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Abstract: The human body normally uses alternative materials such as implants to replace injured
or damaged bone. Fatigue fracture is a common and serious type of damage in implant materials.
Therefore, a deep understanding and estimation or prediction of such loading modes, which are
influenced by many factors, is of great importance and attractiveness. In this study, the fracture
toughness of Ti-27Nb, a well-known implant titanium alloy biomaterial, was simulated using an
advanced finite element subroutine. Furthermore, a robust direct cyclic finite element fatigue model
based on a fatigue failure criterion derived from Paris’ law is used in conjunction with an advanced
finite element model to estimate the initiation of fatigue crack growth in such materials under ambient
conditions. The R-curve was fully predicted, yielding a minimum percent error of less than 2% for
fracture toughness and less than 5% for fracture separation energy. This provides a valuable technique
and data for fracture and fatigue performance of such bio-implant materials. Fatigue crack growth
was predicted with a minimum percent difference of less than nine for compact tensile test standard
specimens. The shape and mode of material behaviour have a significant effect on the Paris law
constant. The fracture modes showed that the crack path is in two directions. The finite element
direct cycle fatigue method was recommended to determine the fatigue crack growth of biomaterials.

Keywords: implant; biomaterial; bone; XFEM; J-integral; fracture toughness

1. Introduction

Fatigue fracture is the most common type of damage in implants used in the human
body to replace injured bone [1]. In addition, implants used in bone replacement are
subjected to cyclic loading conditions [1]. In biomedicine, many types of materials are
used as implants: stainless steel, titanium and its alloys, and Co-Cr materials. In addition,
biomaterials can be natural or artificial materials that are commonly used as implants in
humans to replace injured or lost bones to enhance the comfort of life of the individual
or patient [2–5]. Titanium and its alloys are given special consideration due to their good
biocompatibility and biodegradability [6,7]. Titanium alloys such as Ti-6Al-4V, a commonly
known biomedical alloy, are characterised by a high fatigue strength of 460 MPa when
tested at room temperature and a high frequency of 20 kHz. Furthermore, the stress
amplitude decreases with an increasing number of cycles [8]. Titanium alloys used as
implants are usually subject to low cycle fatigue [9].

The fatigue crack growth FCG, other mechanical properties, and biocompatibility of
titanium and its alloy are highly influenced by surface treatment [9–11]. In addition, the
microstructure of titanium alloy has a great influence on fatigue crack growth, as the grain
size and its arrangement affect crack growth behaviour [12–14]. Moreover, Ti-6Al-7Nb and
Ti-6Al-4V showed a significant improvement in fatigue and corrosion behaviour when
their surfaces were treated with titanium dioxide nanotubes [15]. Niinomi [16] investigated
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the mechanical compatibility properties of titanium alloys. These properties were the
modulus of elasticity, wear properties, fatigue crack growth, friction fatigue, fracture
toughness, and ductility. Additionally, the compressive fatigue behaviour of titanium alloys
for biomedical applications was investigated. Compression fatigue was associated with
commutation loading and resulted in higher fatigue strength. An early study attempted
to find a correlation between the fracture toughness of titanium and its alloy and tensile
behaviour. Simple correction was better for Ti with a limited range of microstructures,
whereas complex corrections were valid for Ti with a wider range of microstructures [17].
Moreover, the FCG for Ti-6Al-4V was a function of crack length, as the short fatigue was
determined by the cyclic stress range, while the long fatigue crack was calculated by the
stress intensity factor range [18]. In a study by Prasad et al. [19], two temperatures were
tested: 450 ◦C and 600 ◦C. It was found that 450 ◦C gave higher fatigue strength due to
dynamic stretch ageing. Other studies by Wang et al. [20] investigated the effect of ageing
temperature and times or their types [21] on the mechanical and microstructural properties
of Ti-Nb alloys for biomedical applications. It was found that higher ageing temperature
increases tensile strength, improves ductility, and increases plasticity.

