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Abstract: The presence of antibiotic-resistant bacteria in our environment is a matter of growing
concern. Consumption of contaminated drinking water or contaminated fruit or vegetables can
provoke ailments and even diseases, mainly in the digestive system. In this work, we present the latest
data on the ability to remove bacteria from potable water and wastewater. The article discusses the
mechanisms of the antibacterial activity of polymers, consisting of the electrostatic interaction between
bacterial cells and the surface of natural and synthetic polymers functionalized with metal cations
(polydopamine modified with silver nanoparticles, starch modified with quaternary ammonium or
halogenated benzene). The synergistic effect of polymers (N-alkylaminated chitosan, silver doped
polyoxometalate, modified poly(aspartic acid)) with antibiotics has also been described, allowing for
precise targeting of drugs to infected cells as a preventive measure against the excessive spread of
antibiotics, leading to drug resistance among bacteria. Cationic polymers, polymers obtained from
essential oils (EOs), or natural polymers modified with organic acids are promising materials in the
removal of harmful bacteria. Antimicrobial polymers are successfully used as biocides due to their
acceptable toxicity, low production costs, chemical stability, and high adsorption capacity thanks
to multi-point attachment to microorganisms. New achievements in the field of polymer surface
modification in order to impart antimicrobial properties were summarized.

Keywords: antibacterial polymers; polymer modifications; antibiotic resistant bacteria; wastewater
purification; water purification

1. Antibiotic Resistant Bacteria in Environment

In recent years, the growing amount of antibiotics in wastewaters constitute a great
challenge to the wastewater treatment plants, as the conventional methods—e.g., floccula-
tion, sedimentation, filtration, or coagulation—are not sufficient to remove these pollutants
from environment sewage [1]. The most abundant antibiotics found in sewage are trimetho-
prim, sulfonamides (SA), quinolones, and macrolides, the frequent occurrence of which
results from their stability and wide application in the treatment of bacterial diseases in
humans and animals [2].

Trimethoprim (TMP) is an antibiotic; its moieties contain electron-rich aromatic rings
and a deprotonated amine group, and it is susceptible to the oxidation process, which is
proposed as one of the ways to eliminate this compound from aqueous systems [3].

SA are a class of antibiotics that include sulfadiazine, sulfamethazine, and sulfamethox-
azole (SMX). One of the possible pathways for the removal of SA is bioaugmentation, which
leads to anaerobic degradation of these antibiotics [4].

Quinolones (ofloxacin, ciprofloxacin, norfloxacin) and macrolides (clarithromycin,
erythromycin, azithromycin) were recorded in Asia and Europe with occurrence frequencies
between 6–30% and 6–10%, respectively [5].

The widespread use of antibiotics contributes significantly to the resistance of bacteria
to their bactericidal properties, which is a great challenge for modern medicine [6]. An
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excessive amount of prescribed antibiotics and their limited metabolism in human cells
(30–90% of consumed antibiotics are not metabolized in the human body and are excreted
into wastewater systems) leads to antibiotic exposure and accelerates resistance in bacte-
ria [7]. The scheme of antibiotic distribution in the natural environment is presented in
Figure 1.
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Antibiotic resistant bacteria (ARB) acquire resistivity by producing antibiotic resistance
genes (ARGs) through the cellular expression process [8]. The capacity of the horizontal
transmission of genes in aquatic environments provides an easiness in the spread of
antibiotic resistance among humans and animals, which poses a significant risk to health [9].
Antibiotics may enter the environment in the form of metabolites with the retained activity
of the original drugs, or they may be excreted from the human/animal body as more
polar derivatives of the original antibiotic, which can be then converted by the bacteria
into the original drug [10]. ARBs are divided into multidrug-resistant (MDR), extensively-
drug resistant (XDR) and pan-drug-resistant (PDR) bacteria, and the criterion for this
classification is the number of classes of antibiotics to which the bacteria are resistant.
MDRs are bacteria that are resistant to at least one drug belonging to three or more classes
of antibiotics at the same time, XDRs are bacteria resistant to at least one antibiotic of each
class, except for two or less antimicrobial categories, and finally, PDRs are bacteria resistant
to all antibiotics in all antimicrobial categories. MDRs, which have become resistant due
to high-volume and long-term use of antibiotics, are of particular concern in Chinese and
European intensive care units, where they were responsible for 1.27 million deaths in
2019 [11]. Due to the ability of PDR to effectively withstand all forms of antibiotic therapy,
test bacteria pose a particular threat to health facilities. Among the PDR, Gram-negative
bacteria can be distinguished, i.e., E. coli, P. aeruginosa, K. pneumoniae, and A. baumannii.
P. aeruginosa is the bacterium responsible for pneumonia, which is particularly common in
intensive care units, and poses a particular threat to people suffering from cystic fibrosis
and the formation of biofilms. Most nosocomial infections are caused by K. pneumoniae, also
called the super bacteria, because it has become resistant to all the beta-lactams that make
it difficult to treat diseases caused by this bacterium. Some E. coli strains may affect the
urinary tract, digestive tract, spinal cord, and brain. A. baumannii can lead to pneumonia
and infections of wounds and the intra-abdomen [12]. Carbapenem-antibiotics-resistant
XDR bacteria such as P. aeruginosa, K. pneumoniae, and A. baumannii cause bloodstream
infections with high mortality [13].
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2. Methods of Obtaining Polymers with Antibacterial Properties

