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Abstract: This paper used poly (aryl ether ketone) (PAEK) resin with a low melting temperature
to prepare laminate via the compression-molding process for continuous-carbon-fiber-reinforced
composites (CCF-PAEK). Then, poly (ether ether ketone) (PEEK), or a short-carbon-fiber-reinforced
poly (ether ether ketone) (SCF-PEEK) with a high melting temperature, was injected to prepare the
overmolding composites. The shear strength of short beams was used to characterize the interface
bonding strength of composites. The results showed that the interface properties of the composite
were affected by the interface temperature, which was adjusted by mold temperature. PAEK and
PEEK formed a better interfacial bonding at higher interface temperatures. The shear strength of the
SCF-PEEK/CCF-PAEK short beam was 77 MPa when the mold temperature was 220 ◦C and 85 MPa
when the mold temperature was raised to 260 ◦C. The melting temperature did not significantly affect
the shear strength of SCF-PEEK/CCF-PAEK short beams. For the melting temperature increasing
from 380 ◦C to 420 ◦C, the shear strength of the SCF-PEEK/CCF-PAEK short beam ranged from
83 MPa to 87 MPa. The microstructure and failure morphology of the composite was observed
using an optical microscope. A molecular dynamics model was established to simulate the adhesion
of PAEK and PEEK at different mold temperatures. The interfacial bonding energy and diffusion
coefficient agreed with the experimental results.

Keywords: poly (aryl ether ketone); poly (ether ether ketone); overmolding; interfacial properties;
molecular dynamics simulation

1. Introduction

High-performance thermoplastic composites have advantages such as high toughness,
impact resistance, low moisture absorption rate, and excellent environmental resistance.
Its raw materials can be transported and stored at room temperature. Moreover, it shows
a fast-forming and secondary-forming speed [1–3]. Good welding, recycling, and repro-
cessing are also among their characteristics, which is why it has been widely used in
aerospace technologies [4,5]. High-performance thermoplastic composites have advan-
tages in fabricating cabin doors, covers, and other parts vulnerable to impact damage and
must be loaded and unloaded repeatedly. It can effectively compensate for the inherent
problems of insufficient interlaminar toughness, poor impact damage resistance, and poor
open-hole strength of thermosetting composites. Typical high-performance thermoplastic
composites include poly (ether ether ketone) (PEEK) [6], poly (aryl ether ketone) (PAEK),
poly (phenylene sulfide) (PPS), poly (ether imide) (PEI), and other resin-based compos-
ites [7–9]. Its primary forming process includes molding, autoclave forming, automatic
laying forming, welding forming, and stamping forming processes [10]. Compared with
the forming process of thermosetting composites, thermoplastic composites have a short
and flexible forming cycle. For locally reinforced structures, such as stiffened siding, ther-
mosetting composites are usually co-cured, glued, or riveted [11]. However, thermoplastic
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composites are generally formed by hot pressing. Then the reinforced panel structure
is manufactured by unique connection processes of thermoplastic composites, such as
induction and resistance welding [12–14]. Although the molding cycle is shortened to a
certain extent, the welding process needs special equipment, and the secondary molding
will lead to higher manufacturing costs. Therefore, the automotive industry commonly uses
the overmolding [15–18] process of thermoplastic composites. Studying the overmolding
process of high-performance thermoplastic composites for aerospace applications is of
great engineering significance.

The overmolding process refers to the combination of the bearing efficiency of the
continuous-fiber-reinforced thermoplastic composite structure and the manufacturing flexi-
bility of the injection molding process of the short-carbon-fiber-reinforced thermoplastic
composite. This is carried out to realize the low-cost integrated manufacturing of ther-
moplastic composites. Many studies have shown that the interfacial bonding of bilayer
structures mainly depends on mechanical locking and resin-fusion mechanisms, and the
latter is the main influencing factor. Aurrekoetxea et al. [19] studied the influence of the
processing conditions on the interfacial bonding strength when polypropylene (PP) was
injected into PP laminate. The interfacial bonding strength was superior when the tempera-
ture exceeded the matrix resin melting point. Robert Boros et al. [20] studied the influence
of plasma treatment on the interfacial bonding strength of overmolding. The results show
that the bonding strength of ABS/PA6 can reach 12 MPa after plasma treatment, but there is
no bonding when untreated. Koki Matsumo et al. [21] studied a new method to realize the
nanoscale interconnection between different layers by inserting thin films between them.
The results show that the interlaminar shear strength is improved by adding a thin film
containing short carbon fibers and carbon nanotubes at the overmolding interface. The
optimization of the dispersion and forming conditions of carbon nanotubes significantly
improved the interlaminar shear strength. To sum up, the interface treatment is the critical
factor affecting the interfacial bonding strength in the overmolding process. Controlling
the mold and melting temperatures, surface treatment, and other methods can improve the
interfacial bonding strength.

