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Abstract: In this work, we fabricated and characterized ZnO and TiO2 thin films, determining their
structural, optical, and morphological properties. Furthermore, we studied the thermodynamics and
kinetics of methylene blue (MB) adsorption onto both semiconductors. Characterization techniques
were used to verify thin film deposition. The semiconductor oxides reached different removal values,
6.5 mg/g (ZnO) and 10.5 mg/g (TiO2), after 50 min of contact. The pseudo-second-order model was
suitable for fitting the adsorption data. ZnO had a greater rate constant (45.4 × 10−3) than that of
TiO2 (16.8 × 10−3). The removal of MB by adsorption onto both semiconductors was an endothermic
and spontaneous process. Finally, the stability of the thin films showed that both semiconductors
maintained their adsorption capacity after five consecutive removal tests.

Keywords: environmental remediation; thermodynamics; adsorption; thin films; TiO2; ZnO

1. Introduction

The world’s population growth and the energy and water requirements by industries
(e.g., petrochemical [1], pharmaceutical [2], textile [3], agrochemical [4], fuels [5], plastics [6])
have caused a severe threat to the environment. Water pollution makes water unsafe for
fauna and humans, affecting different environmental systems [7]. One of the challenges
for this century is to ensure that the population has access to safe water; the Organization
for Economic Co-operation and Development (OECD) recommends that governments
encourage the joint management of water quantity and quality [8]. Various techniques for
water remediation have been implemented in the last decades (e.g., physical, chemical, and
biological treatment technologies) [9]. Among these methods, the adsorption method (a
physical method) has received attention due to its low cost and its effectiveness in removing
contaminants from water [10]. During the adsorption process, the pollutant is retained
on the substrate surface. Adsorption can be described as a chemical (covalent bond) or
physical (weak electrostatic interactions) interaction between an adsorbate and adsorbent
surface [11]. Different materials have been used to apply the adsorption process (e.g.,
zeolites, [12], alumina [13], clay [14], active carbon [15], biomass [16], semiconductors [17],
MOF [18]). In the literature, there are various reviews on dye removal by adsorption using
different materials [19–21]. Metal oxides have two synergic properties: (i) they can act as an
adsorbent and (ii) as antimicrobial agents [22]. Furthermore, because semiconductors have
variable oxidation states, large surface areas (e.g., as nanomaterials), and great versatility,
they can be used for environmental control and contaminant removal [23]. Khoshhesab
et al. reported that nanoparticles of ZnO had 92.3% of adsorption capacity in the removal of
Congo red from a solution (75 ppm) after 120 min of contact [24]. Syarif et al. reported that
nanoparticles of CuO had 61.0% of adsorption capacity in the removal of methylene blue
from a solution (5 ppm) after 10 min of contact with CuO nanoparticles [25]. Noreen et al.
utilized Fe3O4 nanoparticles to remove a reactive blue dye from a solution, and reported
35 mg/g of adsorption capacity after 10 min of contact [26]. Abdullah et al. prepared MnO2
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nanoparticles to remove methylene blue from an aqueous solution, and reported 22.2 mg/g
of adsorption capacity after 60 min of contact [27]. ZnO and TiO2 are alternative adsorbents,
as they are innocuous to the environment, they are chemically and physically stable, and
have adequate surface properties (e.g., roughness, porosity, and surface area) [28,29].

Currently, in heterogeneous photocatalysis, as a previous step to the photocatalytic degra-
dation process, the sorption/desorption equilibrium is required. However, the adsorption
process studied is not commonly reported in photocatalytic studies [30]. Although there
is a high potential of ZnO and TiO2 as adsorbents, there are few reports on the thermody-
namic study of dye adsorption onto the surface of these semiconductors. In this contribution,
we synthesized and characterized ZnO and TiO2 thin films and studied the kinetics and
thermodynamics involved in the removal of MB by adsorption onto both thin films.