Polymers with antimicrobial properties were synthetised for the first time in 1965 by
Cornell [14], as the homo- and copolymers of 2-methacryloxytroponone derivatives. Since
the 1980s, the host defence polymers and synthetic polymer disinfectants have served as
model compounds for the development of the peptide–mimetic antimicrobial polymers
of growing recognition. In 1984, the cationic antibacterial polymers based on poly (vinyl
benzyl ammonium chloride) were obtained and described for the first time by Ikeda and
gained growing interest as effective antibacterial agents [15]. The antibacterial activity of
polymers may be their intrinsic feature, but there are also functionalized polymers that
receive the biocidal activity through the introduction of active substances such as povidone
iodine or N-halamine [16]. Figure 2 schematically shows typical modification routes leading
to polymers with antibacterial properties.
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2.1. Natural Polymers

Among the polymers exhibiting innate antibacterial activity, some natural compounds
such as chitosan (CTS) or chitin should be mentioned [17]. Chitosan is a biopolymer consist-
ing of β-(1→4)-2-amino-D-glucose and β-(1→4)-2-acetamido-D-glucose units, known for
its outstanding biocompatibility and biological activity; however, its application is limited
because it dissolves only in acidic solutions. Chitosan is a product of the deacetylation
reaction of chitin, which can be extracted from crustacea, fungi, and insects, and which
constitutes one of the most abundant polysaccharides after cellulose. The product of the
reaction is considered CTS when the deacetylation degree (DD) of chitin equals about 70%.
Further deacetylation, with a DD higher than 95%, may lead to partial depolymerisation.
DD influences its biodegradability and physico-chemical properties. The lower the DD
value, the higher the molecular weight, which provides better mechanical strength and
chemical stability. Unlike most polysaccharides, CTS’s large number of hydrophilic amino
groups, which confers CTS a positive charge, renders it likely to form films on the neg-
atively charged surfaces. Moreover, CTS is able to chemically bind negatively charged
fats and macromolecules such as proteins. Due to the presence of hydrogen bonds, the
structure of CTS is rigid [18,19]. CTS shows high antibacterial activity, but also inhibits the
growth of a wide range of fungi. The antibacterial activity of CTS is limited only to acidic
environments because of its low solubility at pH levels above 6.5. The biocidal activity
of this biopolymer can proceed according to several proposed mechanisms, including
inhibiting RNA synthesis by CTS binding to the DNA, and as a result, interfering with
the protein synthesis or interaction in the pathogen cell membrane, causing the leakage
of proteinaceous material [20]. The other biomacromolecules such as cellulose or starch
require chemical modifications to gain any antibacterial activity. Several examples of these
modifications are listed in Table 1, which presents the mechanism of antibacterial action of
selected modified polymers of natural origin.
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Table 1. The mechanism of antibacterial action of selected polymers of natural origin.

