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Abstract: In this study, we present a detailed analysis of trapping characteristics at the AlxGa1−xN/GaN
interface of AlxGa1−xN/GaN high-electron-mobility transistors (HEMTs) with reliability assessments,
demonstrating how the composition of the Al in the AlxGa1−xN barrier impacts the performance of
the device. Reliability instability assessment in two different AlxGa1−xN/GaN HEMTs [x = 0.25, 0.45]
using a single-pulse ID–VD characterization technique revealed higher drain-current degradation (∆ID)
with pulse time for Al0.45Ga0.55N/GaN devices which correlates to the fast-transient charge-trapping
in the defect sites near the interface of AlxGa1−xN/GaN. Constant voltage stress (CVS) measurement
was used to analyze the charge-trapping phenomena of the channel carriers for long-term reliability
testing. Al0.45Ga0.55N/GaN devices exhibited higher-threshold voltage shifting (∆VT) caused by stress
electric fields, verifying the interfacial deterioration phenomenon. Defect sites near the interface of the
AlGaN barrier responded to the stress electric fields and captured channel electrons—resulting in these
charging effects that could be partially reversed using recovery voltages. The quantitative extraction of
volume trap density (Nt) using 1/f low-frequency noise characterizations unveiled a 40% reduced Nt for
the Al0.25Ga0.75N/GaN device, further verifying the higher trapping phenomena in the Al0.45Ga0.55N
barrier caused by the rougher Al0.45Ga0.55N/GaN interface.

Keywords: AlGaN/GaN HEMT; interfacial degradation; fast-transient charge-trapping; pulsed I–V;
constant voltage stress (CVS); threshold voltage degradation (∆VT); 1/f low-frequency noise; volume
trap density (Nt)

1. Introduction

High-electron-mobility transistors (HEMTs) based on III-V materials have been the
next generation of high-power, high-radio-frequency, and high-temperature devices be-
cause of their high carrier concentration, high carrier mobility, and high breakdown volt-
age [1–3]. GaN-based HEMTs have recently attracted much attention because of their
remarkable material properties and device performances, notably in high-power and RF
applications up to the sub-terahertz regime [4–6]. These advantageous properties and
performances are caused primarily by the excellent quality of the epitaxial layer consisting
of the AlxGa1−xN barrier and the GaN channel layer, resulting from the fundamental
electronic properties of two-dimensional electron gas (2DEG) on top of Si, Sapphire, and
silicon carbide (SiC) substrates [7–9]. Because high-density 2DEG accumulates at the
AlxGa1−xN/GaN interface, those electronic properties would reflect the quality of the
interface via scattering procedures caused by dislocations [10]. During device operation,
the interface quality of the AlxGa1−xN/GaN is essential for improving carrier transport in
the channel [10].
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Reliability concerns of AlxGa1−xN/GaN HEMTs have been caused by trap effects
related to a drain, gate lag, and current collapse with various types of degradation [11–
13]. The AlGaN layer, which is usually the surface layer and has an interface with the
GaN channel, is a source of reliability instability, including trapping in the gate-to-drain
access region, deep-level, and AlxGa1−xN/GaN interface [14]. Although most surface traps
can be passivated with different kinds of passivation layers (e.g., SiNx, SiO2, and Al2O3),
optimization of the traps inside the AlxGa1−xN layer and the AlxGa1−xN/GaN interface
is still an ongoing investigation. The reliability instability issues of the AlxGa1−xN/GaN
HEMTs are worse than that of conventional Si-based devices because of the interface quality
of the AlxGa1−xN/GaN [15–17].