2. Materials and Methods
2.1. Synthesis and Characterization of Thin Film Deposition

We used ammonium hydroxide and zinc acetate in the synthesis of ZnO powders,
according to the procedure described in a previous report [31]. We used Degussa powder
(P25) (Sigma-Aldrich, 99.5%, St. Louis, MO, USA) as a source of TiO2 in the fabrication
of TiO2 thin films, according to the procedure described in a previous report [32]. We
immobilized all catalysts on solid substrate to solve problems regarding catalyst removal
after finishing the photocatalytic procedure [33]. We utilized the Doctor Blade technique for
thin film deposition: First, we prepared a mixture of ZnO or TiO2 powders, polyethylene
glycol (PEG 5000) (Sigma-Aldrich, 99%, St. Louis, MO, USA), isopropyl alcohol (Sigma-
Aldrich, 99%, St. Louis, MO, USA), and water. After suspension stabilization, the slurry was
loaded into a soda lime substrate by the Doctor Blade method. Finally, the thin films were
sintered at 500 ◦C for 1 h [31,34]. The thin films were characterized by diffuse reflectance
spectroscopy measurements, providing information about the optical band gap energy of
the semiconductors; by Raman spectroscopy assays, which allowed verifying the presence
of ZnO and TiO2 in the coatings; by X-ray diffraction measurements, which provided
information about the crystalline structure of the thin films; and by scanning electron
microscopy (SEM) assays, which allowed verifying their morphological properties.

2.2. Adsorption Kinetic and Thermodynamic Study

The semiconductors’ films were immersed in a solution of methylene blue—MB
(10 mL; 10 mg/L) (Sigma-Aldrich, ≥95%, St. Louis, MO, USA) contained in a glass batch
reactor provided with an air bubbling system (0.5 L/min). The reactor was stored in
the dark to study the MB adsorption process on the films. An aliquot was extracted at
time zero and every 5 min thereafter for 50 min to determine the adsorption–desorption
equilibrium time. We determined MB concentration by spectrophotometry at 665 nm using
the Lambert–Beer law with a calibration curve (R2 = 0.997). We determined the adsorption
capacity of MB on the semiconductors according to [35]:

qt =
((C0 − Ct)·V)

m
(1)

where qt is the amount (mg) of MB adsorbed per gram of semiconductor (mg/g) at each
time; C0 is the initial MB concentration (mg/L); and m (g) is the amount of semiconductor.
We applied the pseudo-first-order (PFO) and pseudo-second-order (PSO) models to fit
experimental data according to these equations [35]:

ln(qt − qe) = ln(qe)− k1t (2)

t
qt

=
1

k2qe2 +
t
qe

(3)

where qt is the amount of MB adsorbed per unit mass of the adsorbent (mg·g−1) at each
time; qe is the maximum sorption capacity (mg ·g−1); and k1 (min−1) and k2 (g·mg−1·min−1)
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are the rate constants of the pseudo-first- and pseudo-second-order models, respectively.
The fitting correlation coefficient (R2) was used to determine the best-fitting kinetic models.
Finally, we calculated standard enthalpy (∆H◦), standard entropy (∆S◦), and standard
Gibbs free energy (∆G◦) for the adsorption process applying the Arrhenius equation [36]:

K =
qe

Ce
(4)

∆G
◦
= −RTlnK (5)

lnK =
∆S

◦

R
− ∆H

◦

RT
(6)

3. Results
3.1. Raman Characterization

The Raman spectroscopy results are shown in Figure 1. Six Raman-active vibrational
modes were observed for TiO2 in Raman spectroscopy (e.g., A1g + 2B1g + 3Eg) [37]. Three
Raman-active vibrational modes were observed for ZnO in Raman spectroscopy (e.g.,
A1 + E1 + E2) [38]. Both catalysts shows the typical signals reported for such materi-
als [39,40]. For the case of ZnO, the signals located at 274.5 cm−1 can be associated with
oxygen vacancies into the semiconductor lattice [41,42].
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Figure 1. Raman spectrum of ZnO and TiO2 thin films.