Natural Polymers with Antibacterial Activity Mechanism of
Antimicrobial Action

Microbes Combated by
Polymer Ref.

M
od

ifi
ed

ch
it

os
an O-modified CTS

N-modified CTS
N,O-modified CTS

Hydrophobic interactions and
chelation, cell wall destruction by

protonated amine groups
(pH < pKa)

B. subtilis, L. monocytogenes,
B. megaterium, B. cereus,

L. brevis and L. bulgaricus
[21,22]

M
od

ifi
ed

ce
ll

ul
os

e

Cellulose nanofibers
functionalized with
AgO nanoparticles

Increase of bacterial cell
permeability followed by the

leakage of K+ and proteins
S. aureus, E. coli [23]

Cellulose fibres
functionalised with

star-like ZnO

Disruption of the cell membrane
due to the reaction with hydrogen

ions and ROS formation,
triggering the process of bacterial

DNA amplification and
gene expression

C. albicans [24]

Cellulose acetate
sorbate (CASA)

Inhibiting the microbial enzyme
systems due to the presence of
hydrophobic sorbic acid, which

enables penetration of CASA
through the hydrophobic

bacteria cell

E. coli, S. aureus [25]

Starch modified with
halogenated benzene

Establishing a hydrophobic
balance, which leads to an

enhanced interaction with the
surface of the bacterial cell

E. coli, S. aureus [26]

C
at

io
ni

ze
d

st
ar

ch

Starch modified with
quaternary ammonium

Electrostatic interactions between
the bacterial cell and cationic

quaternary ammonium,
hydrophobic quaternary

ammonium chain interaction with
Gram-positive bacteria

E. coli, L. monocytogenes [27]

Starch modified with EOs

Triglycerides present in EOs lead
to the disintegration of bacterial

cell walls, followed by interference
with nutrient transport between
internal and external mediators

Gram-positive bacteria [28]

2.2. Synthetic Polymers

Although synthetic polymers have been known to be inactive and often cause un-
desired and uncontrolled biological responses when administered to the human body,
advances in synthetic techniques have led to new polymers with specific biological applica-
tions, including antibacterial activity. One of the examples is a copolymer of maleic anhy-
dride (MA) and divinyl ether (DVE), designated DIVEMA, obtained in a cyclopolymerisa-
tion reaction involving an in-chain pyran. DIVEMA shows antibacterial activity against
Gram-positive bacteria, Gram-negative bacteria, and fungi [29]. Ilker et al. [30] obtained
nonhemolytic, amphiphilic polymers of modified polynorbornes by ring-opening metathe-
sis polymerization (ROMP), under the control of a hydrophilic/hydrophobic ratio. The final
product showed antibacterial activity against Gram–positive and Gram-negative bacteria,
which can be modulated by the length of the alkyl substituents of polynorbornene [30].
Gabriel et al. obtained copolymers of cationic monomers and of alkyl-substituted polynor-
borne monomers, with weak antibacterial activity against S. aureus and E. coli depending
on the polymer hydrophobicity, concluding that the balance between hydrophobic and
hydrophilic areas is more critical than the overall charge density or global amphiphilicity
of polymer to result in biologically active products [31]. Another synthetic polymer with
biocidal properties is polyhexamethylene bioguanide (PHMB), which has both a cationic
and amphiphilic structure due to the presence of repeated bioguanidine units linked by
hexamethylene hydrocarbon chains. Chindera et al. described the antibacterial activity
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of PHMB as a result of entering bacteria and limiting their chromosomes’ condensation
ability [32].

