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Abstract: Modern construction projects are often challenging, which has increased the demand
for innovative materials that ensure improved safety, durability, and functionality. To explore
the potential of enhancing soil material functionality, this study synthesized polyurethane on the
surface of glass beads and evaluated their mechanical properties. The synthesis of polymer proceeded
according to a predetermined procedure, where the polymerization was confirmed through analysis of
chemical structure by Fourier transform infrared spectroscopy (FT-IR) and microstructure observation
by a scanning electron microscope (SEM) after complete synthesis. The constrained modulus (M)
and the maximum shear modulus (Gmax) of mixtures with synthesized materials were examined by
using an oedometer cell equipped with bender elements under a zero lateral strain condition. Both M
and Gmax decreased with an increase in the contents of polymerized particles due to a decrease in
the number of interparticle contacts and contact stiffness induced by the surface modification. The
adhesion property of the polymer induced a stress-dependent change in M but was observed to have
little effect on Gmax. Compared to the behavior of the rubber-sand mixtures, polymerized particles
show the advantage of a smaller reduction of M.

Keywords: surface modification; polymer; polyurethane-coated glass beads; constrained modulus;
maximum shear modulus; rubber-sand mixture

1. Introduction

In response to the sophistication of industrial structures and the diversification of
social structures, contemporary construction projects require high-rise, large-scale, and
lightweight structures, such as skyscrapers and long-span bridges. At the same time,
demand for construction materials to improve the lifespan and maintenance efficiency of
structures is increasing. As a result, the perception of construction materials is changing to
innovative, future-oriented materials that facilitate ongoing maintenance, ensure the safety
and durability of buildings, and withstand extreme environmental conditions [1–3].

In civil engineering, soil is one of the fundamental and crucial construction materials
when starting a construction project. The mechanical properties of soils are a result of
extensive interactions between the solid soil particles and the materials filling the void
spaces [4,5]. However, because raw soils do not satisfy the required engineering properties
for construction projects, many attempts have been made to improve these properties
for various applications. These methods can be broadly categorized into physical and
chemical stabilization [6]. The former method aims to modify the physical properties or
structure of soil, such as through compaction, mixing of anomalous materials, etc. [6–9].
On the other hand, the latter method improves the soils’ properties by changing the
chemical composition of soils by applying cement, lime, etc. [1,2,6,10,11]. However, these
conventional methods achieved soil improvement with the help of additional materials
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such as anomalous materials, cement and lime rather than improving the properties of the
geomaterial itself.

Unlike the described methods, this study attempts to improve the fundamental func-
tion of geomaterial by synthesizing a polymeric material directly on the surface of glass
beads. Among the various polymers used in civil engineering, rubber-like polymers are
selected herein because they exhibit unique properties when mixed with geomaterials.
Rubber is a ductile material with a strong damping property, and it has been evaluated
in various usages such as subgrade material, lightweight backfill, retaining wall, slope
stability, and retaining wall when mixed with soil [12–15]. The inclusion of soft rubber
into soils can change the physical properties of soils, including extreme void ratios, hy-
draulic characteristics, elastic modulus, and friction angle [16–20], as well as the dynamic
properties of soils, such as damping ratio and degradation curves of damping ratio and
normalized shear [19,21–25]. However, because rubber is highly ductile, an increase in
compressibility and decrease in shear modulus are to be expected as the rubber content in
a soil-rubber mixture increase. To confirm the polymerization on the surface of the glass
beads, FT-IR (Fourier transform infrared spectroscopy) analysis and visual observation of
the surface morphology using SEM (scanning electron microscopy) are performed. Then,
the effect of polymerized glass bead content on the compressibility and small strain stiff-
ness is investigated through modified one-dimensional compression tests with bender
elements. Compared to the physical combination of a rubber-soil mixture, the introduction
of surface-modified glass beads with rubber-like polymer is expected to exhibit distinct
engineering properties due to modified contact interactions. In particular, it is expected to
function as a composite material that exhibits the behavior of both the rubber and the soil.