3.2. Structural Characterization

Figure 2 shows the (experimental and simulated) structural results for both TiO2 and
ZnO thin films. ZnO was polycrystalline, whose sample shows a plane of preferential
growth located at 2θ = 36.27. This signal is assigned to plane (101), where ZnO thin films
show six other preferential growth planes, with all these reflections corresponding to the
hexagonal wurtzite phase (JCPDS No. 36−1451) [43]. For the XRD-TiO2 pattern, the TiO2
was polycrystalline and was formed by two different crystalline structures: rutile (JCPDS
#021-1276) and anatase (JCPDS #071-1166). During thin film deposition, we utilized a TiO2
source (Degussa-P25), this material being a mixture of those two crystalline phases [44].
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Figure 2. X-ray diffraction data and results of simulation for: (a) TiO2 and (b) ZnO.

We utilized a PowderCell package to simulate the experimental XRD data. In the
simulation, we employed the rutile and anatase forms of TiO2, and hexagonal wurtzite
(ZnO) crystalline structures. We applied the Rietveld method (Bragg–Brentano geometry
with the March–Dollase as model to preferred orientation; with the plane the plane (101)
as plane’s orientation. The X-ray source was Cu Kα radiation (λ = 0.1544426 nm); the
pseudo-Voigt 1 function iterations 300; and the ϕ factor was 1.9. This methodology was
suitable to identify the crystalline phases in each thin film. Table 1 lists the crystalline
parameters obtained from the simulations. We employed the Debye–Scherrer equation
to determine grain size of the semiconductors [45]. The domain grain size of ZnO was
34.4 nm, and 24.1 nm and 38.8 nm for anatase and rutile structures, respectively. These
results correspond to those of previous reports by other authors [44,46].

Table 1. Structural properties of the sensitized semiconductor oxides.

Thin Film Crystalline Plane Grain Size (nm) 1 (a) 2 (c) 2

ZnO (101) 34.4 3.2492 5.2044
TiO2—Anatase (84.2%) (101) 18.5 3.7859 9.5044
TiO2—Rutile (15.8%) (110) 65.3 4.5922 2.9568

1 Obtained from applied Debye–Scherrer equation to data of Figure 2. 2 Obtained from simulation PowderCell package.

3.3. Morphological Characterization

Morphological properties are determined by the experimental conditions and deposi-
tion method [47]. We synthesized ZnO using the sol–gel method, and we utilized Degussa
P25 as the TiO2 source. Figure 3 shows the morphological results for TiO2 and ZnO. These
results show that the thin films’ surfaces are heterogeneous and porous, that TiO2 and ZnO
are composed of microaggregates of different sizes, and that the agglomerated particles
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have two different spherical sized (50–80 nm to TiO2 and ~220nm to ZnO). Figure 3a shows
typical morphological properties for Degussa P25 TiO2 [48]. The quasi-spherical ZnO
nanoparticles are a commonly reported result when the sol–gel method is employed as a
synthesis method [49]. Various authors have reported that the surface properties of the
semiconductors are affected by synthesis method employed for their fabrication [23].
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Figure 3. SEM images: (a) TiO2 thin films (×10,000); (b) ZnO thin films (×10,000).

3.4. Spectroscopic Characterization

Figure 4 shows optical results for the ZnO and TiO2 semiconductors. Both of them
show a high reflectance of approximately (or greater than) 60% after 360 nm. ZnO and TiO2
are not active under visible irradiation due to their high band gap (Eg). We determined
the Eg value using the Kubelka–Munk remission function [50]. Figure 4b shows the Eg
estimation for each thin film. The estimated bad gaps for the thin films are shown in
Figure 4b [51]. These results correspond to those of previous reports for ZnO and TiO2
Degussa P25 [52,53]. The spectroscopic and structural characterization verified the presence
of ZnO and TiO2 in the coatings synthesized.
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3.5. Adsorption Kinetic Study

The adsorption of dye onto a semiconductor surface is a principle that relies on
two steps: (i) diffusion of reactants onto the semiconductor surface and (ii) adsorp-
tion of reactants onto the semiconductor surface. The first step (the diffusion process)
(i) follows the classic laws of diffusion (e.g., Fick’s law) [54]. The second step (the adsorp-
tion process) (ii) can be a physical or a chemical process. During chemisorption, the dye
molecule or ion attaches itself to a specific surface by a chemical bond and, in the physical
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adsorption, the dye molecules attach onto the adsorbent surface under the influence of van
der Waals forces and hydrogen bonding [55]. The adsorption kinetic process can be studied
through various theoretical methods (e.g., pseudo-first, pseudo-second, the intraparticle
diffusion, Elovich) [35].

