultimate state, mainly because the cracked concrete slab was insufficient
to support the increase in load.

5. Parametric Study

The effect of the following factors on the shear behaviour of the B-SCs were investi-
gated in the parametric study: concrete strength, the thickness and the tensile strength of
the shear plate, and stirrup diameter, as shown in Figure 16.
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Figure 16. FE models evaluated in parametric study.

5.1. Effect of Concrete Strength

As shown in Figure 17a, when the numerical model included and excluded the
postpoured high-strength mortar, the two load-slip curves almost coincided, which was
consistent with Yu’s conclusion [43]. For conservatism and simplicity, high-strength mortar
was not included in the subsequent parametric analysis. A comparison of the load-slip
curves for different concrete strengths (25 MPa–55 MPa) [36] is illustrated in Figure 17b.
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As shown in Figure 17b,c, the ultimate shear resistance and slip modulus of the B-SCs
increased as the concrete strength increased. According to Figure 17b, the ductility of the
B-SCs also increased as the concrete strength increased, which confirmed the conclusion of
Oehlers [44].
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Figure 17. Effect of concrete strength.

Figure 18 presents the stress distribution of the B-SCs for different concrete strengths
in the ultimate state. When the concrete strength increased, the shear deformation and
high-stress area of the shear plate in the ultimate state also increased. This can be attributed
to the increase in the cracking resistance of a precast concrete slab with the increase in
concrete strength. Higher-strength concrete enables concrete to support greater shear
deformation of the shear plate, which increases the contribution of the shear plate to the
shear resistance of B-SCs, thereby improving the ultimate shear resistance of B-SCs.
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5.2. Effect of Shear-Plate Thickness

Previous experimental studies have demonstrated a significant impact of the diameter
of studs and bolts on their ultimate shear resistance [45,46]. Similarly, Table 2 demonstrates
the significant impact of shear-plate thickness on the ultimate shear resistance and but a
negligible impact on the slip modulus of the B-SCs. As summarized in Table 2, the ultimate
shear resistance and slip modulus increased by 42.5% and 2.2%, respectively, when the
shear-plate thickness increased from 12 to 20 mm. As illustrated in Figure 19b, the ultimate
shear resistance increased approximately linearly with the shear plate thickness. Figure 19c
presents the stress-cloud diagram of the shear plates for different thicknesses in the ultimate
state. The shear deformation and high-stress area of the shear plate can be observed to
have decreased as the shear-plate thickness increased. This may be attributable to the fact
that increasing the shear-plate thickness can increase the effective shear-cross area of the
shear plate, thereby lowering its shear deformation, increasing the bearing area of concrete,
and improving the ultimate shear resistance of B-SCs.

Table 2. Results of FE parametric study.

Specimens Es
(GPa)

f y
(MPa)

f u
(MPa)

Shear-Plate
Thickness (mm)

Pu,FEM
(kN)

K0.2,FEM
(kN/mm)

B-SC-shear-12

201.5 449.6 600.2

12 969.9 2041.2
B-SC-shear-14 14 1099.5 2058.6
B-SC-shear-16 16 1217.4 2073.4
B-SC-shear-18 18 1271.7 2077.6
B-SC-shear-20 20 1381.9 2086.7

B-SC-Q235 210 235 370

16

822.9 2073.4
B-SC-Q345 210 345 470 993.5 2073.4
B-SC-Q390 210 390 490 1030.6 2073.4
B-SC-Q420 210 420 520 1081.8 2073.4
B-SC-Q460 210 460 550 1142.2 2073.4
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5.3. Effect of Shear-Plate Tensile Strength

According to GB 50017-2017 [32], five types of structural steel were selected for the
parametric analysis, as listed in Table 2.

Figure 20 presents the effect of the shear-plate tensile strength on the shear behaviour
of the B-SCs, and a comparison between the ultimate shear resistance and slip modulus
of the specimens is summarised in Table 2. As depicted in Figure 20b, the ultimate shear
resistance increased approximately linearly with the shear-plate tensile strength, whereas
the slip modulus remained constant because the elastic modulus of steels with varying
tensile strengths were nearly identical. The ultimate shear resistance increased by 38.8%
when the steel type of the shear plate was changed from Q235 to Q460, indicating the
significant impact of the shear-plate tensile strength on the ultimate shear resistance of
the B-SCs.
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Figure 20. Effect of shear-plate tensile strength.