The defect sites in the AlGaN barrier layer and the interface AlxGa1−xN/GaN are
the predominant cause of the transient-charging effects (Figure 1) [18,19]. The transient-
charging effects follow two different processes, fast and slow transient charging. Channel
carriers are easily injected into shallow defects (fast-transient charging) in the AlxGa1−xN
barrier layer and the interface of AlxGa1−xN/GaN. Then, trapped charges in the shallow
trap site follow thermally activated electron migration via trap-to-trap conduction (slow
transient charging). The fast-transient-charging effect is responsible for mobility degrada-
tion and threshold voltage (VT) instability in AlGaN/GaN HEMTs, while the slow transient
charging causes long-term stress VT instability. All of these are major concerns for imple-
menting GaN-based HEMTs in future applications. Improving the reliability instability of
AlxGa1−xN/GaN HEMTs requires thoroughly analyzing the trapping effects because the
channel carriers can easily tunnel into the pre-existing defect sites in the AlxGa1−xN barrier
layer and the interface AlxGa1−xN/GaN.
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Figure 1. Schematic of the band diagram of AlxGa1−xN/GaN HEMTs defining the “Shallow” and
“Deep” trap states that capture tunneling channel carriers.

In this study, a comprehensive analysis of the trapping effects in AlxGa1−xN/GaN
HEMTs with varying Al compositions was performed to optimize the device structure to
obtain improved performance. We performed a reliability instability assessment in two
different AlxGa1−xN/GaN HEMTs [x = 0.25, 0.45] using a single-pulse ID–VD technique
that could be demonstrated by fast-transient-charging effects. For long-term reliability
testing, we performed constant voltage stress (CVS) measurements under high-drain bias
conditions to analyze the charge-trapping phenomena of the channel carriers. VT shifting
during constant voltage stress was compared between the devices to verify the interfacial
degradation phenomena. Furthermore, the flicker noise characteristics were analyzed to
gain knowledge of the dominant defect locations of the two structures. Finally, to verify
the quantitative analysis of the trapping effects, the trap density (Nt) of both samples was
calculated using the carrier mobility fluctuation (CMF) model [20].
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2. Experimental Details

Figure 2 represents the fabrication process flow and the cross-sectional illustration
of the AlxGa1−xN/GaN HEMTs used in this study. The epitaxial layers were grown on a
semi-insulating SiC substrate using metal-organic chemical vapor deposition (MOCVD).
Each layer was grown in the following order: ~270 nm of an AlN buffer layer, ~400
nm of GaN channel, and ~20 nm of an AlxGa1−xN [x = 0.25, 0.45] barrier layer. Cl2-
based inductively-coupled plasma (ICP) etching was used to isolate the devices for the
mesa isolation procedure. The substrate was then cleaned for 30 s with a 1:5 solution
of HCl and deionized water to remove any native oxide. The ohmic metallization of
the source and drain was performed by an e-beam evaporator with a metal scheme of
Ti/Al/Ni/Au (25/160/40/100 nm). Rapid thermal annealing was used to alloy the ohmic
contacts at 830 ◦C and under N2 ambient for 30 s. An additional padding layer of Ti/Au
(20/300 nm) was deposited by an e-beam evaporator to ensure proper probe contact
during device characterization. The contact resistance (RC) and sheet resistance (RSH)
from TLM measurements were 0.25 Ω·mm and 380 Ω/� for the Al = 25% sample and
0.28 Ω·mm and 420 Ω/� for the Al = 45% sample, respectively. Finally, the gate pattern
was defined using e-beam lithography, and a T-shaped Ni/Au (20/400 nm) short-channel
gate was deposited. Gate-source and gate-drain distances were kept symmetrical, and the
drain-to-source distance was fixed at 2 µm. All electrical characteristics were analyzed
using the Keysight B1500A semiconductor parameter analyzer. The fast-transient-charging
effect characterization was conducted using the single-pulse ID–VD with a pair of B1530A
waveform generator modules. For the 1/f low-frequency flicker noise measurements, we
used a dynamic signal analyzer HP 35670A and a current preamplifier SR570.
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Figure 2. Fabrication process flow and the cross-section illustration of the AlxGa1−xN/GaN HEMTs
with different Al [25%, 45%] compositions in the barrier layer.