However, regarding thermoplastic composites, reaching the melting temperature at
the resin interface above (close to 340 ◦C) in the overmolding process is complex. In
addition, it will become more difficult to remove the mold of the composite materials at
high temperatures. Therefore, this paper uses PAEK as the resin matrix of continuous-fiber-
reinforced composite materials with a relatively low melting temperature. With a high
melting temperature, PEEK was applied as the resin matrix of the composite materials used
in injection molding to prepare the overmolding materials. The melting temperature of the
injection resin is expected to increase the interface temperature between the two materials
to promote the mutual diffusion and fusion of resins at the interface and improve the
interfacial bonding strength. This paper systematically studied the influence of mold and
melting temperatures on composite materials’ interfacial bonding strength. The mechanical
properties and morphology of the composites were characterized using short-beam shear
and SEM, and the experimental results were verified with a molecular dynamics simulation.

2. Experimental Materials and Methods
2.1. Experimental Materials

This study prepared the continuous-fiber thermoplastic composite (CCF-PAEK) using a
one-way prepreg (T700/PAEK, Yingchuang New Materials Co., Ltd., Heilongjiang, China).
The fiber surface density was 146 g·m−2, the fiber volume fraction was 63 vol%, the resin
content was 30 wt.%, and the nominal thickness was 0.165 mm. The reinforced fiber was T700
carbon fiber produced by Tuozhan Carbon Fiber Co., Ltd., Weihai, China. The matrix resin
was PAEK resin (PAEK-H, Hairuite Engineering Plastics Co., Ltd., Heilongjiang, China).

The injection molding materials were PEEK and short carbon-fiber-reinforced poly
(ether ether ketone) (SCF-PEEK) (Heilongjiang Yingchuang New Materials Co., Ltd., Hei-
longjiang, China), with a short carbon fiber content of 30 vol%.
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The thermal properties of PAEK and PEEK are shown in Table 1. The glass transition
temperatures of PAEK and PEEK were 148 ◦C and 143 ◦C. The melting temperatures of
PAEK and PEEK were 322 ◦C and 343 ◦C, respectively.

Table 1. Thermal properties of PAEK and PEEK.

Resin Tg/◦C
Melting/◦C

Tonset Tpeak Tfinal

PAEK 148 309 322 330
PEEK 143 334 343 347

2.2. Preparation of the Composite Materials for Overmolding

Continuous-fiber-reinforced composite laminates were prepared through compression
molding. First, the prepreg was cut according to the size of the mold cavity, and it was
ultrasonically welded to prepare the prepreg (KH-2870Z, Kehai Automation Equipment
Co, Weihai, China). Then, the preformed body was put into the mold cavity coated with
a high-temperature release agent and put into the press (LSVI-50T, POTOP, Guangzhou,
China) for molding. First, the mold was heated to 300 ◦C, the pressure was set to 0.5 MPa
and maintained for 30 min. Then, the temperature was raised to 360 ◦C, the pressure
was set at 2 MPa, and it was maintained for 60 min. Then, air cooling was applied, and
the pressure was maintained until the temperature dropped below 140 ◦C. The molding
process is shown in Figure 1. Because the research on continuous-carbon-fiber-reinforced
composites is relatively mature, we chose a better method for preparing continuous-carbon-
fiber-reinforced composites studied by other group members [22]. We only reviewed the
injection molding process, which is more influential in overmolding. The lay-up modes of
continuous-fiber-reinforced composites are as follows: the shear sample of the short beam
is (0◦)16s. The final preparation of CCF-PAEK fiber volume fraction was about 63 vol%,
calculated as shown in Equation (2).
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Figure 1. CCF-PAEK molding process.

