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Abstract: The absorption of light in the near-infrared region of the electromagnetic spectrum by
Au-hyperdoped Si has been observed. While silicon photodetectors in this range are currently being
produced, their efficiency is low. Here, using the nanosecond and picosecond laser hyperdoping of
thin amorphous Si films, their compositional (energy-dispersion X-ray spectroscopy), chemical (X-ray
photoelectron spectroscopy), structural (Raman spectroscopy) and IR spectroscopic characterization,
we comparatively demonstrated a few promising regimes of laser-based silicon hyperdoping with
gold. Our results indicate that the optimal efficiency of impurity-hyperdoped Si materials has yet to
be achieved, and we discuss these opportunities in light of our results.

Keywords: amorphous Si film; laser hyperdoping; gold impurity; energy-dispersive X-ray
microspectroscopy; X-ray photoelectron microspectroscopy; Raman microspectroscopy;
IR spectroscopy

1. Introduction

Silicon hyperdoping is intensively studied to extend the IR response for diverse opto-
electronic applications [1–3]. At present, the hyperdoping of Si (Figure 1) could be achieved
by ion implantation and laser processing [4,5], enabling the management of impurity con-
centration and distribution. The main impurities are nanoparticles of Er, Ag, Fe, Ti, Ni,
Zn [1], while hyperdoping by gold (Au) nanoparticles [6–8] is less understood exhibiting
high impurity mobility in a Si matrix [9]. In the system, Au-Si bonding in the Si matrix is
considerably weakened, supporting the diffusion of Si atoms through a gold overlayer and
room-temperature elemental mixing in a solid solution [10]. As an acceptor impurity, gold
leads to impurity levels near the valance band of Si. During ion implantation, some host
Si material and doped Au impurities could be sputtered compared to material- and cost-
effective implantation via ultrashort-pulse (femto-, sub- and picosecond) laser processing
when hyperdoping at levels in excess of 1 at% (impurity concentration ~5 × 1020 cm−3 [11],
well above the equilibrium solubility limit of 1015 cm−3 [12]) could be achieved due to ex-
treme laser-heating, melting and solidification (quenching) rates. The optical and electronic
properties of gold-ion implanted Si monocrystals due to the produced Au nanoparticles
(np), including fabricated NIR photodetectors, were explored in [13,14].

Thin Si films are known to exhibit a diminished heat conduction ability due to the
quantum phonon confinement effect, limiting the density of states in the corresponding
phonon spectrum—the effect of their being harnessed in flexible solar elements in microelec-
tronics. Wang et al. [15] prepared Ti-hyperdoped amorphous silicon (α-Si) films through
magnetron sputtering and laser annealing of the multi-layer set of α-Si and Ti layers on
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the crystalline Si substrate. These studies resulted in a quite homogeneous distribution
of doping Ti in Si at an average concentration of 5 × 1020 cm−3, providing the 1200 nm
absorption coefficient of 1.2 × 104 cm−1. Multi-layered Si–S–Si films were prepared by
thin-film deposition and nanosecond laser-processing [16], demonstrating an optical ab-
sorbance of 90% (75–90% in the NIR spectral range), carrier concentration ~1 × 1015 cm−2

and carrier mobility of 72 cm2/(V·s) in the sulfur-hyperdoped silicon sample. Boron-doped
nanocrystalline (nc-Si) 230 nm thick films were grown on Si <100> substrates at 1000 ◦C,
showing a carrier mobility of 15 cm2/(V·s) at 300 K [17].
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Figure 1. Schematic of Si photoexcitation in undoped (left), doped (center) and hyperdoped (right)
cases.

This study was focused on comparing the nano- and picosecond laser hyperdop-
ing/annealing of α-Si film in a liquid CS2 environment or air environment and a quite
comprehensive chemical, structural and IR characterization of the resulting samples for
their potential application in photovoltaics.