On the other side of the study, a numerical model was implemented to predict the
mechanical behaviour of biomedical material in order to avoid expensive and destructive
mechanical characterisations. Neto et al. [22] numerically investigated the FCG for the
alloy Ti-6Al-4V. The simulation was performed for a compact tensile test, and the effects
of crack blunting, material hardening, and crack closure problems were also considered,
which were the main reason for the overload results in the FCG behaviour. In addition, a
more advanced FE modelling to predict the FCG, tensile strength, and fracture toughness
of Ti-6Al-4V alloy was prepared by Verma et al. [23]. MATLAB was used to extract the
XFEM equations using the Abaqus package. The model showed that the FCG was higher at
a high stress ratio. Additionally, the MATLAB XFEM was available to predict the fracture
behaviour and FCG. The FCG increased at lower stress ratios, while the fracture toughness
in the centre of the crack surface was predicted to be critical in the FCG case.

A titanium alloy, Ti-27Nb, has played a dominant role in biomedical applications as
an attractive bi-material for implants and other bone substitutes due to its good fatigue
resistance, non-toxicity, and good biocompatibility with good mechanical properties [24,25].
It has lower ductility but higher fatigue strength, which makes it more suitable for cyclic
loading applications such as implants [26–28]. In addition, the fracture toughness of the
Ti-27Nb alloy was 50 MPa

√
m, which was less than the other known biomedical titanium

alloy Ti-6Al-4V, which was 65 MPa
√

m [29]. The fatigue fracture behaviour of the Ti-27Nb
alloy showed brittle fracture with transgranular and intergranular fracture patterns as
reported in [29,30]. An older study by Amjad et al. [31] looked at the Ti-27Nb alloy and
simulated the effects of daily life on the performance of a human implant made from
this alloy.

The Ti-27Nb alloy is a relatively new material and a promising material for biomedical
applications, as shown in the previous review. The fatigue properties and fatigue crack
growth need to be studied in more detail for this type of material, in particular, numerical
studies and robust mathematical tools to predict the occurrence of fatigue cracks. Therefore,
the present work focuses on the following objectives: (1) extraction of a finite element
model FEM to predict the R-curve of the Ti-27Nb alloy at room temperature, (2) comparison
of the results obtained by other standard forms of fracture toughness measurement based
on a single value called J-integral, and (3) derivation of a FEM to predict the FCG under
constant amplitude in the low cycle fatigue region and comparison of the failure modes
published with other available results.

In Section 1, the properties of Ti-27Nb alloy are outlined; in Section 2, the fracture
toughness calculated by XFEM is extracted, followed by the method to draw the R-curve;
and in Section 3, the FCG analysis using XFEM is discussed and derived. Finally, a compre-
hensive comparison is performed to identify the best results and quantify the accuracy of the
modelling method.
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2. Material (Ti-27Nb Alloy)

The Ti-27Nb alloy has the flow properties shown in Figure 1a and listed in Table 1. The
mechanical properties were determined using a simple tensile test described in Ref. [29],
and the hardening properties were determined using the logarithmic scale of the yield
curve (Figure 1b). These types of alloys have attractive applications in human implants,
where they exhibit good biocompatibility and high durability. The main component of
the Ti-2Nb alloy is titanium (Ti) and niobium (Nb), with 26.01 ± 1.05 wt% each [29]. The
durability of the implant is more dependent on the fatigue life; therefore, it is important to
study the behaviour of such a bioactive alloy under fatigue.
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Table 1. Mechanical properties of Ti-27Nb alloy [29].

Properties Value

Density (Kg/m3) 4520

Young’s modulus (GPa) 87.45

Yield strength (MPa) 600.5

Ultimate strength (MPa) 874.63

Fracture strain 0.0264571

Strain rate, (mm/mm)/s 0.166

Poisson’s ratio, µ 0.33

N, strain hardening 0.7

K, (MPa) 1148

3. Extended Finite Element Method XFEM

The extended finite element method is a fairly new advanced method in which crack
initiation and propagation are independent of the mesh. It was developed by Belychko
and Blak [32] following the older model of Melenk and Babuska [33]. The method was
characterised by the possibility to simulate any crack propagation without a mesh [34].
Therefore, the problems of calculation of fracture toughness and stress intensity factor
could be solved in a short time with very accurate results [35]. The mesh-free function
(Equation (1)) of crack propagation by XFEM is as follows [34]:

uh = ∑
i∈I

ui Ni(x) + ∑
i∈I

ai Ni H(x) + ∑
i∈k1

Ni(x)
(

4
∑

l=1
bl

i,1Fl
1(x)

)
+ ∑

i∈k2
Ni(x)

(
4
∑

l=1
bl

i,1Fl
2(x)