For the continuous-fiber-reinforced composite laminates obtained by molding, inserts
were prepared with a water cutting machine (Proto MAX, OMAX, Kent, WA, USA), as
shown in Figure 2. The inserts were put into an ultrasonic cleaning machine containing
acetone solution (JP-100, Jie Ming, Shenzhen, China) for 30 min to remove residual release
agent on the surface. After cleaning, the inserts were put in the oven at 100 ◦C to dry
for 30 min (DZF-6020, Jinghong, Shanghai, China). Then, the dried inserts were placed
into the mold cavity of the injection molding machine for preheating. The preheating
time was set to 3 min so that the prefabricated part can reach a temperature close to the
mold (TY-600, TAYU, Hangzhou, China). Where the preheating time is set to 3 min, the
relationship between the temperature of the prefabricated parts and time is indicated in
Figure S2. PEEK or SCF/PEEK was injected into the surface of continuous-fiber-reinforced
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composite laminates, and the pressure was maintained for 3 min. As shown in Table 2,
single-factor experiments were designed to investigate the variation in shear strength of
overmolding composites at different mold and melt temperatures, where A was used as
the reference.

The technological parameters of overmolding are shown in Table 3. The higher melt
temperature is conducive to transferring melt heat to the surface of the prefabricated
parts prepared using PAEK at low melting temperatures so that the injection resin and the
prefabricated parts form a good interface.

Table 2. Single-factor experimental design table.

Num Tmold/◦C Tinj/◦C Polymer Component

A 260 400

PEEK & SCF-PEEK
1 220 380
2 240 390
3 280 410
4 / 420

Table 3. Overmolding process parameters.

Num Tmold/◦C Tinj/◦C Polymer Component

1 220 400

PEEK & SCF-PEEK

2 240 400
3 260 400
4 280 400
5 260 380
6 260 390
7 260 410
8 260 420
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2.3. Test and Characterization
2.3.1. Mechanics Performance Test

According to ASTM D2344 [23], a short-beam shear-strength test was performed. The
thickness:width:span:length ratio of the sample was 1:2:4:6, the overmolding sample size
was 4 mm× 8 mm× 24 mm, and the span was 16 mm. Each group was averaged according
to the 5 experimental data in the standard. Then, the shear strength of the short beam was
calculated according to Equation (1):

Fsbs = 0.75× Pm

b× h
(1)

where Fsbs is the shear strength of the short beam; Pm is the maximum load when the
material is damaged; b is the sample width; and h is the sample thickness.
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2.3.2. Morphology Analysis

A desktop scanning electron microscope (Regulus 8230, Hitachi, Tokyo, Japan) was
used to characterize the micromorphology of the damaged section in the composite (the
accelerating voltage was 5 kV). The surface of the damaged sample was pretreated with
gold (spraying time of 60 s).

After using E54 epoxy resin and curing agent N,N-dimethylacetamide in a 10:1 mass
ratio, the prepared resin solution was left for 30 min. The cut sample was fixed in a silicone
mold (ϕ32 × h27 mm). The prepared resin was poured and cured in the electric blast-
drying oven. Then, a gradient temperature rise was applied to the resin. After solidification,
the metallographic sample was obtained and polished using sandpaper from small to large
mesh numbers. Finally, nanopolishing liquid and a polishing cloth were selected for further
polishing. Subsequently, a polarizing microscope (DM4-P, Leica, Germany) was used to
observe the micromorphology of the samples.

2.3.3. Fiber Volume Fraction of Composite Materials

The fiber volume fraction in continuous-carbon-fiber-reinforced composites prepared
by molding is calculated according to Equation (1).

(ρ1/ρ2)× n/d = v (2)

where ρ1 is the surface density of the prepreg; ρ2 is the bulk density of the fibers; n is the
number of layups; d is the thickness of the prepreg layup; and v is the volume fraction of
the continuous-carbon-fiber-reinforced composite.

2.3.4. Rheological Behavior Analysis

The viscosity curves of PAEK and PEEK resin under a shear flow field were measured
with a capillary rheometer (RG25, Gautford, Germany).

2.3.5. Nanoindentation Test

The specimens were indented using a nanoindenter (G200X, KLA, Milpitas, CA, USA)
to measure the microhardness and modulus at different locations. The advanced dynamic I
and H methods were chosen for the tests, and the load was 25 mN.

2.3.6. Molecular Dynamics Simulation

Molecular dynamics simulations were performed to reveal the bonding mechanism
of PEEK and PAEK during overmolding (Material Studio 2020), and diffusion coefficients
and binding energies at different interface temperatures were calculated. The diffusion
coefficient D is determined according to Einstein’s relation [24,25] as follows:

MSD = t〈|ri(t)− ri(0)|2〉 (3)

D = lim
t→∞

1
t
〈|ri(t)− ri(0)|2〉 (4)

where ri and t are the reference position and simulation time of each atom, and ri is the
distance from the bit to the center of the mass of a single chain.