2. Materials and Methods

First, 530–550 nm thick a-Si films were deposited on substrates using magnetron setups
at a chamber pressure of 10−2–10−3 Pa, target voltage and current of 500–650 V and 1.5–2 A,
respectively. The deposition rate was 0.1–0.4 µm/min. As substrates for the studied silicon
films, glass slides with conductive layers based on aluminum (200 nm) and chromium
(550–570 nm) deposited on them were used to form a rear current-carrying contact. The film
thickness was chosen on the basis of theoretical calculations of the distribution of the ranges
of gold ions over the depth of the silicon matrix and preliminary experimental studies. Next,
a gold film was deposited onto amorphous silicon in a magnetron sputtering facility in an
argon atmosphere. Single-pass raster-scanning of 2 × 2 mm2 regions of amorphous silicon
films with a top gold film (50 nm) was carried out using two workstations for ablative
laser processing: (1) comprising an ytterbium-doped fiber nanosecond laser HTF Mark
(OKB «Bulat», Moscow, Russia) with central wavelength λ = 1064 nm, maximum output
energy Emax up to 1 mJ in the TEM00 mode, FWHM pulsewidth τ = 120 ns, repetition rate
f = 20–80 kHz, and (2) comprising an ytterbium-doped fiber laser Satsuma (Amplitude
Systemes, Paris, France) with central wavelength λ = 1030 nm, maximum output energy
Emax up to 10 µJ in the TEM00 mode, FWHM pulsewidth τ = 0.3–10 ps, repetition rate
f = 0–500 kHz (Figure 2). The laser beam was focused by a galvanoscanner ATEKOTM
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(ATEKO, Moscow, Russia) with an objective focal length ≈100 mm. Samples were arranged
inside a glass beaker with a 5 mm thick liquid carbon disulfide (CS2) top layer or without
solvent (in air) for 120 ns pulses and for 10 ps pulses. Then, the sample was scanned across
a 2 × 2 mm2 square area in a multi-spot pattern with 100 lines/mm filling at repetition rate
of 80 kHz in the case of ns-laser processing and 160 kHz in the case of ps-laser processing.
Scan velocities for 120 ns and 10 ps pulses were V = 80 mm/s and V = 50 mm/s (surface
exposure: N = 40 and 60 shots per spot), respectively.
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Figure 2. Experimental layout of hyperdoping of a-Si film by its laser melting with a top gold film by
nanosecond (ns, CS2 environment) and picosecond (ps, ambient air) laser pulses.

The laser exposure was provided by 0.1-mJ 120-ns pulses (0.5 µJ for 10-ps pulses)
focused onto the sample surface into a spot with the 1/e-radius σ1/e ≈ 20 µm (10 µm
for 10-ps pulses), corresponding to peak laser fluences of 8 J/cm2 and 0.15 J/cm2, respec-
tively. Subsequently, for both ns- and ps-laser processing, two regions were selected, in
which the gold concentration was maximum and the oxygen concentration was minimum,
respectively. This choice is due to the fact that, when creating a photodetector based on hy-
perdoped silicon, an important parameter is the absence of defects—micro-cavities, cracks,
etc. The less oxygen is contained in the treated material, the less such defects are present.
In addition, the maximum concentration of an impurity material (gold) is important for the
registration of IR radiation, so we chose the area with the highest content. All subsequent
studies were carried out with these two sample regions. Thus, processing in liquid CS2
became optimal for ns pulses, and ambient air became optimal for ps pulses.

The surface topography and chemical composition of the nanopatterned spots was
characterized by means of a scanning electron microscope (SEM; VEGA, TESCAN, Brno,
Czech Republic), equipped with an energy-dispersion x-ray spectroscopy (EDX) module
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Aztec One (Xplore EDX detector; Oxford Instruments, High Wycombe, UK) for chemical
micro-analysis at the 3, 5, 7 and 10 keV kinetic energies of electrons.

Chemical states of gold-doping were studied in the laser-hyperdoped spots of the
sample at a high vacuum (~10−9 mbar) by means of an x-ray photoelectron spectrometer
(XPS) K-Alpha+ (Thermo Fisher Scientific, UK). XPS spectra were acquired from the spots
of 400 µm in diameter in the ranges of O 1s, C 1s, S 2p Si 2p, and Au 4f lines, using an Al-Kα

monochromatic source, 50 eV pass energy at the energy accuracy of 0.1 eV; composition
accuracy was ≈0.5 at.%. The spectrometer was calibrated to the binding energy of Au 4f7/2
line at 83.95 eV. The spectral line shift was corrected in accordance with C 1s (284.9 eV) and
Au 4f (83.95 eV) lines.

The crystalline state of the laser-processed spots of the sample was characterized by
room-temperature 3D-scanning confocal Raman/PL microspectroscopy, using a Confotec
350 (SOL instruments, Minsk, Belarus) microscope-spectrometer at a 532 nm laser excitation
wavelength with a spectral resolution of 0.5 cm−1.