2. Experimental Program

In this study, polyurethane was polymerized at the surface of pretreated mono-sized
spherical glass beads. The mechanical properties of the surface-modified particle mixtures
were then measured by performing a one-dimensional compression test with an instru-
mented oedometer cell. The experimental process is summarized in the flowchart outlined
in Figure 1, and the details are described in the following sections.
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2.1. Testing Materials

The mono-sized spherical glass beads (GB, B&K Media Co., Ltd., Hwaseong, Gyeonggi,
Korea) were used to avoid particle shape and size effects. The specific gravity (Gs) of the GBs
is 2.48 (ASTM D854), and the median particle size (D50) of GB is 0.51 mm (ASTM D6913).
Other index properties are listed in Table 1. Before the synthesizing process, the pretreat-
ment of GB was conducted using the silane coupling agent: 3-aminopropyltriethoxysilane
(APTES, Sigma Aldrich, St. Louis, MO, USA). For the pre-polyurethane synthesis, toluene
diisocyanate (TDI; the isomer mixture ratio between 2,4- and 2,6-TDI was 80:20) (Sigma
Aldrich) and poly tetramethylene ether glycol (PTMEG, 1000 g/mol) (Sigma Aldrich) were
prepared. Two types of TDI were mixed in the weight ratio of 80:20. APTES and PTMEG
were dehydrated under vacuum drying at 80 ◦C for 12 h before use [26].

Table 1. Index properties of used materials in this study.

Material Glass Bead (GB) Device/Technique

Specific gravity, GS 2.48 Pycnometer
(ASTM D845)

Median particle size D50 [mm] 0.51 Sieve
(ASTM D6913)

Coefficient of uniformity, Cu 1.22 -

Coefficient of curvature, Cc 0.97 -

Extreme void ratio

Minimum void ratio, emin 0.55 Vibratory Table
(ASTM D4253)

Maximum void ratio, emax 0.69 Funnel
(ASTM D4254)

2.2. Synthesis of Polyurethane-Coated Glass Bead (PUGB)

Surface modification of the GBs was achieved through a rapid reaction between
the NCO group and OH group, which allowed the silanol group (Si-OH) to react with
the terminal isocyanate groups (R-N=C=O) of the polyurethane prepolymer (pre-PU)
(Figure 1) [26]. Before synthesis, the GBs were first immersed in 1% (w/w) APTES in
anhydrous toluene (99.8%, Samchun Chemicals, Seoul, Korea) [27] and stirred for 1 week to
enhance the number of silanol groups on their surfaces. Thereafter, the GBs were washed
with anhydrous toluene, deionized water, and ethanol (Samchun Chemicals). The pre-PU
was prepared using the method described by Chen et al. [26]: 0.052 mol of the dehydrated
PTMEG was added to a three-necked flask and stirred at 80 ◦C for 30 min. Then, 0.103 mol
of TDI was added to the flask to react with the PTMEG. The mixture was stirred for more
than 1 h to induce an adequate reaction. The surface-modified GBs were then prepared by
stirring a mixture of 1% (w/w) of pre-PU with the silane-treated GB at 80◦ for 24 h.

2.3. Sample Preparation and Experimental Procedure

The polyurethane-coated GB (PUGB) content in the mixture (CPU) was defined as the
ratio of the weight of PUGB (WPUGB) to the weight of the total mixture (Wt), as follows:

CPU =
WPUGB

Wt
=

WPUGB
WGB + WPUGB

(1)

where WGB is weight of the pure GBs. Five different mixtures were prepared with different
CPU values of 0% (i.e., pure GB), 1%, 2%, 5%, and 10% to explore the effects of CPU on
the behavior of the mixture. An instrumented oedometer cell mounted with the bender
elements was used to investigate the stress-dependent and small-strain characteristics of
the mixtures under the zero lateral strain condition. The inner diameter and height of the
cell were 100 mm and 72.5 mm, respectively. A pair of bender elements was installed on
the top cap and another pair on the bottom plate to measure the shear wave velocity (Vs).
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The shear wave velocity was calculated based on the first arrival time (tfirst) and tip-to-tip
distance between the bender elements (Ltip-to-tip) [28]. A predetermined amount of the
mixture was poured into the cell. For each CPU, the mixtures were consistently prepared
to three different relative densities (Dr) of 40%, 60%, and 80%. The mixture was loaded
to 450 kPa with a load increment ratio of 1 and unloaded to ~1 kPa. A linear variable
displacement transducer (LVDT) with a precision of 0.001 mm was used to monitor the
vertical displacement of the mixtures during the loading and unloading steps. Vertical
settlement and shear wave were measured in each step.