Among the synthetic polymers with antibacterial activity, the poly(dimethylaminome-
thylstyrene) (PDMAMS) gained recognition as an antimicrobial coating, incorporated on
a nylon fabric surface by initiating the chemical vapor deposition (CVD) method. The
material was effective against Gram-positive Bacillus subtilis [33]. Tiller et al. [34] described
another example of antibacterial polymer coatings applied on a glass surface: N-hexylated
poly(4-vinylpyridine) (PVP), which kills more than 99% of S. epidermidis and E. coli, and
more than 90% of deposited S. aureus. PVP was obtained through the graft polymerisation
of hexyl PVP with 4-vinylpyridine and submitted to the subsequent N-hexylation [34]. The
polymers containing nitrogen atoms in heterocyclic rings also display germicidal properties.
These pyridinium–type polymers are effective not only against Gram-positive and Gram-
negative bacteria, but also against fungi and most yeasts [35]. By analogy, the imidazole
derivatives also exhibit antimicrobial activity [36].

The group of synthetic nitrogen-containing polymers with antibacterial properties
includes polyethyleneimine (PEI), which is an aliphatic and polycationic compound contain-
ing primary, secondary, or tertiary amine groups. Only the branched form of PEI is water
miscible, unlike the linear form, which is water insoluble. PEI is effective as an antibacterial
polymer against P. aeruginosa and S. aureus [37]. Highly efficient against a wide range of
microorganisms are polyguanidines, which are synthesised in the condensation reaction of
guanidine chydrochloride and diamines [38]. The derivatives of guanidine monomers such
as polyhexamethylene guanidine (PHMG) and polyhexamethylene biguanidine (PHMB)
are applied in interfacial polymerisation reactions with trimesoyl chloride (TMC) on the
polysulfone surface, which leads to the formation of ultrafiltration membranes, exhibiting
antibacterial activity against S. aureus and E. coli [39]. Copolymers MMA and PHMG—i.e.,
poly(MMA-co-PHMG)—are efficient in fighting tap water E. coli and heterotrophic-plate-
count bacteria [40]. Besides the abovementioned synthetic polymers containing nitrogen
atoms, the linear quaternary ammonium polymers (QACs) constitute an important group
of antibacterial compounds. The general formula of these polymers is N+R1R2R3R4.X−,
where R represents the hydrogen atom or an alkyl group, and X is an anion. The germicidal
activity of these polymers is attributed to the long alkyl chain [41]. Due to the low toxicity
in relation to mammalian cells and their high stability, QACs find broad applications in
the cosmetics and packaging industry. The antibacterial activity of QACs results from
the physical interactions of the polymer with bacteria cells, leading to the leakage of the
bacterial cytoplasmic constituents such as DNA, RNA, and K+ cations. The efficiency of
this process depends on many factors, e.g., molecular weight. The higher the molecular
weight, the stronger the antibacterial activity. The length of the pendant carbon chain
attached to the polycation heteroatom also affects the antibacterial efficiency. The chains
with 14–18 carbon atoms showed the highest antibacterial activity against Gram-negative
and Gram-positive bacteria [42].

Halogen-containing compounds are gaining increased recognition in the field of an-
tibacterial polymers. Compounds with a halogen atom attached directly to the nitrogen
atom are known as N-halamines, which are unique due to their renewable nature, which en-
ables them to be repeatedly charged in the reaction with the halogen donor. N-halamines are
synthetised by the halogenation of amine, amide, or imide. In the structure of N-halamines,
one or more nitrogen–halogen covalent bonds are present. N-halamines are stable in
solutions and effective against a broad spectrum of bacteria [43]. Halogen atoms can be
attached not only to the nitrogen atom present in the targeted polymer, but to others as well.
The connections between fluorine-containing polymers and quaternary ammonium are
also described in the relevant literature and are known for their remarkable antibacterial
activity [44]. As in the case of natural polymers, modifications of synthetic polymers can be
carried out using organic compounds, i.e., fatty acids or EOs, using metals with antibacte-
rial properties, or by introducing other polymers with intrinsic antibacterial properties into
their structure.
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2.3. Modification of Synthetic and Natural Polymers with Antibacterial Effective Metals