) (1)
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where ui is the displacement unit, l is the nod at the element, Ni is the geometric function of
node i, ai is the crack length, H(x) is the Heaviside function at the subset of enriched nodes
(i ∈ I), (i ∈ k1), and (i ∈ k2) are the set of nodes to enrich to model crack tips numbered
1 and 2, respectively. bl

i,1, bl
i,2 are displacements of nodes 1 and 2. The Heaviside function

(H(x)) is defined as follows:

H(X) =

{
−1, i f x > 0
1, i f x < 0

(2)

The use of coherent units in XFEM simulations can lead to unreliable results due to
the interface effects described by the coherent interface model [36]. These effects can cause
oscillations in the results and reduce the accuracy of the simulation [37]. Furthermore, the
use of cohesive elements with force correction has been shown to improve the accuracy of
XFEM simulations with coherent units [38]. However, more research is needed to develop
effective solutions to improve the reliability of XFEM results with coherent units.

In summary, the XFEM method is a powerful numerical technique for simulating crack
propagation. However, the use of coherent units can limit the reliability of the results due
to interface effects. Possible solutions to improve the accuracy of XFEM simulations with
coherent units include the use of cohesive elements with force correction. Further research
is needed to develop more effective solutions to improve the reliability of XFEM results
with coherent units [39,40]. Therefore, in the present study, the coherent surfaces were not
applicable, and they let the crack propagate through the element or through boundaries.

Fracture Toughness (XFEM)
According to the LEFM theories, the fracture toughness KIC or the corresponding

surface release energy (GIC), the J-integral, is well considered around the head of the
crack tip. The asymptotic crack-tip functions Fl

2(x) can be calculated using Equation (3)
as follows:

Fl
2(x) =

{√
r sin

(
θ

2

)
,
√

r cos
(

θ

2

)
,
√

r sin
(

θ

2

)
sin(θ),

√
r cos

(
θ

2

)
sin θ

}
(3)

where (θ; r) is a polar coordinate system where the origin at the crack tip with its tangential
occurs when (θ = 0), and the parameter (

√
r sin θ

2 ) considers the discontinuity across the
crack face. This function has a lot of applications, including biomaterial and elastic–plastic
power law hardening material.

The purpose of these functions is to calculate the fracture toughness using the J integral
values and the corresponding stress intensity factor. The finite element damage model
implemented to simulate the fracture toughness of Ti-27Nb alloy is based on the theory of
maximum principal stress σ1 at which the crack propagates. Two finite element models
were implemented: the linear (elastic) behaviour through a compact tensile specimen and
the nonlinear (elastic–plastic) behaviour through a tensile specimen with a central notch.

The two models were used to compare the accuracy of the specimen standards by
simulating the finite element numerical model. For the linear-elastic behaviour σ1 model,
the value of yield strength was chosen to be 600.5 MPa. For the elastic–plastic model, a
value of 874.63 MPa was chosen. In elastic or linear behaviour, the crack starts at the yield
point, the critical J-integral or release energy is based on a single value at the peak load,
and no plastic region is implemented. On the other hand, in elastic–plastic or nonlinear
behaviour, the material with strain hardening (see Figure 1b) gives a plastic damage surface,
while the crack propagates when the yield point is reached since the cohesive stress above
the crack tip is considered. Therefore, the nonlinear model is used to predict the R-curve of
the material at hand.

The finite element domain of the compact tensile specimen (CT) with linear model
test is shown in Figure 2a; the dimensions are in accordance with ASTM E399 [41], and
the specimen is loaded in tension until failure. The boundary conditions are explained
according to the experimental data in Ref. [29]; the two loaded pins were loaded with