3. Experimental Results
3.1. Analysis of Chemical Structure

Figure 2 presents a comparison of the FT-IR spectra of the GBs before and after the
synthesis process. Since the FT-IR analysis is based on the interaction of infrared radiation
with molecules, the response of the sample at different wavenumbers are the characteristics
of different functional groups present in the sample. Therefore, the analysis of FT-IR enables
the identification of compounds. In particular, the -OH functional group of pretreated GB
and N-H and C=O groups of PUGB are of interest, as they exhibit the characteristics of
chemical bonds described in Figure 1. The spectrum of pretreated GB exhibited a clear peak
close to wavenumbers 1100 cm−1 and 470 cm−1, assigned to the silica network (Si-O-Si) [29].
Moreover, the peak at around 3450 cm−1, representing the OH groups on the GB surface [30],
confirmed that APTES effectively enhanced the silanol groups, which results in a higher
chance of reacting with the pre-PU. Notably, the PUGB particles exhibited adsorption
peaks at 3330 cm−1 and 1730 cm−1, which originated from the stretching vibrations of the
N-H and C=O groups, thereby confirming the successful pre-PU coating on the pretreated
GB surface (Figure 1) [26]. The observed attenuated peak at 3450 cm−1 for PUGB also
supported the occurrence of a chemical reaction between the OH groups on the GB surface.
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Figure 2. FT-IR spectrum of (a) pretreated GB and (b) GB after synthesize process (i.e., PUGB).

3.2. Microstructure Observation

Since the polymer synthesis was confirmed by FT-IR analysis, the morphology changes
of the GB surface before and after polymer synthesis were observed by SEM images (Figure 3).
Figures on the 100 µm scale indicate that surface modification by the polymerization was
unaffected by the shape or size of the pure GB particles and that the synthesized polymer
completely covers the GBs. The close-up image of the pure GB surface (right side of
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Figure 3a) reveals the presence of wedge-shaped protuberances on the surface, whereas in
the case of PUGB (right side of Figure 3b), the synthesized polymer covers them, resulting
in a relatively smooth surface. The thickness of coated polymer on the GB was measured
to be nearly constant at ~0.9 µm (Figure 3c). Accordingly, it was inferred that the surface
modification did not alter the size distribution of the GBs, but the aforementioned changes
in surface roughness may lead to different behaviors of the PUGB-GB mixtures depending
on their CPU.
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3.3. Variation of Extreme Void Ratios

The variations in maximum void ratio (emax) and minimum void ratio (emin) of the
PUGB-GB mixtures having various CPU values are illustrated in Figure 4. The change in
emin with CPU was relatively insignificant, while emax increased slightly as CPU increased.
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This may be attributed to the increased contact area between the particles resulting from
reduced surface roughness due to surface modification, which enhanced the influence
of the intrinsic adhesive properties of the polymer [31,32]. Particularly, Yu et al. [33]
demonstrated that the adhesive forces between flat glass and polyurethane increased as
the particle contact number increased. Thus, an increase in CPU leads to an increase in
particle adhesion, resulting in higher emax. However, because the adhesion forces were
not high enough to withstand the stress exerted during vibratory table testing (i.e., emin
measurement), an insignificant effect of CPU was observed.
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3.4. Vertical Compressibility at Zero-Lateral Strain

Figure 5 shows the evolution of the volume change (∆V) behavior of the PUGB-GB
mixtures determined on the basis of settlement during loading and unloading under the
zero-lateral strain condition. At a given relative density, ∆V of the mixture increased as
the applied vertical stress and CPU increased. The volumetric change refers to the particle
rearrangement behavior induced by particle rolling and sliding [34]. Accordingly, the
increase in ∆V with CPU reflects that the PUGB particles were rearranged more easily
than the GB particles, which was attributed to the increased initial void ratio and reduced
surface roughness. The aforementioned adhesion forces of polymer may initially resist
the particle rearrangement; however, it rather served to aggregate the particles around the
PUGB with vertical stress increment, leading to higher ∆V with increasing CPU.