Figure 5a,b shows the adsorption kinetics on TiO2 and ZnO. Figure 5 indicates that the
TiO2 thin films reach 10.5 mg/g and the ZnO thin films reach 6.5 mg/g after 50 min of contact.
These differences can be assigned to morphological properties and grain size. Table 2 lists the
fitting results of the two models implemented. Table 2 indicates that the PSO model showed
was suitable (greatest R value) to describe the adsorption process for both semiconductors.
ZnO has a greater k2 value than that of TiO2 and a smaller qe value than that of TiO2, thus
indicating that the ZnO surface saturates faster than the TiO2 surface, a behavior that can
be associated to reduced grain size of TiO2 thin films. In the PSO model, the electrostatic
interaction onto the surface affects the interaction with MB molecules. The MB dye is a cationic
dye; the isoelectric point of TiO2 in water (7.0 [56]) is smaller than the isoelectric point of ZnO
(9.5 [57]); and under experimental conditions, the ZnO surface is positively charged, then TiO2
would have more effective interaction with MB than ZnO thin films would. Furthermore, the
grain size of TiO2 (anatase 84.2%) is smaller than that of ZnO (see Table 1), and the specific
surface area of TiO2 should be greater than that of ZnO, increasing the MB adsorption capacity
of TiO2 in comparison with that of ZnO thin films [58].
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Figure 5. Adsorption kinetics and theoretical fitting of MB adsorption on thin films of the semicon-
ductor oxides (a) ZnO and (b) TiO2.

Table 2. Kinetic results for MB adsorption on the semiconductor oxides sensitized.

Thin Film/
Model

1st Order * 2nd Order *

qe (mg g−1) k1 (min−1) × 10−3 R2 qe (mg/g) k2 (g mg−1min−1) × 10−3 R2

TiO2 6.89 112 0.885 10.5 16.8 0.993
ZnO 7.09 226 0.877 6.49 45.4 0.995

* Obtained from data in Figure 5.

The adsorption capacities (AC) obtained for ZnO (6.49 mg/g) and TiO2 (10.5 mg/g)
are suitable in comparison with previous reports. Dimauro et al. reported AC values
of 7.0 mg/g, 7.4 mg/g, and 7.4 mg/g for MB adsorption onto V2O5, V2O5/SnO2, and
V2O5/TiO2, respectively [59]. Debnath et al. reported an AC value of 9.6 mg/g for Congo
red adsorption onto ZnO nanoparticles [60]. Singh et al. reported an AC value of 7.3 mg/g
for MB adsorption onto Fe3O4 nanoparticles [61]. Song et. al. reported AC of 8.4 mg/g onto
NiO nanoparticles [62]. Konicki et al. reported AC of BY28 and BR46 dyes onto Graphene
Oxide was 68.5 and 76.9 mg/g, respectively [63]. Finally, the pseudo-second model has
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been reported by various authors as a suitable fitting model for dye adsorption on different
adsorbent types. Table 3 lists reports fitting kinetic data with pseudo-second model.