In the overmolding process, the formation of the interface depends not only on the
mutual motion of the two-phase molecules but also on their self-motion. The radius of
rotation (Rg) of polymer molecules was studied to investigate the mechanism of molecular
self-motion further. The movement depends on the size of the polymer macromolecules
and their center of mass, calculated as follows:

Rg =

√
1
M∑

i
mi(ri − rcm)

2 (5)
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where M and rcm are the total mass of the polymer chain in the system and the centroid
position of the chain. It is assumed that multiple units are within the polymer chain. The
mass of each element is mi, and ri is the distance from the atom to the centroid position of
the individual chain. Usually, the rotation radius corresponds to the curl and contraction of
the molecular chain. MSD and Rg radius characterize the mobility of polymer molecules
and chains.

The interface interaction energy between polymer layers mainly comprises van der
Waals and electrostatic interaction energy. The interfacial bonding energy [26] is calculated
as follows:

Ejoining = Etotal − (EPAEK + EPEEK) (6)

where Etotal, EPAEK, and EPEEK are the total energy of the system, the energy of the PAEK
resin layer, and the energy of the PEEK resin layer, respectively.

An atomic model of the PEEK/CCF-PAEK interface was established to study the effect
of mold temperature on the adhesion behavior of the interface during PEEK/CCF-PAEK
overmolding. Because the resin matrix is located in the outer layer of the interface, an
atomic model was adopted at the PEEK/PAEK interface. It was assumed that the bonding
occurred during injection, without considering subsequent pressure preservation and
cooling processes. The atomic models of PEEK and PAEK layers were also constructed.
Some modeling parameters, including polymerization, number of chains, initial density,
and size, are given in Table 4.

Table 4. The main parameters of the atomic model of PEEK and PAEK.

Material Number of
Chains

Degree of
Polymerization

Total Amount of
Atoms

Initial Density
/g·cm3

Box Size
/nm3

PEEK 17 5 5542 1.3 4 × 6.2 × 2.4
PAEK 10 10 5886 1.3 4 × 6.2 × 2.4

All calculations in this paper were performed using molecular dynamics simulations
via VASP. The condensed phase-optimized molecular-potential force field describes the
atomic interactions in atomic simulation studies (universal—a purely diagonal harmonic
force field). The bond stretching is described in harmonic terms. Three Fourier cosine
expansions define angular bending. Cosine Fourier expansions describe the torsion. The
van der Waals interaction is described by the Leonard–Jones potential. Electrostatic interac-
tions were described with atomic monopole and shielding (distance-dependent) coulomb
terms. The aim is to achieve high precision in predicting the properties of very complex
mixtures. All simulations were performed in a constant temperature–constant volume
canonical ensemble (NPT). The Verlet algorithm was used to integrate the equations of
motion. The integration time step was 1 fs, and the Nosé–Hoover thermostat controlled the
temperature. The simulation system balances 300 ps to stabilize the interaction. After this
phase, the total intermolecular interaction energy of 300 ps was recorded at 5 ps intervals.
Finally, the average values were calculated to eliminate fluctuations in the simulation.

3. Results and Discussions
3.1. Influence of Mold Temperature on the Interfacial Bonding Strength

The viscosity–temperature curves of PAEK and PEEK resin at the shear rate of 1000 s−1

are shown in Figure 3. The viscosity of PAEK at 340 ◦C~400 ◦C is about 89~237 Pa·s, and
for PEEK at 360 ◦C~420 ◦C is 203~330 Pa·s. Both resins have shear-thinning behavior, and
the viscosity changes tend to be consistent with the increase in temperature (the viscosity
decreases with the increase in temperature). The lower the viscosity of the melt, the better
the diffusion because the mixing process requires the melt to spread as far as possible at
the interface before cooling.
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The shear strengths of PEEK/CCF-PAEK and SCF-PEEK/CCF-PAEK at different
mold temperatures are shown in Figure 4. In Figure 4a, the stress–strain curves of the
two materials under different mold temperatures are shown. The strain of the sample
increases slowly before it reaches the failure stress, and finally, shear failure occurs. The
shear strength of the composite can be improved by adding short carbon fiber.
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Figure 4. Influence of mold temperature on short-beam shear strength: (a) stress–strain curves of
overmolding samples at different mold temperatures; (b) mold temperature and shear strength of the
short beam.