3. Results and Discussion
3.1. Charge-Trapping Analysis with Pulsed I–V

Figure 3a shows the DC transfer characteristics comparison of the devices with respect
to the gate overdrive voltage (VGS–VT). Although the device characteristics are quite similar
in DC measurements, the Al = 25% sample showed slightly higher drain current ID (at high
VGS–VT) and transconductance Gm. Figure 3b illustrates single-pulse ID−VD characteristics
with different Al compositions in the barrier layer. The output characteristics of a single-
pulse ID–VD technique with the rise (tr) and fall time (tf) of 50 ns were measured with a VD
sweep. Rise and fall times were kept small to achieve trap-free ID–VD characteristics [21].
A short pulse width of the gate and drain was applied during the measurement, reducing
fast-transient trapping/de-trapping effects.
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Figure 3. (a) DC transfer characteristics of the samples at VDS = 1, 5 V with respect to the gate
overdrive voltage (VGS–VT). (b) A single-pulse ID–VD characteristics of AlGaN/GaN HEMTs with
different Al compositions. (c) Rapid deterioration of the drain current over time when a maximum
pulse is applied to both gate and drain, which is consistent with the pulsed ID–VD sweep.

A significant reduction in the drain-current (∆ID) is observed during the fall-down
trace for the Al = 45% sample compared with the Al = 25% sample, related to the filling of
the resonant traps during the rise time and pulse width through the fast-transient charging
process. DC measurements cause a significant degradation because of higher integration
time (~5 ms) [22,23].

Figure 3c depicts the fast degradation in the drain-current with respect to time when
the gate pulse is VGS–VT = 2 V and drain bias is VDS = 5 V, corresponding to the pulsed
ID−VD characteristics. Channel carriers are trapped in the trap states near the interface
of the AlxGa1−xN barrier layer and the interface AlxGa1−xN/GaN [23,24]. ID degrada-
tion for Al0.25Ga0.75N/GaN device during 500 ns pulse width is ~20 mA/mm, while
Al0.45Ga0.55N/GaN device illustrates ID degradation in ~67 mA/mm. A significantly
higher ID degradation for the Al = 45% sample corresponds to a rougher interface between
the barrier and GaN channel caused by higher lattice mismatching.

Drain-current degradation with respect to pulsed time is related to charge-trapping in
the defect sites, which can be explained by the model of charging processes [25]. Channel
carriers can be tunneled into the shallow defect sites in the AlGaN barrier layer and can
occur to thermally activated electron migration between the defect sites with temperature
dependency. The location of these defect sites is below the conduction band, as illustrated
in Figure 1. Because of the extremely low trap energy of these shallow traps and the high
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density of states (DOE) from the GaN conduction band, the charging process will have a
fast charging time. Slow transient charging can be attributed to the capture of secondary
electrons induced from the trapped charges from the fast charging process.

3.2. Charge-Trapping Analysis with Constant Voltage Stress Condition

A long-term reliability evaluation was performed under high electric field conditions
to verify the interfacial degradation from charge-trapping. Figure 4a illustrates the charge-
trapping and de-trapping characteristics of two samples during a complete cycle of constant
voltage stress at both gate and drain and relaxation cycle. Applied stress conditions were
VGS = 2 V and VDS = 5 V. Threshold voltage shifting (∆VT) from trapping in the interface
states was evident. Channel carriers are trapped in the defect sites of the AlxGa1−xN
barrier via the interface caused by a high electric field and thin barrier layer [24,26]. The
degradation in VT is consistent with the electron trapping at the AlxGa1−xN barrier layer
defect locations from the GaN channel layer. This trapping phenomenon can be partially
recovered by applying recovery voltages of VGS and VDS = 0 V.
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Figure 4. (a) Threshold voltage shift (∆VT) characteristics of AlGaN/GaN HEMTs during constant
voltage stress at high drain bias (VDS = 5 V) condition illustrating charge-trapping and de-trapping
properties of the channel electrons. (b) Power-law time dependency of the observed ∆VT excluding
the fast-transient charge-trapping components (∆VT−∆VT.initial (1 s)) in two samples.

The fast-transient trapping effect, which is active during a short (<1 ms), is accountable
for the substantial change in the initial VT (1 s). This effect is caused by the tunneling of
channel carriers in the pre-existing defect sites inside the AlxGa1−xN barrier. The ∆VT
characteristics at Al = 45% had a higher initial ∆VT and more degradation than at Al = 25%.
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The time dependence of the VT was investigated to quantify the charge-trapping
phenomenon (Figure 4b). The fast-transient charge-trapping component, which is supposed
to saturate fully after 1 s of stress, may be eliminated, and the power-law equation can be
used to describe the time dependence ∆VT~tn of the ∆VT (∆VT − ∆VT.initial (1 s)) [23,27,28].
Both devices degrade according to the power-law kinetics. Time exponent, n, is in the
range of 0.17–0.21, a similar but somewhat lower range than for the Al = 25% device,
corresponding to a lower interfacial degradation [29]. Regardless of the value of n, the
∆VT values of Al = 45% devices are much higher than the Al = 25% device associated with
higher trap states in the Al0.45Ga0.55N barrier.