3.6. Adsorption Thermodynamic Study

Figure 6 shows the thermodynamic calculation applying the Arrhenius equation to MB
adsorption onto the thin films of both semiconductors (Equation (6)). The ∆H◦ and ∆S◦ values
were calculated from Figure 6. Table 3 lists the thermodynamic results. The removal of MB
by using semiconductor oxides was a spontaneous process (∆G < 0, for both materials). This
result is due to the morphological properties of the semiconductors’ surface. Furthermore, the
adsorption process was endothermic and more stable for TiO2 than for ZnO. The positive ∆S
values of both semiconductor oxides could be associated with a degree of hydration of cationic
MB molecules in the solution [64]. The MB remotion was more favored on TiO2 than on ZnO.
Table 3 lists the thermodynamic results reported by other authors. Results show a variation
range depending on both adsorbent and dye type. The ∆G◦ values for all studies listed in
Table 3 are negative. It indicates that the dye adsorption onto adsorbents was spontaneous.
This spontaneity of the process increases when the temperature increases. Bennabi et. al.
reported that this behavior is associated with decreasing thickness of the boundary layer
surrounding the adsorbent surface with temperature increasing. This effect improves the
mass transfer of the dye to the adsorbent surface [65].
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Results verified that the adsorption process is an important step and indicated that
such a process should be studied during photocatalytic tests.

3.7. Recyclability Study

To verify the potential application of semiconductors in continuous remediation
water systems, we determined the recyclability of both semiconductor oxides in the MB
adsorption during various cycles. Figure 7 shows the stability results of the studied
semiconductors. The adsorption process was repeated five consecutive times. Figure 7
shows that after the fifth cycle, the removal performance reduced by 5% for TiO2 and 2% for
ZnO. Such stable results are associated with the stability of the semiconductor oxides, and
with the chemistry of the substrate (soda lime glass) and method of thin film deposition.
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These results indicate that the thin films were suitable and reusable for MB adsorption after
five cycles.

Table 3. Kinetic results for dye adsorption onto various materials.

Adsorbent/Dye Temperature
Termodynamic Parameters

∆G (kJ/mol) ∆H (kJ/mol) ∆S (J/mol)

* TiO2 (this work)

308
313
318
323

−2.90
−3.78
−4.65
−5.51

50.6 173

* ZnO (this work)

308
313
318
323

−7.12
−7.89
−8.65
−9.41

40.0 153

Graphene oxide/BY28 [63]
293
313
333

−1.69
−3.58
−5.47

2.74 16.5

NiO/Methyl orange [66]
303
318
333

−2.12
−2.41
−2.79

36.5 126

CuO/Methyl orange [66]
303
318
333

−1.65
−2.52
−3.38

15 58

Cu(I)−PANI/Orange16 [67]

303
308
313
318
323

−8.60
−8.77
−8.94
−9.11
−9.27

1.51 33.4

CdO/Congo Red [63] 298 −11.5 −− −−

Chitosan/Congo Red [68]

298
308
318
328

−0.55
−2.45
−3.19
−2.41

34.5 118

Biochar/MB [69]

308
313
318
323

−0.95
−1.34
−1.74
−2.14

23.5 79.5

Actived carbon/MB [70]
298
308
318

−1.71
−1.91
−2.91

16.3 60.0

Biomass/MB [71]
298
308
318

−16.6
−19.6
−22.6

72.0 297

* Obtained from data of Figure 6.

These results are relevant to improve continuous flow remediation systems where
adsorbents are incorporated in suspension form. Thin films can avoid additional separation
steps, reducing the economic implementation of these systems.
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4. Conclusions

We fabricated ZnO and TiO2 thin films. The morphological, optical, and spectroscopic
characterizations verified the presence of ZnO and TiO2 in the coatings. Furthermore, the
XRD simulation identified the crystalline structures of both semiconductors: TiO2 (anatase
84.2%—rutile 15.8%) and ZnO (wurtzite). The pseudo-second-order model was suitable to
fit the kinetic results. Furthermore, TiO2 (qe 10.5 mg/g) was more effective in MB removal
than ZnO (qe 6.5 mg/g). The MB adsorption onto both semiconductors was a sponta-
neous and endothermic process: TiO2 (∆G = −2.9 kJ/mol; ∆H = 50.6 kJ/mol) and ZnO
(∆G = −7.1 kJ/mol; ∆H = 40.0 kJ/mol). Finally, the recycling test showed that the semicon-
ductors were suitable after five consecutive adsorption tests. All the above results verified
the significance of the adsorption process. The present authors consider that adsorption
studies should be included during photocatalytic tests.
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