Figure 4b shows the shear strength of PEEK/CCF-PAEK and SCF-PEEK/CCF-PAEK
short beams at different die temperatures. The shear strength of PEEK/CCF-PAEK is
56 MPa, 65 MPa, 70 MPa, and 68 MPa, respectively, whereas the shear strength of SCF-
PEEK/CCF-PAEK is 77 MPa, 79 MPa, 85 MPa, and 71 MPa, respectively. The results
show that the shear strength of the short beam can be improved with the increase in mold
temperature. Mold temperature affects the interfacial temperature holding time between
injection melt and insert and the contact time before curing. Therefore, with the increase in
mold temperature, the temperature of the interface layer is gradually increased to promote
the melting and diffusion of PAEK resin at low melting temperature and improve the
interface bonding strength.

Shear failure modes of short beams of overmolding composites at different mold
temperatures are shown in Figures 5 and 6. Under shear force, cracks begin to occur on
both sides of the sample and expand to the middle. The failure of PEEK/CCF-PAEK was
mainly caused by the interface delamination when the mold temperatures were 220 ◦C and
240 ◦C. In this case, the interfacial bonding strength was weak. PEEK/CCF-PAEK failure
was mainly caused by the interlayer fracture when the mold temperatures were increased
to 260 ◦C and 280 ◦C (Figure 5c,d). In this case, a strong interfacial bonding was observed.
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Similarly, the failure of SCF-PEEK/CCF-PAEK was similar to that shown in Figure 6.
The interfacial bonding failure was the main issue when the mold temperatures were 220 ◦C
and 240 ◦C. In the latter case, the cracks at the interface gradually became smaller. When
the mold temperatures increased to 260 ◦C and 280 ◦C; the failure of SCF-PEEK/CCF-PAEK
was an interlaminar fracture of CCF-PAEK and bending failure of SCF-PEEK. Due to the
flexural deformation and interlaminar shear deformation by overmolding, the lamination
between PEEK, SCF-PEEK, and CCF-PAEK will occur when the interfacial bonding strength
weakens. With the increase in interfacial bonding strength, the interfacial delamination
of the composite decreases gradually, and the interlaminar fracture of the resin increases.
Wang et al. [27] studied the effect of resin content in polyimide/bisphenol A diisocyanate
laminates on the shear strength of short beams. They showed that a lower resin content
would limit the full infiltration of the fibers and reduce the shear strength of short composite
beams. In overmolding composites, the resin content of the PEEK or SCF-PEEK side is
more than that of CCF-PAEK. It should be noted that PEEK resin has a higher toughness.
Therefore, when the interfacial bonding strength of overmolding composite materials
is higher, shear delamination failure no longer occurs at the interface but occurs inside
the laminate.

We observed the specimen failure mode and the microscopic morphology of the resin
surface after specimen destruction, where the direction of the destruction morphology
observation is indicated in Figure S3. At a mold temperature of 220 ◦C, i.e., Figure 7a, the
PEEK damage surface morphology is relatively smooth, and only the PEEK resin portion
can be observed. When the mold temperature is raised to 240 ◦C, i.e., Figure 7b, the PEEK
resin surface is adhered to the CCF-PAEK portion of the continuous carbon fiber and its
resin, indicating that resin melting begins to occur at the PEEK/CCF-PAEK interface at this
time [28]. However, at this time, the interfacial bond strength is relatively low, and shear
damage still occurs at the interface, as shown in Figure 5b. Until the mold temperature
is raised above 260 ◦C as shown in Figure 7c,d, only continuous fibers and their resin
in CCF-PAEK can be observed in the damage morphology at this time, and combined
with Figure 5c,d, it can be seen that shear damage occurs at the interlayer of CCF-PAEK
at this time.
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Figure 7. Failure morphology of PEEK surface at different mold temperatures: (a) 220 ◦C; (b) 240 ◦C;
(c) 260 ◦C; and (d) 280 ◦C.

The microscopic morphology corresponding to the shear damage of SCF-PEEK/CCF-
PAEK in Figure 8 is the same as that of PEEK/CCF-PAEK, and only SCF-PEEK can be
observed at a mold temperature of 220 ◦C. As the mold temperature increases, as shown in
Figure 8b, the appearance of continuous carbon fibers in the red circle indicates that melting
begins to occur at the interface. As the mold temperature increases to 260 ◦C, i.e., Figure 8c,
only continuous fibers of CCF-PAEK and its resin can be observed at the interface.
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The experimental results show that the interface failure mode of the composite changes
with the increase in mold temperature. When it is low, the temperature at the interface is
low, the injection mold melt cools rapidly, and the molecular diffusion is relatively slow,
resulting in poor adhesion [29]. Shear failure is manifested as an interface failure. Interfacial
bonding is manifested as mechanical bonding. With the increase in the mold temperature,
the fracture surface area of PEEK increased gradually. Higher mold temperature increased
the interface temperature between PEEK resin and PAEK and increased the blending time
before curing, which was beneficial to the fusing process of the resin. When the interface
temperature is higher than the melting temperature of PAEK, the resin eutectic layer is
formed at the interface [30], which improves the interfacial bonding strength.