Materials 2023, 16, 4467 5 of 17

a peak load PQ of 3030 N, and the initial value per crack was 1.3 mm. No DOF was
allowed across the z-axis or x-axis, and one degree of freedom was allowed across the
y-axis (see Figure 2b). XFEM was used to measure the J-integral around the crack tip, so no
crack-enriched function was determined. The total number of elements was 40,000, with a
hexagonal shape, and a linear brick with eight nodes. A reduced integration and hourglass
control (C3D8R) was chosen. Region A is denser and finer than the other section of the
sample. The convergence of the mesh was tested many times to select these types and the
number of elements.
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On the other hand, the mean notch stress (CNT) was simulated using nonlinear
behaviours to progress the crack by plastic deformation and predict the R-curve of the
Ti-27Nb alloy. The CNT specimen was selected according to the ASTM E-647 standard [42]
and the recommendation of Newman and Haines [43] (see Figure 3), where the length-to-
width ratio (L/W) is equal to 0.5 and was used many years ago as a reference for uniformly
displaced and loaded specimens, which are very close to the values of stress intensity
factors. The material used for the specimen was the yield curve data shown in Figure 1a
and listed in Table 1. The specimen has one degree of freedom in the y-axis, while it is
constrained in all directions of the x- and z-axes. A total of 1650 elements with the same CT
characteristics and shape were used. In order to reduce the computation time, the region
(A) was made denser and finer than the other regions of the samples (see Figure 3b). The
model allowed us to measure the peak load (PQ) and displacement relationship during the
crack propagation. According to Feddersen [44], the critical stress intensity factor can be
calculated with Equation (4) as follows:

KIC = s
√

πa F(a/w) (4)

where S = PQ
Aremote was the remote stress over remote area Aremote, a was the crack length

(10 mm), and F(a/w) was a geometric correction factor related to specimen width w, which
can be measure using Equation (5) [43]:

F(a/w) =

√
sec
(πa

w

)
(5)

Then, the corresponding surface release energy can be measured using the following
Equation (6):

GIC =
KIC

2(1− ν2)
E

(6)

where E is the young modulus and ν is Poisson’s ratio.
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The damage evolution law implemented in fracture toughness perdition is the max-
imum crack opening displacement δCr, which can be calculated using Hahn and Rosen-
field’s [45] or Perez’s [46] model as follows:

δCr = B× ε f (7)

B is the specimen thickness = 3 mm and ε f is the fracture strain in a simple
tension test.
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4. Direct Cycle Fatigue

Direct cycle fatigue is characterised by a high stress amplitude and a low frequency,
and it is characterised by a low number of fatigue cycles between 10 and 100,000 cycles and
a low fatigue life [47]. In low cycle fatigue (LCF), stress is responsible for both elastic and
plastic strains. Plastic strain is particularly intense in geometries with stress increases or
discontinuities [48]. High-cycle fatigue, on the other hand, involves a higher number of
cycles in excess of 100,000 cycles where plastic strain does not occur [47].

Crack growth was controlled using Paris’ law, combining the fracture energy release
rate with the crack growth rate (see Figure 4). There were two limits; the first limit was the
threshold energy release rate, GThresh, at which no fatigue crack initiation or propagation
occurs, and the second was the upper limit energy release rate, Gpl , at which fatigue crack
growth propagates at an accelerated rate. The limits are normalized using the critical
fracture energy release rate GIc as the ratio of GThresh/GIc and the ratio of Gpl/GIc, with
default values of 0.01 and 0.85 chosen for these two limits, respectively.

The fatigue crack growth initiation criterion is applied at the crack tip through the
interfaces, the analysis in case of law cycle fatigue based on the change of fracture energy
release rate ∆G, which is defined as the difference between maximum and minimum values
of fracture energy release rate [49]. The initiation criterion (see Equation (8)) implemented
was as follows:

f =
N

c1∆Gc2
≥ 1 (8)

where c1 and c2 are material constants and N is the number of cycles. The element at the
crack tip fractured only after this criterion was complete and the maximum fracture energy
was greater than energy Gthresh. In the present study, the value was taken as default values.
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After crack initiation criterion take place and the first element at the crack tip is
released, the fatigue crack growth propagation would be followed based on the fracture
toughness (∆K), as in the Paris–Erdogan equation [49] shown in Equation (9):

da
dN

= c (∆K)m (9)

The XEFM was used as the fracture release energy rate G; therefore, using it in relation
to Equation (6), the Paris–Erdogan equation can be rewritten as follows:

da
dN

= c3 (∆G)c4 (10)

where c4 = m
2 and c3 can be calculated using the following equation:

c3 =
cKm(

K2

E

)m/2 (11)

The material constant values m and c were 2.9 and 10 × 10−7, respectively, for the
Ti-27Nb alloy. These values were determined using the non-direct XFEM, whereas c3 and
c4 were calculated as 5.226 × 10−5 and 1.4, respectively.