The constrained modulus (M) was calculated as the slope of the vertical effective
stress–strain curve, where the measured value represents M at the average vertical stress
(σ’v,avg )of two vertical stresses applied sequentially. Figure 6 only shows the variation
of M with the average vertical stress at Dr = 60%, as consistent variation trends were
observed at varying Dr. As expected, M decreased with CPU because of the increased
number of particles with reduced surface roughness. However, the CPU = 1% mixture
exhibited a similar variation in M as that of the CPU = 0% mixture (i.e., pure GB), reflecting
the insignificant effect of PUGB particles on mixture behavior.
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The stress-dependent variation of M at different CPU values were observed through
the trend line of M at ranges of σ’v,avg = 4~84 kPa. For mixtures with low CPU (≤1%), the M
at σ’v,avg > 100 kPa follows similar trends to those of trend lines. However, for mixtures
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with CPU > 1%, the M at σ’v,avg > 100 kPa deviates from the trend line and increases
rapidly, approaching M of pure GB. It is inferred that the adhesion of the polymer brings
the pure GBs into closer contact with the PUGBs, which initially increases the mixture
compressibility. However, when a certain stress level at which no further interactions
between PUGBs are induced, the fabric of GBs may start to govern the mixture behavior.
As a result, the mixtures exhibit GB-like behavior and approach the M value of pure GB.
Although further study is needed to determine the precise onset of interactions, the stress-
dependent behavior of PUGB-GB mixtures with CPU > 1% was observed at σ’v,avg ~ 100 kPa
in this study.

3.5. Shear Wave Velocity Vs

The propagation of shear wave traces during the loading and unloading stages of
the selected mixtures with the initial Dr of 60% are plotted in Figure 7. The first arrival
time decreased, and the resonant frequency increased with vertical stresses [28,35,36]. As
the CPU increased, the first arrival time of the mixture increased under the same vertical
effective stress, indicating that the polymer coating on the GB surface lowered the contact
stiffness. Nonetheless, the resonant frequency of the signal decreased in a negligible range
with the increasing CPU, indicating insignificant changes in the global material properties
with CPU.
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Figure 7. Time series of the shear wave traces for selected mixtures with Dr = 60% during loading
and unloading: (a) CPU = 0%; (b) CPU = 2%; and (c) CPU = 10%.

The shear wave velocity was then calculated from the measured signals and travel
distances. As the increases in the applied stress and relative density induced higher contact
area followed by higher contact stiffness, a higher shear wave velocity was observed. On
the contrary, because the increase in CPU decreased the contact stiffness between particles,
a lower shear wave velocity was measured with CPU, regardless of the initial Dr and
loading/unloading states (Figure 8).
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4. Discussion
4.1. Relationship between α and β

The shear wave velocity can be expressed as a power function of the effective stress [37–40],
as follows:

Vs = α

(
σ
′
v

1 kPa

)β

(2)

where the α-factor [m/s] is the shear wave velocity at 1 kPa confinement, and the β-
exponent indicates the stress sensitivity of the shear wave velocity. Both α and β were
determined experimentally on the basis of particle packing, fabric, mineral properties,
and contact characteristics, such as the coordination number and contact stiffness [41].
Therefore, α and β have a range of values that depends on both intrinsic properties and state
conditions of the given soil types: clay, silt, and sand [42–44]. Comparing the relationship
between the α-factor and β-exponent obtained in this study with data of different various
geomaterials [42,43,45–47] can be helpful in identifying the behavior of PUGB-GB mixtures
(Figure 9). The most recent comprehensive work regarding the α-β relationship is suggested
by Ramirez et al. [42], where the suggested relationship is plotted together in Figure 9.
For denser and coarser materials, a higher α-factor and a lower β-exponent are expected
due to the smaller changes in the interparticle contact number with increasing stress [41].
The values of the α-factor and β-exponent of the tested pure GB indicate that the behavior
of pure GB is equivalent to that of pure sand. Furthermore, the increase in CPU did not
modify the global properties of the materials since the relation of α and β parameters still
lies on the suggested trend line. Also, it is notable that PUGB-GB mixtures exhibit sand-like
parameters, regardless of CPU, confirming the findings in Figure 7. Still, the increase in CPU
decreased the contact stiffness, resulting in a decrease and an increase in the α-factor and
β-exponent, respectively. The relationships of α and β obtained in this study are adequately
consistent with the suggested trend line for soils, despite the change in CPU. This finding
reinforces that the PUGB can still act as a geomaterial.
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4.2. Variation and Transition Behavior of M and Gmax with CPU