The interfaces of PEEK/CCF-PAEK and SCF-PEEK/CCF-PAEK before failure are
shown in Figures 9 and 10, respectively. Optical microscope observations were made at
different mold temperatures, with CCF-PAEK on the upper side and PEEK and SCF-PEEK
on the lower side. In Figure 9a, when the mold temperature was 220 ◦C, PEEK resin was
poorly combined with PAEK resin, resulting in obvious interface stratification and even
pores. When the mold temperature is 220 ◦C, there is also a boundary at the interface, but
no pores are observed (Figure 10a). With the increase in mold temperature, the boundary
line slowly disappears. Although there was no obvious gap between PAEK and PEEK, a
clear boundary could still be observed (Figures 9a,b and 10a,b). The interface between the
two completely disappears when the mold temperature reaches 260 ◦C. The results show
that resin melting can significantly improve the shear strength of short beams, which is of
great significance. After adding the short carbon fiber, they cross the boundary and are
nailed in the PAEK resin layer (Figure 10b,c).

Adding staple fibers enhances the stiffness and strength of the injection layer but also
influences the interfacial bonding strength [31]. However, when the mold temperature
was raised to 280 ◦C, holes appeared at the interface (Figure 10d). In the process of
overmolding, when the mold temperature is 280 ◦C, the resin adheres to the mold cavity,
and the difficulty of demolding leads to defects at the interface layer, which reduces the
interlayer shear strength.
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The results show that the interface between the injection and insert layers will change
with different mold temperatures. With the increase in mold temperature, the melt can have a
longer contact time before consolidation. Thus, changing the melting state of PAEK resin at low
melting temperatures promotes the heat transfer between the injection molding layer and the
insert layer, making the PAEK and PEEK interface disappear while forming the resin eutectic
layer. The boundary line between the injection mold melt and the insert interface gradually
disappears, forming a strong and reliable connection and increasing the shear strength. The
mold temperature is still lower than the melting temperature of PAEK. Still, the heat transferred
by PEEK at high melting temperatures combines the injection and insert layers. It can solve the
problem that the composite material of overmolding cannot be molded at high temperatures.

The nanoindentation load-depth curves of the secondary molded composites at dif-
ferent mold temperatures are shown in Figure 11a. Observing the curves in the Figure,
we know that for the same indentation load, the indentation depth gradually becomes
smaller as the mold temperature increases, indicating that the bearing capacity of the resin
at the interface gradually becomes stronger as the mold temperature increases. For the
PEEK/CCF-PAEK composite, the load capacity of the interface resin is similar to that of
PEEK when the mold temperature is 260 ◦C, indicating that the preform and the injection
layer resin have reached a state of molten resin intermixing, which is consistent with
the strength of PEEK. The higher loads at the SCF-PEEK/CCF-PAEK composite interface
compared to PEEK indicate that adding short-cut carbon fibers enhances the resin at the
interface, allowing it to carry higher loads.

It can be observed that the modulus decreases rapidly with the increase in the inden-
tation depth when the indentation depth is small in Figure 11b, and the modulus curve
changes more at this time. After the depth exceeds 250 nm, the modulus value gradu-
ally becomes smooth with the increase in depth. When the indentation depth exceeds
500 nm, the modulus curve becomes smooth, and the material modulus is calculated at
this time. The depth-modulus curve of the PEEK/CCF-PAEK secondary composite at a
mold temperature of 220 ◦C is relatively unstable, and the modulus at this time is low at
4.2 GPa. This indicates that the melt can form a resin intergradation layer with the preform
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surface resin at a mold temperature of 260 ◦C and, therefore, has the same modulus as
PEEK. For the SCF-PEEK/CCF-PAEK secondary molding composite, the depth–modulus
curve is relatively smoother, and the addition of short-cut carbon fibers can improve the
modulus of the resin at the interface. With the increase in mold temperature, the modulus
also gradually increased. The increase was higher at the mold temperature of 260 ◦C. In
the previous paper, the modulus reached 5.5 GPa, related to transforming the interfacial
bonding state at the mold temperature of 260 ◦C, i.e., the interfacial resin can melt and
diffuse into one. The short-cut carbon fiber can be embedded in the interfacial layer, which
benefits the modulus increase.
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Figure 11. Nanoindentation analysis of composite materials formed by secondary molding at different
mold temperatures: (a) load depth curve; (b) modulus depth curve; (c) modulus.