The crack growth rate was calculated from an advanced crack of the progressing path,
as follows:

da
dN

=
ai+1 − a1

Ni+1 − N1
(12)

where i is the point of the advanced crack equal to 1, 2, or 3.
The fracture energy release rate implemented in the present study used the power law

for a mixed mode of failure, as follows in Equation (13) [48]:

Gequiv

Gequivc
=

(
GI

GIC

)am
+

(
GI I

GI IC

)an
+

(
GI I I

GI I IC

)ao
(13)
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The value of the mixed-mode fracture energies for the Ti-27Nb alloy is considered to
be an isotropic material biocompatible with human implants and was therefore chosen to
be the static fracture release energy in mode I at 25 kJ/m2.

The crack length used to calculate the fracture toughness is a two-point midpoint
linear fit (average length of two adjacent points) [50,51]. Therefore, the change in fracture
toughness (∆K) can be calculated in Equation (14), as follows [52]:

∆K = Kmax − Kmin (14)

For low-cycle fatigue with a higher stress ratio, the relation between stress ratio R with
the fracture toughness ratio was as follows [53]:

R =
Kmin
Kmax

(15)

By instituting Equation (15) into Equation (14), an expression for the change of fracture
toughness can be seen, as shown in Equation (16).

∆K = Kmax(1− R) (16)

Mesh Convergence and Mesh Refinement

One of the major advantages of using the extended finite element method (XFEM)
is its reduced dependence on mesh convergence studies. Mesh convergence studies are
typically used in a finite element analysis (FEA) to ensure that the model accurately captures
the behaviour of the system being analysed [54,55]. However, mesh refinement can also
increase the time and cost of analysis, and may not always provide an accurate solution for
certain problems [56,57]. With XFEM, the need for extensive mesh convergence studies is
greatly reduced, as the method is designed to handle discontinuities and singularities in
the solution without requiring a fine mesh [57]. This not only saves time and resources but
also allows for more accurate results with less computational effort.

Another advantage of using XFEM is the improved accuracy that can be achieved
with coarser meshes. Traditional FEA methods require a fine mesh to accurately capture
discontinuities or singularities in the solution [58]. However, XFEM can accurately model
these features with a coarser mesh, which reduces the computational cost and time required
for analysis [59]. This makes XFEM an attractive option for problems where a fine mesh
may be difficult to create or computationally expensive to solve.

XFEM also offers significant time and cost savings in simulation studies. With XFEM,
there is no need for remeshing as the geometry of the fracture does not depend on the
mesh structure [57]. This eliminates the need for costly and time-consuming remeshing
procedures, which can be a significant bottleneck in simulation studies. Additionally,
XFEM has been automated to arrive at a convergent mesh, which further reduces the time
and cost of analysis [60]. Thus, XFEM offers a powerful and efficient tool for modelling
discontinuities and singularities in the solution, while also providing significant time and
cost savings in simulation studies.

When damage occurs in ductile metal, the relationship between stress and strain is
strongly dependent on mesh size and density. Therefore, a damage assessment law was
derived by Hillerborg [61] based on a material parameter called fracture energy, G f , which
is energy used to separate crack length units. The fracture toughness is expressed in terms
of the characteristic length to reduce the dependence on mesh size, as follows:

G f =
∫ ε

pl
f

ε
pl
0

Lσydεpl =
∫ upl

f

0
σydupl (17)
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where ε
pl
f is the equivalent plastic strain at failure related to the characteristic element

length and upl is the corresponding plastic displacement. Therefore, there is no need for a
lot of mesh convergence study [62–64].

The XFEM for direct cycle fatigue uses linear and nonlinear models to compare the
two models, with a compact tensile test section shown with the geometry in Figure 5a.
The maxps or maximum tensile separation stress was 600.5 for the Ti-27Nb alloy in the
case of the linear model, while 874.63 was used for the nonlinear model and plastic flow
(see Figure 1a). In addition, the damage assessment law used in the fatigue crack growth
simulation was a linear independent mode, and energy types were used. The fracture
energy used was 25 kJ/m2, as predicted in the previous sections. The element type was an
eight-node linear brick with reduced integration and hourglass control (C3D8R). The total
number of elements was 7560, with region A having a denser and finer mesh (see Figure 5b).
The boundary condition was controlled using the maximum peak load of 3030 N, allowing
one degree of freedom through the y-axis while the other direction was fixed. The length
before the crack was 1.3 mm.
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A nonlinear model with the same permeable characteristic was used for the central
notch stress, and the area is the same as in Figure 3, with an initial central crack of 10 mm.
The objective of using this specimen type is to study the effects of specimen types on crack
growth rate. The boundary conditions were controlled strains, implementing one degree of
freedom with a maximum displacement corresponding to the peak load in the y-direction,
while the other directions were constrained.