As examined, the behaviors of the PUGB mixtures were controlled by CPU: the con-
strained modulus (M) represents the stress-dependent deformation due to fabric and skeletal
changes under intermediate strain, while the maximum shear modulus (Gmax) was influ-
enced by the interparticle contact characteristics under small strains [36,48]. The effects of
CPU on each modulus at various stress levels are compared in Figure 10a,c. As the total
particle contact number increased with the (average) vertical effective stress (σ’v, or σ’v,avg),
followed by an increase in interparticle contact stiffness, both M and Gmax increased. As CPU
increased, M and Gmax decreased because the surface roughness decreased, which facilitated
particle rearrangement and reduced particle contact stiffness. The variation of M, however,
showed stress-dependent behavior that could be distinguished at σ’v,avg = ~100 kPa, as
summarized in Figure 6. To evaluate the stress-dependent behaviors of both M and Gmax,
the modulus ratio (Mratio = MPUGB-GB/MGB or Gmax,ratio = Gmax,PUGB-GB/Gmax,GB), which is the
ratio between the moduli of the mixture and those of pure GB, was compared (Figure 10b,d).
The comparison results clearly show that the variation of the Mratio for CPU is divided at
σ’v,avg = ~100 kPa (Figure 10b), while the constant trend of the Gmax,ratio is according to the
stress level (Figure 10d). Thus, it can be interpreted that the effect of the polymer coating
on the GB surface depends on both stress and strain. Figure 10 clearly shows a signifi-
cant decrease in M and Gmax at CPU = ~2%, after which the effect of CPU was negligible
(Figure 10a,c). Therefore, CPU = ~2% can be assumed to be the critical CPU for PUGB particles
to start controlling the mixture behavior.

The modulus ratio such as Mratio and Gmax,ratio of tested PUGB-GB mixtures were then
compared with those of rubber-sand mixtures reported by Lee et al. [36]. Lee et al. [36] per-
formed the one-dimensional compression test of rubber-sand mixtures prepared with vari-
ous size ratios (SR = medium diameter ratio between rubber and sand = D50,rubber/D50,sand)
and volumetric sand fractions (=Vsand/Vtotal). The modulus ratios (Mratio and Gmax,ratio) of
tested PUGB-GB mixtures were plotted with the modulus ratios of the rubber-sand mix-
tures at three representative SRs including larger (SR = 4.7), similar (SR = 1.0), and smaller
(SR = 0.35) rubber compared to sand and are shown in Figure 11. Note that the SR of PUGB
is close to 1.0. The weight fractions of the rubber-sand mixtures are calculated based on
the volumetric sand fraction given the specific gravity of sand (Gs,sand = 2.62) and rubber
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(Gs,rubber = 1.16). The modulus ratio at a specific stress level is computed by averaging the
modulus ratio of applied stresses that come before and after the given stress, in sequential
order. Figure 11 demonstrates that PUGB-GB mixtures possess a significant advantage in
terms of their larger Mratio, indicating reduced compressibility compared with rubber-sand
mixtures. Furthermore, the Gmax,ratio of PUGB-GB mixtures is similar to that of rubber-sand
mixtures. These results suggest that PUGB-GB mixtures provide improved performance in
terms of compressibility while maintaining Gmax similar to that of pure geomaterials.
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Figure 10. Effect of CPU on modulus ((a) M and (c) Gmax) and modulus ratio ((b) Mratio and
(d) Gmax,ratio) of PUGB mixtures at various stress level. Only the PUGB mixtures with Dr = 60%
are shown.