3.2. Influence of Melt Temperature on the Interfacial Bonding Strength

Figure 12 shows the shear strength of PEEK/CCF-PAEK and SCF-PEEK/CCF-PAEK
short beams at different melting temperatures. The shear strength of PEEK/CCF-PAEK
was 69 MPa, 67 MPa, 71 MPa, 67 MPa, and 66 MPa, respectively. The shear strength
of the SCF-PEEK/CCF-PAEK short beam was 84 MPa, 84 MPa, 85 MPa, 87 MPa, and
83 MPa, respectively. Comparing the shear strength data of the short beam of the two
resin overmolding samples shows that the melt temperature has little influence on the
PEEK/CCF-PAEK interfacial bonding strength when the mold temperature is 260 ◦C.
Figure 13 shows the interfacial bonding state of the SCF-PEEK/CCF-PAEK composite at
different melt temperatures, and the boundary between PAEK and PEEK becomes unclear
when the mold temperature is 260 ◦C. As the melt temperature increases, more and more
short carbon fibers are pinned into the resin; as shown in the red circle in the figure, the
short carbon fibers cross the boundary to connect the two matrix resins and improve the
interfacial bonding strength. The fluidity of the SCF-PEEK resin can be improved by
increasing the melt temperature when a resin interfusion zone forms at the interface. More
short carbon fibers can be inserted into the resin-rich region to strengthen the interface.
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The final conditions chosen were a mold temperature of 260 ◦C, the highest shear
strength at a melt temperature of 400 ◦C for PEEK/CCF-PAEK, and a higher melt temper-
ature of 410 ◦C for SCF-PEEK/CCF-PAEK. According to Figure S1. For the relationship
between interface temperature and shear strength for PEEK/CCF-PAEK, below the inter-
face temperature of 320 ◦C, the shear strength of the melt is lower than at the interface
temperature of 320 ◦C. When the interface temperature is raised to 320 ◦C and above, the
shear strength at low mold temperature and high melt temperature is lower than that
at high mold temperature. At high mold temperatures, the melt temperature has less
influence on the shear strength.

3.3. Molecular Dynamics Simulation

PAEK was painted brown to observe the intermolecular diffusion and interface for-
mation process, and PEEK was painted green, as shown in Figure 14. According to the
results, the mold temperature significantly affects the interfacial bonding strength. In
contrast, melt temperature has nearly no effect. Therefore, this simulation used only mold
temperature as the influencing factor. The injection molding temperature is set at 400 ◦C,
and the mold temperature is set at 220 ◦C, 240 ◦C, 260 ◦C, and 280 ◦C, respectively. The
simulation showed that as the mold temperature increased, some molecular chains crossed
the interface and became entangled with another layer of molecular chains.

Figure 15 shows the radius of gyration, mean square displacement of the whole system
during the interface bonding process at different mold temperatures. In PEEK/PAEK over-
molding, the formation of the interface depends not only on the mutual motion of the two
molecular chains but also on the self-motion of the molecules. Figure 14 shows the rotation
radius and mean azimuth shift data at different mold temperatures at the PAEK and PEEK
interfaces. It can be seen that the rotation radius of PEEK and PAEK increases with the
increase in mold temperature as can be seen in Figure 14a that under different processing
conditions, the rotation radius of the total system gradually increases when it reaches a
stable state at 300 ps. Figure 14b shows the mean azimuth shift–time curve at different
mold temperatures. At higher values, the total mean azimuth shift increases rapidly with
time. This means that as the temperature increases, the molecules move faster. However,
when the temperature change is the same, especially when the mold temperature is 220 ◦C,
the change in MSD is slower. It was found that under the processing conditions, the me-
chanical properties of the prepared samples and the microstructure observation after failure
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showed slow molecular movement and poor interfacial bonding strength. The molecular
motion rate increases gradually with the increase in mold temperature, and the interface
bonding strength increases. However, the mean azimuth shift value is small when the mold
temperature gradually increases to 260 ◦C and 280 ◦C. The experimental results show that
the interfacial bonding strength does not increase after the mold temperature increases.
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displacement.