To reduce the number of cycles to determine the pre-constant of the Paris equations
c and m, a simple centre notch specimen with all previous linear model features was
implemented in an extended finite element model with general static step.

The models all require a step amplitude to generate the fluctuating load. The sine wave
step shape was used with a frequency of 10 Hz. It is a fully reversed cyclic periodic step
(see Figure 6) with voltage ratio and amplitude (R = 0.1, µa = 0.45). The step amplitude
form is as follows [65]:

µa = A0 +
N

∑
n=1

[An cos nω(t− t0) + Bn sin nω(t− t0)] (18)

where the sin wave is An = 0, the initial time shift is (t0 = 0), and A0 = 0 and A1 = 0.45 for
N = 1. The (ω = 2πf) frequency is termed in rad/s, and the (f) frequency is termed in Hz.
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5. Results and Discussion
5.1. Facture Toughness

The Ti-27Nb alloy has a large plastic zone, so the 5% secant method proposed by the
ASTM E399 standard is totally inappropriate for calculating the fracture toughness [66]
since this method contains an intrinsic quantity that depends on the theoretical toughness.
Therefore, the fracture toughness is preferably calculated using the J-integral method or
the displacement of the crack opening. It is recommended to obtain the total R-curve. The
central notch test recommended by Newman and Haines [43] was the simplest method to
obtain the R-curve of ductile metal, so it was used to obtain the R-curve shown in Figure 7
(blue triangles). The initiation fracture toughness (KIC) can be determined as reported by
Kobayashi [67], and it is the intersection of the parallel line with the truncating straight lines
at a crack extension of 0.15 mm. It was the point of (48.9 MPa

√
m), and the corresponding

fracture release energy GIC is 24.88 kJ/m2 These values are very close when compared with
the experimental data from Ref. [29]; the percentage errors for XFEM are 2.2% and 5.2%,
respectively. Therefore, the R-curve is a good simulation of the material response. The
slope of the truncating straight line can be extracted from Equation (19), as follows:

slop = γ = 2σf δa (19)

where σf is the yield stress, which is the average value between yield strength and ultimate
strength, and δa is the crack length, which is 0.02 under static loading and 0.03 under
dynamic loading [68]. The effect of the specimen shape and material behaviour is also
illustrated in Figure 7. The single-point J-integral method FE (XFEM fixed-crack method)
for the elastic or linear behaviour of a tensile specimen with a central notch and a controlled
load at the point of first failure of 30,000 N (see Figure 8) for a central crack of 15 mm gives
relatively similar values to the experimental data with a percentage error of 1% and 3%
for the value of fracture toughness and the corresponding fracture energy, respectively.
Moreover, the results of the linear or elastic model of the compact stress of a single-point
FE J-integral method also provide reasonable and good results with a small percentage
error of 2 and 4.5% for KIC and GIC, respectively. The results of the elastic model with
different specimen shapes are acceptable and in agreement with the elastic–plastic model
of XFEM and the model reported in [66]. Since the different specimen shape has little effect
on the fracture toughness of the material fracture across microvoids, the fracture initiation
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value is the value at the first crack before the material involved plastic deformation zone.
Table 2 shows the comparison between the model and the available experimental results.
The stress distribution over the crack area is shown in Figure 8a. The stress was low for the
initiation crack length of 10 mm, and after the crack propagated, the stress-take fluctuation
appeared as a peak point, then the stress decreased and this point shifted to the right side
of the curve. The maximum value of peak stress was just before the complete fracture of
the specimen. After the peak load was reached, the crack began to propagate, and as the
crack advanced, the load gradually decreased, as shown in Figure 8b. The point of first
crack was observed at the buckling point or knee for a crack length of 10 mm at a load of
about 39 kN. The last length, 43.17 was not the full length of the specimen (45 mm) because
the specimen in XFEM did not separate completely. The Mises stress distribution over the
specimen’s surfaces showed the stress concentration zone at the crack tip in red in both
models (see Figure 9a,b).
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Table 2. Comparison between the different FE models with experimental results.

