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The first publication, analyzing the prospects for the use of laser radiation, was
published under the authorship of the American physicist Arthur Shawlow in November
1960 (Schawlow, A. L. Bell Lab. Rec., November, 403 (1960)) immediately after the creation
of the first laser by Theodor Meiman on 16 May 1960. Later, Arthur Shawlow received
the Nobel Prize. Subsequently, many brilliant scientists (A. Zeveil, V.S. Letokhov, N.V.
Karlov, and many others) joined the topic of laser-induced processes, which ensured rapid
progress in this area [1–7]. As a result, new directions in chemistry and physics have
been formed—laser chemistry and laser physics, which continue to be a dynamically
developing science. These laser-related directions consider the fundamental issues of the
synthesis/transformation of substances and the problems of high precision and highly
controlled laser technologies. Insightful publications of the late 20th century reporting on
original ideas of laser irradiation use for various processes of materials transformation
and fabrication [8–10] turned into extensive areas related to laser technologies since the
beginning of the 21st century.

This Special Issue aims to bring the fields of laser technologies and metal nanostruc-
tures together for both benefits. We consider different aspects of laser technologies for
fabrication of metal-based functional nanomaterials here, as numerous modern instruments
and devices are based on processes related to metal nanostructures. It should be noted
that the laser effect on a material can initiate physical phenomena (heating, phase transi-
tions, etc.) and/or chemical phenomena (oxidation, reduction, chemical transformations).
Thus, the articles of the current Special issue harmoniously combine physical and chemical
phenomena and offer advanced laser technologies to modern society.

Regarding publications in laser-induced physical processes, one can find the article
by A. V. Agapovichev et al. on selective laser melting to produce Ni-Cr-Al-Ti-Based Su-
peralloy [11]. The authors of the article present sintering processes by pulsed nanosecond
laser for obtaining aerosol agglomerates of Pt, Au, and Ag NPs [12]. The interesting combi-
nation of processes of laser-induced surface texturing simultaneously with laser-induced
anchoring of silver NPs from colloidal solution is discussed by Jakub Siegel et al. in [13].
Such textured polymer surfaces decorated with Ag NPs can be prospective antimicrobial
coatings. Another example of laser-induced physical phenomena is laser shock peening,
demonstrating significantly improving the fretting fatigue life of TC11 titanium alloy [14].
In the article by Piotr Kupracz et al. [15] laser re-solidification was demonstrated as an ap-
proach for the modulation of morphology and structure of metal-decorated TiO2 nanotubes
to obtain visible light harvesting.

Interesting advanced approaches for creating nanostructured metal materials with
various functionality were presented in laser-induced chemical processes. Thus, laser
ablation of monocrystalline silicon in isopropanol containing AgNO3 allowed the single-
step formation of Ag-decorated Si microspheres with SERS performance [16]. Here, the
physical process of laser ablation is accompanied by the chemical process of Ag NPs
formation onto ablated Si species. Femtosecond laser reductive sintering allowed for
obtaining high-purity Cu patterns from CuO NPs inks [17]. At the same time, a variant
of selective laser reductive sintering created copper and nickel microsensors for non-
enzymatic glucose detection [18]. Highly controllable decoration of substrates by plasmonic
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Ag, Pt NPs with uniform or periodic NPs distribution was demonstrated due to laser-
induced deposition [19]. This laser-induced process is based on the photodecomposition
of metal-containing precursors and following redox processes onto the substrate surface.
Interestingly, a similar process can be realized as a laser-induced thermal process resulting
in composite materials based on iridium, gold, and platinum [20].
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