Figure 16 shows the two systems’ interface bonding energy and diffusion coefficient
at different mold temperatures. It can be seen that when the mold temperature increases
from 220 ◦C to 280 ◦C, the diffusion coefficient increases from 7.3 × 10−10 m2·s−1 to
14.0 × 10−10 m2·s−1, and the absolute value of the interface energy increases sharply from
233.4 kcal·mol−1 to 450.8 kcal·mol−1. Compared with other temperature changes, the
diffusion coefficient changes are larger when the mold temperature increases from 220 ◦C
to 240 ◦C. At this time, the molecular diffusion rate increased, which was in the same trend
as the shear strength of the short beam, as shown in Table 5. It is proved that the resin
began to melt and bond at the interface within the mold temperature range from 220 ◦C
to 240 ◦C. It can be concluded that the non-bonding free energy at the interface increases
when the mold temperature increases, and the mutual diffusion of the two systems at the
interface is enhanced, thus improving the interface energy.
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Table 5. Interfacial bonding energy, diffusion coefficient, and shear strength of PEEK and PAEK
short beam.

Tmold
/◦C

Diffusion
Coefficient

/10−10m2·s−1

Bonding Energy
/kcal·mol−1

PEEK/CCF-
PAEK

ILSS/MPa

SCF-PEEK/CCF-
PAEK

ILSS/MPa

220 7.2 233.3 56 77
240 11.8 295.4 65 79
260 13.0 388.0 70 83
280 14.0 450.8 68 71

In the molecular dynamics simulation, the interfacial bonding energy and diffusion
coefficient will continue to increase when the mold temperature increases. Only the
injection process is calculated without considering processes such as holding pressure,
and only the resin molecular chain is simulated without involving fibers. The simulation
results do not match the experimental results at the final mold temperature of 280 ◦C,
as the interfacial bonding energy is higher in the simulation. Still, the actual interfacial
bonding strength is highest at the mold temperature of 260 ◦C due to the internal stress at
the interface of the overmolding composite at the high mold temperature, so the final mold
temperature is 260 ◦C.

4. Conclusions

(1) In this paper, carbon-fiber-reinforced composite material (CCF-PAEK) with a low
melting temperatures was prepared via PAEK. PEEK and SCF-PEEK resin with high melting
temperatures were used as injection resin. The results show that the interface bonding
strength is greatly affected by mold temperature, whereas the melting temperature has little
effect on the interface bonding strength. When the mold temperature was 220 ◦C, the shear
strength of the PEEK/CCF-PAEK short beam was 56 MPa, and when the mold temperature
was increased to 260 ◦C, the shear strength of the PEEK/CCF-PAEK short beam was 70 MPa,
which increased by 25%. The shear strength of short-beam SCF-PEEK/CCF-PAEK was
77 MPa when the mold temperature was 220 ◦C and 85 MPa when the mold temperature
was raised to 260 ◦C. When the mold temperature was lower than the melt temperature
of PAEK, the overmolding composites can form a good bond. The melt temperature had
little effect on the shear strength of the PEEK/CCF-PAEK short beams, but as the melt
temperature increased from 380 ◦C to 410 ◦C, the shear strength of the SCF-PEEK/CCF-
PAEK short beams increased from 83 MPa to 87 MPa. For the SCF-PEEK/CCF-PAEK, the
increase in melt temperature can promote more short carbon fibers to cross the boundary
and nail more short carbon fibers in the matrix interfusion zone to improve the shear
strength of short beams.
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(2) The interfacial bonding of overmolding composites includes mechanical meshing,
resin fusion, and short carbon fiber interfacial nailing. The molecular dynamics simulation
and experiments prove that the interface bonding strength mainly depends on mechanical
meshing when the mold temperature is less than 220 ◦C. The resin melts at the interface
when the mold temperature is 220–240 ◦C. Mechanical meshing and resin fusion affect
the interface bonding strength in this case. When the mold temperature reaches 260 ◦C,
the resin at the interface is completely fused, forming the matrix interfusion zone. The
short carbon fiber can cross the interface and connect the two resin matrices, improving the
bonding strength.

(3) Through the molecular dynamics simulation, it was found that the interface bond-
ing energy and diffusion coefficient are in good agreement with the experimental results.
The mold temperature had a positive effect on PAEK-PEEK interface bonding. The diffusion
coefficient and bonding energy of the interface increased with the increase in mold tempera-
ture. Therefore, a higher mold temperature will result in higher interface bonding strength.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ma16124456/s1, Figure S1. Relationship between interface
temperature and shear strength. Figure S2. Surface temperature of prefabricated parts in relation to
preheating time. Figure S3. Direction of damage morphological observation.
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