5.4. Effect of Stirrup Diameter

The confinement of stirrup to concrete slabs has been demonstrated to significantly
affect the behaviour of shear connectors [42,47]. Figure 21 presents the effect of the stirrup
diameter on the shear behaviour of the B-SCs and a comparison between the ultimate
shear resistance and slip modulus is summarised in Table 3. The ultimate shear resistance
improved by 1.7% when the stirrup diameter d increased from 14 to 18 mm, but the slip
modulus remained constant because the stirrup had not imposed its confinement action on
concrete when the relative slip was 0.2 mm.
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Table 3. Results of FE parametric analysis.

Specimen d Pu K0.2
mm (kN) (kN/mm)

B-SC-stirrup-14 14 1212.3 2070.3
B-SC-stirrup-16 16 1217.4 2070.3
B-SC-stirrup-18 18 1232.9 2070.3

6. Proposed Shear-Calculation Formulae and Validation
6.1. Proposed Formula for Predicating Ultimate Shear Resistance

According to Sections 4.3 and 4.4, the failure modes of the push-out specimens with
B-SCs were primarily the splitting and shear failures of the concrete slab and shear plate,
respectively, indicating the primarily affected shear resistance of the B-SCs by the properties
of the concrete slab and shear plate. Figure 22 presents the shear mechanism of the B-SCs. A
parametric study showed that the concrete strength (f cm), the thickness (ts), and the tensile
strength (f u) of the shear plate had a significant impact on the ultimate shear resistance.
Especially, the concrete strength directly affects the shear deformation of the shear plate.
Therefore, introducing a coefficient λs

(
= α Ecm

fcm
+ β

)
was reasonable, which is related to

the concrete-strength grade, to quantify the contribution of the shear plate to the ultimate
shear resistance; α and β are the coefficients. Therefore, the new design formula for the
ultimate shear resistance of B-SCs was suggested as follows [25]:

Pu = Vs,s + Pb,a (12)

Vs,s = λs As,s fu (13)

Pb,a = λb Ab,a
√

Ecm fcm (14)
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Figure 22. Shear mechanism of B-SCs.

Based on the results of tests and FE parametric study, the values of α and β are 0.0003
and 0.82, respectively, when the least-squares method is used. In Equation (12), Vs,s is
the shear capacity of the shear zone and Pb,a is the compressive capacity of concrete in
the anchorage zone. In Equation (13), As,s (tsws) is the cross-sectional area of the shear
zone, and ts, ws, and f u are the thickness, width, and tensile strength of the shear plate,
respectively. λb (=0.052) is a constant coefficient [25], and Ab,a is the local bearing area of
the anchoring zone. f cm and Ecm are the compressive cylinder strength and elastic modulus
of concrete, respectively.
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The proposed ultimate shear-resistance formula for B-SCs was validated by comparing
it with the results of experiments and FE parametric analysis in Tables 4 and 5, and
Figure 23a. The mean value of Pu, pre/Pu, test was 0.99 with a standard deviation of 0.037;
the mean value of Pu, pre/Pu, FEM was 0.98 with a standard deviation of 0.048, indicating
that the proposed design formula can accurately predict the ultimate shear resistance
of B-SCs.

Table 4. Comparison between predicted values and tests.

Tests Specimens Pu,test Pu,pre K0.2,test K0.2,pre Pu, pre
Pu, test

K0.2, pre
K0.2, test(kN) (kN) (kN/mm) (kN/mm)

B-SC-r20-h120-1 1230.0 1182.0 2076.2 2059.2 0.96 1.01
B-SC-r20-h120-2 1210.5 1182.0 2013.7 2059.2 0.98 0.98
B-SC-r20-h120-3 1162.2 1182.0 1997.6 2059.2 1.02 0.97
B-SC-r20-h80-1 1180.9 1182.0 1987.3 2059.2 1.00 0.97
B-SC-r20-h80-2 1146.2 1182.0 2056.6 2059.2 1.03 1.00
B-SC-r20-h80-3 1089.6 1182.0 2051 2059.2 1.08 1.00
B-SC-r20-h160-1 1231.5 1182.0 2051.2 2059.2 0.96 1.00
B-SC-r20-h160-2 1180.1 1182.0 1984.7 2059.2 1.00 0.96
B-SC-r20-h160-3 1140.9 1182.0 1927.9 2059.2 1.04 0.94
B-SC-r20-h50d-1 1228.1 1182.0 2142.3 2059.2 0.96 1.04
B-SC-r20-h50d-2 1198 1182.0 2165.0 2059.2 0.99 1.05
B-SC-r20-h50d-3 1197.6 1182.0 2125.1 2059.2 0.99 1.03
B-SC-r0-h120-1 1168.8 1088.0 1975.4 2059.2 0.93 0.96
B-SC-r0-h120-2 1079.2 1088.0 1928.7 2059.2 1.01 0.94
B-SC-r0-h120-3 1116.1 1088.0 1951.6 2059.2 0.97 0.95

Mean 0.99 0.99
Standard deviation 0.037 0.035

Table 5. Comparison between predicted values and FE analysis.