3.3. Quantitative Analysis of Trap Density with 1/f Low-Frequency Noise

Low-frequency noise (LFN) is an effective tool for analyzing the interface states in
a semiconductor device—predominantly responsible for performance degradation. A
flicker noise(1/f noise) is usually generated from the following two causes: Carrier Num-
ber Fluctuation (CNF) and Carrier Mobility Fluctuation (CMF) [20]. Both are related to
charge-trapping from the channel to the gate dielectric or barrier layer. Carrier interac-
tion between the channel and the near-interface dielectric/barrier traps causes CNF noise.
These charging effects also cause fluctuation in carrier mobility and result in correlated
mobility fluctuations [30,31]. Both CNF and CMF should be considered for the quantitative
trap extraction to evaluate accurate charge-trapping phenomena. With the CMF model
proposed in the literature [20], it is possible to gain knowledge on the 1/f noise in all the
operation regions (from linear to saturation and weak to strong inversion).

The 1/f noise measurements were performed from 1 Hz to 10 kHz at a fixed drain
bias of VDS = 0.5 V from off-state to accumulation, including the linear region. Figure 5a
illustrates the normalized power spectral density (SID/ID

2) with respect to the frequency

at VGS = VT condition. The power-law equation (1/f
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where the variable αsc is the coefficient for Coulomb scattering, µeff is the effective mobility
of the carriers, and CB is the capacitance per unit area of the AlGaN barrier. SVfb is the
flat-band voltage and can be defined as follows [33–35]:
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where q, kT, and Nt are symbols used to represent elemental charge, thermal energy, and
trap density, respectively. λ = [4π(2m*ΦB)1/2/h]−1 represents the attenuation tunneling
distance (ΦB denotes the barrier height) [36]. Figure 5b illustrates a good fitting between the
normalized drain-current power spectral density (SID/ID

2) and the right side of Equation
(1), which prevails in the CMF model. Using Equation (2) and the SVfb extracted from the
fitting, Nt for both devices was extracted. Al = 45% devices had a 40% higher Nt value of
3 × 1019 cm−3·eV−1 compared with 1.8 × 1019 cm−3·eV−1 for the Al = 25% devices. The
reason for these noise characteristics is attributed to the fact that the Al0.45Ga0.55N/GaN
interface creates higher defect sites near the interface, which increases the probability of the
channel electron tunneling into the AlGaN barrier layer.

4. Conclusions

We demonstrated an in-depth trapping characteristic analysis of the AlxGa1−xN/GaN
interface of AlGaN/GaN HEMTs based on the Al composition in the AlxGa1−xN barrier and
how it affects device performance. Higher ID degradation for the Al0.45Ga0.55N/GaN de-
vices during the pulsed ID−VD characterization was attributed to the higher fast-transient
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trapping in the Al0.45Ga0.55N/GaN interface and reliability instability. During constant
voltage stress conditions, the Al0.45Ga0.55N/GaN device had a higher VT shift corre-
sponding to higher trapping in the Al0.45Ga0.55N barrier. A larger time exponent n in
the Al0.45Ga0.55N/GaN device indicated higher interfacial degradation. During quantita-
tive extraction of volume trap density, the Al0.45Ga0.55N/GaN device had a 40% higher Nt,
further verifying the higher trapping phenomena in the Al0.45Ga0.55N barrier caused by
the rougher Al0.45Ga0.55N/GaN interface. These results demonstrate that trapping effects,
which impact device performance considerably, are influenced primarily by the quality of
the interface between the AlGaN and GaN layers. Future applications of the GaN HEMT
devices can benefit from enhanced device properties by lowering the Al content to reduce
lattice mismatches.
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