The functionalisation of a polymer surface with metal ions or its oxides is of growing
recognition. One of the metals with remarkable antibacterial activity is zinc, whose ions
have the ability to inhibit both amino acid metabolism and active transport in bacterial
cells [45]. The release of zinc from its oxide nanoparticles (ZnO NPs) is one of the mecha-
nisms of combating prokaryotic and eukaryotic microorganisms. Under light conditions,
ZnO NPs exhibit photocatalytic activity and participates in the production of reactive oxy-
gen species (ROS), contributing to the peroxidation of bacterial lipids, damage to nucleic
acids, and oxidation of proteins [46]. In addition to antibacterial and bactericidal properties,
ZnO nanoparticles are characterized by high catalytic activity and significant chemical and
physical stability, which is why they are becoming more and more popular as a polymer
matrix modifier. The nanosized ZnO/polymer composites can be obtained via a coprecipi-
tation method described by Matei et al. [47]. ZnO-modified nanostructures obtained by
the precipitation method by Rahmah et al. demonstrated excellent antibacterial properties
against Klebsiella spp. and S. epidermidis [48]. Polymer/ZnO hybrids are synthesized by
the atom transfer radical polymerization (ATRP) process, which controls the interaction of
molecular fillers with the polymer matrix by simultaneously growing all polymer chains at
the same rate, which is possible due to the short lifetime of ending radical in any chain [49].

Another important metal with antibacterial properties is silver, used as an antimicro-
bial agent in all forms or in combination with other technologies. The most popular are
silver nanoparticles (AgNPs) with dimensions in the range of 1–100 nm, which have a
high surface area to volume ratio compared to silver in bulk. AgNPs show tremendous
activity even against multidrug–resistant bacteria, which contributed to its widespread
applications in food packaging or the medical industry [50]. AgNPs with dimensions
below 30 nm have a better ability to penetrate bacterial cells and show bactericidal activity
against S. aureus and K. pneumoniae. The mechanism of AgNP’s antibacterial action is
similar to ZnO nanoparticles and consists of structural changes and deformations of the
bacterial cell wall, or in the release and induction of free radicals with a strong bactericidal
effect [51]. AgNPs can be obtained and stabilized by physical and chemical methods. The
most popular approaches are photochemical reduction, chemical reduction, or electrochem-
ical techniques and irradiation methods. Particularly noteworthy is the polysaccharide
method of natural biopolymers modification as an ecological synthesis classified as green
chemistry. This synthesis involves polysaccharides acting as a capping agent or acting as
both a reducing and capping agent simultaneously. The model example of this modification
is the synthesis of starch-AgNPs, where starch was the capping agent and β-D-glucose was
the reducing agent [52]. AgNPs are also applied for polymeric membrane modifications.
The polysufone membranes can be modified in the wet phase inversion ex situ process of
AgNP’s dispersion in the polymer solution [53]. Due to the antibacterial activity of zinc
and silver, these metals have particular signification in titanium functionalization. The first
application of titanium, discovered in 1790, was limited to an additive in paints; however,
its excellent mechanical and chemical properties, such as good corrosion resistance and
biocompatibility, contributed to a wider use of this metal in industry and biomedicine,
e.g., bone stabilization and fusion and replacement surgery [54]. Apart from silver and zinc
nanoparticles, gold and nickel nanoparticles are also gaining interest as antibacterial agent.
On the other hand, metal NPs are believed to be toxic to eukaryotic cells in high levels, and
their excessive usage may contribute to environmental pollution. Therefore, researchers
show an increasing interest in the functionalization of polymers with natural antibacterial
agents, e.g., fatty acids and EOs [55,56].