Parametric
Study Specimens Pu,FE Pu,pre K0.2,test K0.2,pre Pu, pre

Pu, FE

K0.2, pre
K0.2, FE(kN) (kN) (kN/mm) (kN/mm)

Concrete
strength

B-SC-f cm-25 1053.0 1144.3 1901.7 1911.1 1.09 1.00
B-SC-f cm-30 1082.2 1154.6 1961.2 1951.9 1.07 1.00
B-SC-f cm-35 1126.3 1164.3 2013.4 1990.5 1.03 1.01
B-SC-f cm-40 1185.3 1173.7 2062.8 2027.4 0.99 1.02
B-SC-f cm-45 1210.6 1182.9 2095.3 2062.7 0.98 1.02
B-SC-f cm-50 1238.8 1191.7 2137.9 2096.7 0.96 1.02
B-SC-f cm-55 1260.7 1200.3 2183.0 2129.6 0.95 1.03

Shear-plate
thickness

B-SC-shear-12 969.9 886.5 2041.2 2059.2 0.91 0.99
B-SC-shear-14 1099.5 1034.2 2058.6 2059.2 0.94 1.00
B-SC-shear-16 1217.4 1182.0 2073.4 2059.2 0.97 1.01
B-SC-shear-18 1271.8 1329.7 2077.6 2059.2 1.05 1.01
B-SC-shear-20 1382.0 1477.4 2086.7 2059.2 1.07 1.01

Shear-plate
tensile strength

B-SC-Q235 823.0 764.9 2070.3 2059.2 0.93 1.01
B-SC-Q345 993.5 946.2 2070.3 2059.2 0.95 1.01
B-SC-Q390 1031.6 982.5 2070.3 2059.2 0.95 1.01
B-SC-Q420 1081.8 1036.9 2070.3 2059.2 0.96 1.01
B-SC-Q460 1142.2 1091.3 2070.3 2059.2 0.96 1.01

Stirrup diameter
B-SC-stirrup-14 1212.3 1182.0 2070.3 2059.2 0.97 1.01
B-SC-stirrup-16 1217.4 1182.0 2070.3 2059.2 0.97 1.01
B-SC-stirrup-18 1232.9 1182.0 2070.3 2059.2 0.96 1.01

Mean 0.98 1.01
Standard deviation 0.048 0.008
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Figure 23. Validation of the proposed design formulae.

6.2. Proposed Formula for Predicating Slip Modulus

The slip modulus of B-SCs is determined by the secant slope of the load-slip curves
at a slip of 0.2 mm [48–50]. The advantage of this method is the fixed-slip value, and the
calculation error caused by the relative dispersion of the test values of the ultimate shear
resistance can be avoided. Shim [9] proposed a Formula (15) to predict the slip modulus of
large-diameter studs. The formula considers the effect of concrete strength on slip modulus.

ks =
Pmax

d(0.16− 0.0017 fc)
(15)

In JTG/T D64-01-2015 [51], the slip modulus of studs was expressed as Equation (16),
which accounts for the contributions of the concrete elastic modulus, concrete strength, and
stud diameter to the slip modulus. Hu [50] proposed a slip modulus design formula for
large-diameter stud connectors, as expressed by Equation (17).

ks = 13.0d
√

Ec fc (16)

ks = 0.62d2
√

Ec fc (17)

According to the parametric analysis, concrete strength directly affected the failure
modes of the push-out specimens. Figure 17d shows a significant effect of concrete strength
on slip modulus, while the shear-plate thickness had a minor effect on slip modulus.
Therefore, the influence of the concrete strength on the slip modulus was quantified by
introducing a parameter λk related to the concrete strength. A new formula for the slip
modulus of B-SCs was proposed by regression analysis as follows:

K0.2 = (0.0016
Ecm

fcm
+ 0.37)

√
Ecm fcm (18)

In Equation (18), λk = 0.0016Ecm/ fcm. The proposed slip-modulus formula was
validated by comparing the tests and FE analysis results in Tables 4 and 5, and Figure 23b.
The mean value of K0.2, pre/P0.2, test was 0.99 with a standard deviation of 0.035, and the
mean value of K0.2, pre/P0.2, FE was 1.01 with a standard deviation of 0.008, indicating that
the proposed design formula can accurately evaluate the slip modulus of B-SCs.