The reflection of laser-processed spots of the sample was finally characterized in
ambient air by room-temperature Fourier-transform infrared (FT-IR) (650–2500 cm−1)
spectroscopy, using a spectrometer FT-805 (Simex, Novosibirsk, Russia) with a spectral
resolution of 0.5 cm−1. In the wavenumber range from 2500 to 10,000 cm−1 the reflection
spectrum was obtained using an IR spectrometer VERTEX 70v (Bruker, Karlsruhe, Germany)
with a spectral resolution of 0.5 cm−1.

3. Results and Discussion

Figure 3a–h show SEM images of sample surfaces and EDX elemental maps of silicon,
gold, and oxygen after ns- and ps-laser processing, respectively. The analysis of SEM
images allows for us to draw conclusions about the topology of the modified surfaces.
During ps treatment (Figure 3e), a nanostructure is formed on the surface of the sample;
this is absent during ns treatment (Figure 3a) and characterizes the use of ns pulses as a
gentler method of laser-processing amorphous silicon. On the other hand, when using
ns pulses, separate material clusters were formed on the surface (white spots in the SEM
image). In addition, the resulting nanorelief on the surface in the case of ps-laser processing
can be interpreted as light-trapping, which significantly reduces the reflection coefficient of
the surface in the visible region of the spectrum [18]; however, within the framework of
this article, this fact is not an advantage.
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EDX elemental maps of silicon and gold show that the ps-laser processing of the region
(Figure 3f,g) provides a more uniform distribution of atoms of chemical elements on the
surface compared to the ns-laser processing (Figure 3b,c), in which separate gold clusters
were formed, taking into account the fact that the EDX study was carried out with the same
parameters of the electron beam (accelerating voltage, cathode current, working distance,
etc.) for two regions. In this case, the distribution of oxygen atoms is uniform for both
cases (Figure 3d,h), although treatment with ns pulses provides a lower concentration of
oxygen atoms, which will be quantitatively shown in the results of the EDX study. This
difference can be explained by the presence of an oxygen-free environment (CS2 liquid)
in the case of ns-laser processing. It should be noted elemental maps were also taken for
other penetration depths. However, in these cases, the distribution of atoms of the main
chemical elements remained uniform everywhere, which means that the above-described
irregularities are typical only for the sample surface.

Figures 4 and 5 show the atomic composition of untreated and treated with ns- and
ps-laser-processing regions of the sample, depending on the cathode accelerating voltage
of the electron beam during the EDX study. Moreover, in all three cases, the concentrations
of silicon (Si), gold (Au), oxygen (O), and aluminum (Al) atoms are indicated due to the
absence of other chemical elements in the study of modified regions. However, when
measuring the concentration of atoms in the untreated region, carbon was also detected in
a significant amount, which remained on the surface of the sample after it was immersed
in CS2; therefore, carbon atoms were not considered in this study.
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Al (d) on the surface of the sample after ps-laser processing. (Error range—0.12%).

For a better interpretation of the conducted research, the results were shown as depen-
dences of the concentration of atoms (Si, Au, O, Al) on the accelerating voltage for regions
after ns-laser processing (Figure 4) and ps-laser processing (Figure 5). Figures 4 and 5 show
the results for the non-modified region. The conversion of the values of the accelerating
voltage into an approximate value of the penetration depth at which the atomic composition
is studied was carried out according to [19]. The penetration depth values are given on the
upper horizontal axis in nanometers.

After the modification, the distribution of Si over the depth for both processing regimes
shows a similar character: in the near-surface layer (100–150 nm), the concentration is re-
duced due to the significant diffusion of gold atoms after irradiation of the regions. Closer
to 400 nm, this increases to its maximum value, and after 600 nm there is a decrease in
concentration due to the significant increase in aluminum atoms. In this case, the treatment
with ns pulses provides a higher Si average concentration by 7.1% compared to ps pulses.
The distribution of Au atoms at a penetration depth from 100 nm to 650 nm for the ns-laser
processing shows a monotonic decreasing character. The maximum concentration value is
reached in the near-surface layer, and the average value is 8.0%. In the case of the ps-laser
processing, the concentration of Au atoms remains approximately constant over the entire
depth (about 6.6% on average) and the maximum value is reached by 250 nm. The concen-
tration of O atoms for both processing regimes decreases with increasing penetration depth.
However, ns-laser processing provides an average oxygen concentration that is lower by
6.3% compared to ps-laser processing. The distribution of Al atoms is approximately the
same for both processing regimes—the concentration increases monotonically from 0% to
19% as the penetration depth increases. At the same time, all the above results correlate
with the image of the original multilayer structure shown in Figure 2. Thus, according to
the results of the atomic composition of the modified sample regions, ns-laser processing is
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preferable to ps-laser processing due to the higher concentration of silicon and gold atoms,
and the lower concentration of oxygen atoms. However, if we consider the uniformity of
the distribution of Au atoms over the depth, ps-laser processing shows the best result.