2.4. Modification of Synthetic and Natural Polymers with Organic Compounds

Fatty acids (FA) are organic compounds containing saturated or unsaturated aliphatic
chains with a carboxylic group in their linear or branched structures. FAs are produced by
algae and plants as an intrinsic protection against pathogens, including multi-drug-resistant
bacteria. The antibacterial activity of FA is not well understood yet, but the in vitro tests
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prove that these compounds are as efficient as Gram-positive and Gram-negative bacteria
biocidal agents [57]. Due to the antibacterial activity, fatty acids are often used as synthetic
and natural polymer modifiers. The modification of biopolymers with fatty acids can be
performed in the reaction of acylation in the presence of K2CO3 as a catalyst. An example of
such a reaction can be the acetylation of pectin with oleic, linolenic and palmitic anhydrides,
depicted in Figure 3.
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in this field [62]. According to the place of attachment in the polymer structure, in the
1990s, amino-acid-functionalized polymers were divided in two groups: polymers con-
taining amino acid moieties in the backbone and polymers with the amino acids in the
side chains [63]. The incorporation of amino acids in the side chain of polymers enables
the formation of higher-ordered self-assembled structures with antifouling properties [64].
The polymers with pendant amine groups can be obtained in various radical polymeriza-
tion approaches, including atom transfer radical polymerization (ATRP) and reversible
addition-fragmentation chain transfer (RAFT) polymerization [65].

RAFT polymerization is very common in preparation of the APs due to the high
versatility and robustness of this method [66]. The method was elaborated for the first time
in the 1990s. Figure 4 presents the scheme of RAFT polymerization. The thiocarbonyls
are one of the most often used active agents, which possesses an activating group (Z),
modulating the addition and fragmentation rates and a radical leaving group (R), which
must be able to efficiently reinitiate the polymerization process [67].
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RAFT-derived polymers are functionalized with reactive-end groups, which enables
coupling of bioactive macromolecules. Products of RAFT polymerization have a con-
trolled molecular weight and low polydispersity index. Asif et al. [68] synthetized novel
diblock copolymers of vinyl acetate with comonomers such as 4-vinylbenzyl chloride, 1,3-
divinyltetramethyldisiloxane, or vinyltriphenyl phosphonium bromide using cyanomethyl-
methyl(phenyl) carbamodithioate as RAFT agents. The copolymers showed antibacterial
activity against S. typhi, P. aeruginosa, B. subtilus, and S. aureus bacterial strains [68]. By
using RAFT, Yadav et al. obtained the antibacterial zwitterionic poly(cysteine methacrylate),
which also exhibited antibacterial properties against Gram-positive (R. erythropolis) and
Gram-negative (E. coli) bacteria [69].

ATRP is also a method of controlled radical polymerization, but in comparison to
RAFT polymerization, ATRP requires a transition metal catalyst, which is harmful to
biological systems. The ATRP reaction has to be conducted in the inert atmosphere, which
constitutes one of the major disadvantages of this process [70]. In Figure 5, the mechanism
of ATRP polymerisation is presented.
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The scheme above presents the reaction between the initiating alkyl halide and transi-
tion metal complexes in a lower oxidation state, coordinated with ligand L. The products
are growing radicals Pn* and metal complexes with a higher oxidation state [71]. The ATRP
method was applied to obtain the antibacterial cellulose derivative, which had acceptable
antibacterial activity against Escherichia coli, Salmonella enterica, Staphylococcus aureus, and
Bacillus subtilis [72].

Furthermore, click chemistry attracted the attention of scientists searching for antibac-
terial macromolecules. Click chemistry was introduced for the first time by Sharples et al.
and Meldal in 2001 as a method for linking some units together using a heteroatom
C-X-C [73].

Currently, these six types of click reactions are proposed for post polymerization
modifications:

− Michael addition,
− Diels–Alder reaction,
− imine formation,
− alkyne-azide reaction,
− epoxy–amine/thiol reaction and
− thiol–ene reaction [74].

The two-step thiol–ene click reaction was applied to obtain a poly[(mercaptopropyl)
methylsiloxane] (PMMS)-based polymer with 100% killing proficiency against Staphylococ-
cus aureus [75]. In turn, a copper (I)-catalyzed azide-alkyne cycloaddition “click” reaction
(CuAAC) was conducted by Acik et al. in order to obtain an antibacterial film from chlori-
nated polypropylene, with activity against E. coli and S. aureus [76]. The selected examples
of applications of modified polymers are presented in Sections 3–6.
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3. Polymeric Materials with Antibacterial Properties—Mechanism of Action and
Medical Applications