7. Conclusions

In this study, a three-dimensional refined nonlinear numerical model was established
to investigate the shear behaviour of B-SCs. Then, using the verified numerical model,
the effects of the concrete strength and the thickness and the tensile strength of the shear
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plate on the shear behaviour of B-SCs were investigated. The following conclusions can
be drawn:

1. The numerical model matched well with the push-out tests in terms of the ultimate
shear resistance, slip modulus, load-slip curves, and failure modes, indicating the accu-
rate evaluation of the shear behaviour of B-SCs in prefabricated composite structures
using the numerical model;

2. All push-out specimens with B-SCs exhibited mixed failure modes composed of
splitting and shear failures of the concrete slab and shear plate, respectively. The
higher strength concrete enables concrete to support greater shear deformation of the
shear plate, which increases the contribution of the shear plate to the shear resistance
of B-SCs, thus improving the ultimate shear resistance of B-SCs;

3. The ultimate shear resistance of B-SCs increased approximately linearly with the
increase in the thickness and the tensile strength of the shear plate because the shear
resistance of B-SCs was mainly determined by the shear resistance of the shear plate.
However, these two parameters had a minor influence on the slip modulus of B-SCs;

4. New calculation formulae for the ultimate shear resistance and slip modulus of the
B-SCs were proposed. Both formulae, which accounted for the effect of concrete
strength on the shear deformation of the shear plate, agreed well with the results of
the push-out tests and numerical analysis.
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Abbreviations

δf
n Maximum separation of cohesive-contact property

εch
c Crushing strain of concrete

εck
t Tensile cracking strain of concrete

Ab,a Local bearing area of the anchorage zone
As,s Cross-sectional area of the shear zone
b ε

pl
c /εin

c ratio in Equation (6)
c1 and c2 Coefficients in Equation (7)
d Stirrup diameter
dc Concrete compression-damage variable
ds Stud diameter in Equation (16)
dt Concrete tensile-damage variable
E0 Undamaged elastic modulus of concrete
Ecm Elastic modulus of concrete
Es Elastic modulus of steel
f c Concrete strength in Equations (16)–(18)
f cm Cylinder compressive strength of concrete



Materials 2023, 16, 4616 20 of 22

f tm Tensile strength of concrete
f u Ultimate tensile strength of steel
f y Yield strength of steel
Gch Crushing energy per unit area of concrete
Gcm Shear modulus of concrete
Gf Crushing energy per unit area of concrete
hb/hs/ha Height of the pressure-bearing zone/shear zone/anchorage zone
K Second stress invariant ratio
K0.2 Slip modulus (secant slope of the load-slip curves at a slip of 0.2 mm.)
K0.2,FE Slip modulus obtained from finite element
K0.2,pre Predicted slip modulus
K0.2,test Slip modulus obtained from test
Knn, Kss, Ktt Elastic stiffness of cohesive contact property
ks Slip modulus of stud shear connector in Equation (16)
lck Characteristic element length
Nomenclature
P Shear load
Pb,a Compressive capacity of concrete in the anchorage zone
Pb,b Compressive capacity of concrete in the pressure-bearing zone
Pb,s Compressive capacity of concrete in the shear zone
Pmax Ultimate shear resistance of stud shear connector in Equation (16)
Pu Ultimate shear resistance
Pu,FE Ultimate shear resistance obtained from finite element
Pu,pre Predicted ultimate shear resistance
Pu,test Ultimate shear resistance obtained from test
S Relative ship
tn, ts, tt Tractions of the cohesive contact property
ts, ws Thickness and width of the shear plate in the shear zone
Vs,a Shear capacity of the anchorage zone
Vss Shear capacity of the shear zone
w Cracking width of concrete
wc Cracking width corresponding to the zero tensile stress
αc/αt/bc/bt Dimensionless coefficients in Equations (8)–(11)
αE Constant factor about concrete aggregates
ε Flow potential eccentricity
εc Compressive strain of concrete
εtm Tensile peak strain of concrete
λb Constant coefficient in Equation (14)
λs, α and β Constant coefficient in Equation (13)
µ Viscosity parameter
σbo/σco Ratio of biaxial to uniaxial compressive strength
σc Compressive stress of concrete
σt Tensile stress of concrete
ψ Dilatancy angle
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