The chemical state of the elements was determined by XPS. Full-range XPS spectra for
ns- and ps-laser processing are shown in Figure 6a,b, respectively. All analyzed samples
contained O, C, Si, Au and also S for ns-laser processing. A detailed spectrum analysis of the
Au 4f region (Figure 6a,b insets) showed the presence of gold silicide (Au 4f 7/2 component
at 84.9 eV [20]) in the case of ps-laser processing. XPS surface analysis (penetration depth
no more than 10 nm [21]) of the main chemical components correlates well with the results
of the EDX presented in Figures 4 and 5. Material processing with ns-laser provides a
higher gold content and a lower oxygen content compared to ps-laser (Table 1).
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Table 1. Element content determined by XPS for ns- and ps-laser processing.

Element ns-Laser Processing ps-Laser Processing

Au 22.4% 1.9%
Si 22.0% 9.8%

Si oxide 14.9% 27.2%
O 38.8% 61.2%
S 1.9% 0.0%

To investigate the crystalline properties of the regions after ns- and ps-laser processing,
a Raman analysis was performed (Figure 7). The Raman spectra of an amorphous silicon
(α-Si) film as a reference sample are also shown in Figure 7. The Raman spectra of α-Si are
characterized by two separate bands, at about 170 cm−1 and 480 cm−1, which are associated
with transverse acoustic (TA) and transverse optic (TO) vibrational modes, respectively [22].
After the ns- and ps-laser processing of a silicon sample, a sharp peak appears at about
521 cm−1, which corresponds to the crystalline phase of silicon (c-Si). After both processing
regimes of laser treatment, an insignificant amount of α-Si is contained. However, after
modification with ps pulses, the content of the amorphous silicon phase is higher compared
to modification with ns pulses. Such a difference in the crystallinity of the regions after the
presented processing regimes is associated with the different durations of the applied laser
pulses. In the case of processing silicon with ultrashort laser pulses (fs and ps duration),
the the resolidification-front speed after radiation exposure is faster than the relaxation rate
of the liquid to crystal, so an amorphous phase of the material appears. Conversely, “long”
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laser pulses (ns duration) provide a slower resolidification-front speed, so the material
acquires a crystalline structure. This effect is well-studied and described in many works,
for example, [23]. Thus, according to the above study results, as well as the smoothing of
the crystalline peak in silicon [24] on the Raman spectra (Figure 7), it can be judged that
silicon after processing appears in the form of polycrystals (poly-Si) [25].
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Figure 8 shows the IR reflectance spectra of surfaces—polished crystalline silicon
wafers (as a reference sample, as in Figure 8a), unmodified area of the multilayer structure
(Figure 8b), treated area after ns-laser processing (Figure 8c) and treated area in ps-laser
processing (Figure 8d) in the range of wavenumbers from 650 to 10,000 cm−1 (the cor-
responding wavelengths are indicated on the upper horizontal axis—from 1 to 15 µm).
The figure also contains reflectance values after de-coupling the modulation effect to ob-
tain a better understanding of the presented plot (dotted red and blue lines correspond
to the spots after ns- and ps-laser processing, respectively). In the plot, the results of
measurements of the reflection coefficient from two instruments were combined—from
650 to 2500 cm−1 (at wavelengths from 4 to 15 µm), collected using an FT-805 Fourier
spectrometer; from 2500 to 10,000 cm−1 (at wavelengths from 1 to 4 µm), collected using a
VERTEX 70v spectrometer. In all three cases of the reflection coefficient measurement of
the unmodified and modified regions (Figure 8b–d), typical oscillations are observed over
the studied spectral range. These oscillations are often called spectral interference patterns.
Such interference patterns are observed when measuring the transmission or reflection
of multilayer structures, and correspond to typical Fabry–Perot modulations [26]. Based
on the obtained oscillations, we can estimate the changes in the complex refractive index
of the obtained multilayer structure: its real part n and the absorption coefficient k [25].
The absence of a shift in interference modulations and the invariance of their period in the
studied spectral range mean the constancy of the refractive index n of the modified region
of the material compared to the non-irradiated region. This indicates the preservation
of the main material (silicon) of the multilayer structure after processing. In addition, a
decrease in the modulation amplitude in the case of the ps-laser processing indicates an
increase in the absorption coefficient k, which corresponds to the uniform distribution
of dopant atoms in the silicon matrix over the depth. Thus, this results also correlate
with Figure 5b. Conversely, an increase in the modulation amplitude in the case of the
ns-laser processing corresponds to a decrease in the absorption coefficient k and some
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atomic irregularities (Figure 4b). In addition, at wavenumbers of ~450 cm−1 (Si-O rocking),
~800 cm−1 (Si-O bending), ~1075 cm−1 (Si-O stretching), a decrease in reflection was not
observed, which indicates an insignificant contribution of the formed surface oxide to the
absorption of IR radiation [3]. The minimum values of the reflection coefficient were 7.3%
at wavenumber 6164 cm−1 (1.6 µm) and 26.7% at wavenumber 1682.2 cm−1 (5.9 µm) for the
ns- and ps-laser processing, respectively. The average reflection over the studied spectral
range was 44.8% for the ns-laser processing and 43.0% for the ps-laser processing. Thus,
despite the similar results obtained regarding the average surface reflectance, the ns pulses
provide a minimum reflection coefficient of 20% less compared to the ps pulses. In addition,
the minimum reflection during ns-laser processing is achieved at wavelength of 1.6 µm,
which makes this type of modification preferable for manufacturing IR photodetectors, for
example, in telecom applications [27], where the main wavelength of radiation propagating
in the optical fiber is about 1.5 µm. On the other hand, ps-laser processing provides an
increase in the absorption coefficient, as well as a uniform distribution of gold atoms.
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blue lines correspond to reflectance values of spots after ns- and ps-laser processing, respectively
after de-coupling the modulation effect.