Further analysis on Gmax was performed to reveal a “measure of state” because Gmax
is known to be controlled by the nature of interparticle contact and coordination [41].
The Gmax values of uncemented granular materials can be predicted using the following
semiempirical power function in conjunction with the effective vertical stress and mass
density of the material (ρ), as suggested by [28]:

Gmax = ρV2
s = A

(
σ
′
v

1 kPa

)B

(3)

where A and B = experimentally determined factor and exponent, respectively. The A-factor
denotes Gmax of the mixture at the σ

′
v of 1 kPa, which is related to the initial packing of the

mixtures, while the B-exponent indicates the stress sensitivity of Gmax reflecting the contact
behavior and fabric changes within mixtures [41]. Generally, the A-factor increases while
the B-exponent decrease as the stiffness of the mixture increases [41,49]. Therefore, the
increase and decrease of the A-factor and B-exponent with the CPU increment indicates the
decrease in material stiffness with CPU (Figure 12). Moreover, the remarkable changes in
the A-factor and B-exponent are observed at CPU = ~2%, which is the critical CPU. Still, the
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B-exponent appeared to be similar to that of pure GB, thus confirming that the introduction
of PUGB particles did not alter the global behavioral properties of the mixtures within the
tested CPU range.
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Figure 11. Comparison of modulus ratio: (a) Mratio and (b) Gmax, ratio of PUGB mixtures with rubber-
sand mixtures performed by Lee et al. [36] represented by hollow markers: circles, triangles and
squares denote rubber-sand mixtures with SR = 4.7, 1.0 and 0.35, respectively.
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4.3. Potential Use of Surface-Modified Materials as Geotechnical Materials

The behaviors of the PUGB-GB mixtures could lead to several advantages over those
of the conventional soil-rubber mixtures. An increase in the rubber content of a soil-rubber
mixture increases the damping ratio of the mixture owing to the material properties of
rubber [50–52], but at the same time increases the compressibility of the mixture [36,53].
However, for PUGB-GB mixtures, the increase in compressibility was not as large as those



Materials 2023, 16, 4476 13 of 15

for soil-rubber mixtures despite the increase in CPU (Figure 11). Although it was necessary
to confirm the dynamic behavior according to the shear strain rate through additional
resonant column tests, it is presumed that the dynamic behavior of the PUGB-GB mixture
will improve owing to the influence of PU polymer. Therefore, the PUGB-GB mixtures can
possibly be utilized as new geomaterials that overcome the shortcomings of traditional
soil-rubber mixtures.

5. Conclusions

This study aims to improve the functionality of glass beads (GB) by synthesizing
polyurethane on their surface while also evaluating the mechanical properties of their
mixtures with polymerized particles (PUGB). One-dimensional compression tests using an
instrumented oedometer cell equipped with bender elements were performed to investigate
the effect of the contents of the polymerized particles (CPU) on the constrained and shear
moduli of their mixtures. The key findings can be summarized as follows:

(1) Polymer coating on the GB surface reduced the surface roughness, increasing the
contact area of the particles as the CPU increased. The intrinsic adhesion of the polymer
increased the maximum void ratio of PUGB-GB mixtures. However, the minimum
void ratios of the mixtures showed negligible changes with CPU because the adhesion
could not withstand the stress applied during the vibration table test.

(2) Lower constrained modulus (M) was observed for the PUGB-GB mixture with higher
CPU as the vertical deformation increased due to an increase in the initial void ratio of
the mixture and a decrease in surface roughness.

(3) The shear wave velocity (Vs) of the mixtures decreased with CPU because coated
polymer reduced the contact stiffness between particles.

(4) The critical CPU, at which the PUGB particles start to become involved in the load-
carrying skeleton of the mixture, was found to be ~2%. This finding was also con-
firmed by the A-factor and B-exponent values, which describe the measured state of
the maximum shear modulus (Gmax), which are also found to vary significantly at
CPU = ~2%.

(5) The stress- and strain- dependent behavior of the PUGB-GB mixture is demonstrated
by comparing the evolution of modulus, where the trends of M exhibit changes at
certain average stress, while variation trends of Gmax remain constant over the ranges
of applied stress.

(6) Comparing the behavior of PUGB-GB mixtures and the rubber-sand mixtures, it can
be seen that the introduction of PUGB particles leads to a smaller M reduction with a
similar Gmax of the mixture compared to rubber.

This study evaluated the potential application of polymer coating for enhancing
the performance of PUGB-GB mixtures. Further studies on the analysis of the dynamic
behavior of PUGB-GB mixtures are expected to expand their promising prospects for
various applications.
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