It is predicted that antibiotic-resistant bacteria can result in 10 million deaths by
2050 [77]. The issue of multidrug-resistant bacteria urged the need to elaborate the novel
antipathogen agents [78]. The polymers and copolymers modified with bioactive com-
pounds have emerged as a group of highly effective antimicrobial agents [79] that find
usage in many fields (Figure 6).
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The factors that are of the greatest influence on the antimicrobial properties of bioactive
polymers are their low toxicity towards human cells and high activity in fighting bacteria
cells [80]. The mechanism of antibacterial activity of these compounds is provided by active
and passive ways of interacting with pathogens [81]. The active mechanism of disrupt-
ing the function of bacteria cells consists of the destabilisation of bacteria cells through
electrostatic interactions between the predominantly hydrophobic and negatively charged
bacteria plasma membrane, and the positively charged surface of the modified cationic
polymer [82]. The most popular active substances used to modify the surface of polymers
are quaternary ammonium salts, which interact with the negatively charged membranes of
bacteria, causing leakage of components out of the bacterial cell, and consequently, the cell’s
death [83]. Similar mechanisms of active functional disturbance by electrostatic interaction
are exhibited by polyethylenimines. Another example of modifiers on the polymer surface
are polyguanidines, which inhibits the bacterial growth due to it breaking the Ca2+ salt
bridges and N-halamine, which disrupts the function of the amino cell receptors in bacteria
by generating the oxidative halogen [84]. The passive mechanism of fighting bacteria
cells relys on the synthesis of the passive polymer layer, which prevents the adhesion of
bacteria on the modified polymer surface, thereby repelling the bacteria without any active
interaction with them [85].

The natural polymers have a great advantage over the synthetic ones due to their non-
toxicity, biocompatibility, non-immunogenicity, and high stability. On the other hand, they
are less effective in biomedical applications in comparison to synthetic polymers [86]. The
modifications that provide the natural polymers with desirable industrial activity include
chemical treatment processes such as hydroxylation, carboxylation and epoxidation, or
in vitro enzyme treatment [87].

Synthetic polymers frequently used in the synthesis of polymers with antimicrobial ac-
tivity are based on poly(lactic acid) (PLA), polyethylene glycol (PEG), and polyamides [88].
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3.1. The Medical Application of Polymeric Materials with Antibacterial Activity

The polymers with antibacterial activity are applied in medicine as drug carriers. The
encapsulation of the drugs into micelles, nanogels, or vesicles [89] not only allows it to
curb the bacterial resistance to antibiotics, but also increases the bioavailability of the drug
compared to the same conventional antibiotic.

For medical purposes, natural (alginate), artificial (CTS, ethyl cellulose (ET)), and syn-
thetic (PCL—poly(epsilon-caprolactone), PDLA—poly(D-lactide), PGA—poly(glycolide),
PLA, PLGA—poly(lactic-co-glycolic acid) polymers are used. The choice of polymer ap-
plied as a drug carrier is determined by required residence time and administration site
in human cells [90]. In addition, the toxicity and tolerance of the polymer carriers in the
relevant cell type is assessed.

The polymers applied in drug delivery systems should have hydrolytically or enzy-
matically cleavable chemical bonds that provide biodegradability in the body, although
the non-biodegradable polymers such as polymethacrylates also constitute a promising
alternative [91–93].

One of the most innovative drug delivery approaches involve the polymer nanopar-
ticles (NPs) [94]. The NPs, due to their nanometric dimensions (1–100 nm), are easily
accessible to cells and tissues, and deliver a drug straight to the site of action in the human
body [95]. The NPs are synthetised in the form of nanospheres or nanocapsules. The main
difference between them relies on the placement of the carried drug and the mechanism
of drug incorporation. The nanospheres are colloidal particles, which adsorb the drug
molecule on the particle surface, while the nanocapsules take the form of surrounded
polymer shell vesicles with the core filled with aqueous or oily liquid in which the drug
is dissolved [96]. Among the nanocapsules, dendrimers, micelles, liposomes, and poly-
mersomes are used as nanoparticles to deliver drugs, including antimicrobials [97]. Lipid
constructs called liposomes are composed of bilayers made of amphipathic lipids. Natural
liposomes can be found and isolated from the cells, but synthetic liposomes also are com-
mercially available. Due to the presence of the aqueous phase inside and between the lipid
bilayers, they can deliver both lipophilic and hydrophilic drugs to human cells [98].