4. Conclusions

In this experiment, we were able to hypedope amorphous Si films with gold atoms
using ns and ps laser pulses. For each pulse duration, we determined the optimal processing
parameters to achieve the highest concentration of metal atoms, exceeding the limit of
equilibrium solubility. Further characterization was conducted specifically on these two
regions.

At the post-characterization stage, a comparison was made between the silicon surface
treatment using ns- and ps-laser processing. The study, conducted using scanning electron
microscopy, showed that the ns pulse of treatment is gentler for the silicon surface, as
nanoscale structures were found during the ps pulse. Additionally, it was found that,
during ns-laser processing, separate clusters of gold atoms were formed on the surface
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of the sample, although the distribution was less uniform than during ps-laser process-
ing. However, no irregularities were detected in depth. Using energy-dispersive X-ray
spectroscopy (EDX), it was shown that treatment with ns pulses provides a higher con-
centration of gold and silicon atoms, as well as a lower concentration of oxygen atoms
compared to ps pulses. On the other hand, ps-laser processing provides a more uniform
in-depth distribution of gold atoms. The same results were demonstrated in the study
of surface concentration by X-ray photoelectron spectroscopy (XPS). In addition, it was
shown that a gold silicide compound was only detected after ps-laser processing. However,
after ns-laser processing, gold appeared as inclusions of individual atoms and did not
form chemical compounds. The study of crystallinity on a Raman confocal microscope
showed that silicon after ns-laser processing is characterized by a higher crystalline phase
content than that after ps-laser processing. The reflection spectra of the surface in the range
from 600 to 10,000 cm−1 (from 1 to 15 µm), revealing Fabry–Perot interference oscillations
corresponding to a multilayer structure. The minimum reflection of the surface regions of
the irradiated material compared to polished crystalline silicon was reduced by 26.3% and
6.9% for ns- and ps-laser processing, respectively.

By considering the silicon hyperdoping technology used for photoelectronics applica-
tions, we found that the critically important parameter that affects the electrical properties
of the material is the absence of defects—inclusions of the amorphous phase of the material,
oxygen inclusions, and the chemical compounds of silicon with a dopant metal. Research
has shown that, when improving the quality of Au-hyperdoping of amorphous silicon, it is
necessary to use ns-laser processing, which has a stronger effect than ps-laser processing.
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