Models Experimental [29] XFEM %Error
J-Integral (Fixed-Crack XFEM)

CNT %Error CT %Error

Fracture toughness KIC, MPam1/2 50 48.9 2.2 49.5 1 49 2

Release energy GIC, kJ/m2 26.3 24.8 5.2 25.5 3 25 4.5
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5.2. Direct Cycle Fatigue

Figure 10 shows the growth of fatigue cracks for a specimen with a centre notch
extracted using non-direct XFEM (static step with amplitude) and direct XFEM cycle
fatigue. The log–logarithmic scale of the results was used to measure Paris’ law constants
c and m. The results of the two methods are close to each other, which is due to the fact
that the fracture criterion implemented in the direct cycle fatigue model uses the values
of c3 and c4 calculated with the values of c and m predicted in the non-direct XFEM. The
maximum average difference was 13.8 and 12, respectively, for the two models compared
to the experimental results of Ref. [29], as listed in Table 2. This difference is accepted
for fatigue results with large data points [62,69]. A centre notch tension specimen was
used to determine the c3 and c4 components of the fracture criterion. The minimum value
of dynamic fracture toughness change, ∆K, for the mean notch was 67.1 MPa

√
m and

63.7961 MPa
√

m, predicted in the two models with little change due to the change in crack
length in each model being a factor change in each model. The change in crack length
was small. Therefore, the corresponding calculated fracture toughness in Equation (4)
was small.

Figure 11 shows the Paris’ law fatigue crack growth curve for two other specimen
shapes according to the ASTM standard [42] (CT) by the XFE model with direct cycle and
logarithmic scale. It was found that both the elastic or linear and elastic–plastic models
gave approximately the same fatigue constants, c and m (1 × 10−7) and 1.6, respectively
(see Table 3). The percentage difference between the predicted and experimental data is
relatively small, 9.2%. In addition, the predicted values for the fatigue of the large data
points were within the standard ranges for the Ti-27Nb alloy; m ranges from 1.015 [9] to
3.17 [13] or 5.96 [19]. Therefore, the predicted values were accepted.
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Table 3. Fatigue crack growth data comparison of Ti-27Nb alloy.

FEM Model
Fatigue Constants

%Average Difference
m c

Experimental data [29] 2.12 10−7

CNT–non-direct cycle XFEM–elastic model 2.9 10−7 13.8

CNT–direct cycle XFEM–elastic model 2.8 10−7 12

CT-elastic XFEM 1.6 10−7 9.2

CT–elastic–plastic (nonlinear behaviour) XFEM 1.6 10−7 9.2

Figure 12 shows the relationship between fatigue crack growth and the change in
fracture toughness, ∆K, as predicted by Paris’ equation on a linear scale. It was found
that the curves are close and there is little difference between the XFEM results and the
experimental equation. However, the predicted values with CT stress were closer than
those of CNT, and this was because the experimental data used the CT; therefore, there was
a symmetry between numerical XFEM data. The fracture surface was well simulated in
both models. For the elastic model (Figure 13a), the crack through two areas was straight,
then inclined downward, and was almost smooth as shown by the experimental work of
Ref. [70], which was due to the anisotropic structure of Ti-27Nb alloy in this orientation [70].
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In the plastic model, the crack was shorter (Figure 14a) than the experimental image of
Ref. [70]. The crack surface was not smooth but had a lamellar microstructure [13].
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specimen. The XFEM accuracy was less than 2.2% and 5.2% for the corresponding fracture
energy GIC. The model types and specimen shape for anisotropic materials such as Ti-27Nb
have little effect because the measured fracture toughness was the initiation fracture tough-
ness, which is related to the point at which the crack propagates, commonly known as the
peak load point. The fatigue crack growth rate da/dN was well predicted and its relation-
ship with the change in fracture toughness ∆K, known as Paris’ law, was recognised; the
equation constant c and m were predicted with a minimum percent difference of less than
nine. In addition, the type of specimen and material behaviour has a discernible effect on
fatigue crack growth. Fatigue fracture modes for Ti-27Nb were well predicted, as two crack
paths were identified that led to complete fracture with a laminar surface crack.
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