Dendrimers, synthetised for the first time in 1978 by Vögtle et al., are the smallest
among the NPs, with a diameter between 1–10 nm. They are obtained in the reaction of
protection–deprotection synthesis of the hyperbranched macromolecules, followed by the
elongation of the bioactive site from the multifunctional core molecules [99]. Dendrimers
are particularly interesting as drug carriers due to their amphiphilic structure, globular
shape, low dispersity, and highly branched three-dimensional structure [100]. The bioactive
sites of dendrimers are formed by their surface functional groups, and can be modified with
biologically active antimicrobial groups, which provide antimicrobial activity to the poly-
mer [101]. The interaction between the bacterial cell and the modified dendrimer surface
take place through the electrostatic interactions. Negatively charged bacterial cells interact
with positively charged dendrimer functional groups, increasing the permeability of the
cell membrane and contributing to the biocidal effect [102]. PAMAM—poly(amido)amine,
dendritic polylysine, and polypropylenimine (PPI) [103] are the most popular, commercially
available dendrimers with a cationic surface.

Polymersomes are amphiphilic bilayer vesicles made of tri- or di-copolymer blocks,
whose properties are crucial for the overall features of the obtained vesicle. In comparison
to liposomes, the polymersomes exhibit greater structural and mechanical stability [104].
However, the mechanism of drug transportation is similar—the water-soluble molecules
are carried in the inner space of vesicle while the hydrophobic molecules are transferred in
the bilayer [105].

Polymer micelles are vesicles with a lipophilic core in which only the hydrophobic
drugs can be encapsulated, and a hydrophilic shell ensures water solubility of the entire
particle. On the contrary to polymersomes, micelles are not able to transport the hydrophilic
drugs [106]. Figure 7 shows a schematic representation of various drug nanocarriers.
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Polymer nanoparticles in combination with antibiotics can also be used as synergistic
or additive agents to chemically or physically weaken the bacteria via the use of elevated
temperatures or the formation of reactive oxygen species. Gold NPs, thanks to their high
photothermal efficiency in the presence of near-infrared radiation, are of particular clinical
interest because exposure of bacteria to temperatures in the range of 45–50 ◦C causes a
strong antibacterial effect in the body in the form of an increase in the level of cytokines
and the body’s cellular immune response. The photothermal NPs may be incorporated in
the structures of microneedle (MN) arrays, enhancing the antibiotic delivery directly to
the site of infection. MNs are obtained from soluble polymers, making them suitable for
delivering antibiotics in a humid environment, and providing high local concentrations
of antibiotics to infected cells of the human body. Among the antibiotics successfully
delivered by the MNs are vancomycin, polymyxin, tetracycline, chloramphenicol, clin-
damycin, cephalexin, doxycycline, and gentamicin. Further examples of NPs exhibiting a
synergistic effect with antibiotics are tetracycline, chloramphenicol, and rifampicin, which
are N-alkylaminated CTS NPs that showed high efficiency against Gram-negative bacteria
(E. coli, S. typhimurium). In comparison to metal NPs, these natural mucopolysaccharide
NPs are considered more biocompatible and biodegradable, but at a concentration higher
than 200 mg/L, chitin nanoparticles exhibit cytotoxic properties [107]. Photothermal an-
tibacterial treatment gained recognition due to the reduction of side effects in tissues, low
toxicity, high selectivity, and the lack of drug resistance [108]. One of the main disadvan-
tages of photothermal treatment of bacterial infections is the necessity for application at a
high temperature to make this treatment efficient against drug-resistant bacteria. In order
to eliminate this issue, the photothermal treatment can be replaced with chemodynamic
therapy with a synergistic effect. The environment of the infection site is characterized
by a low pH and overexpression of H2O2, which allows for precise targeting of the drug.
The application of the silver-doped polyoxometalate (AgPOM) injectable in situ hydrogels
are one of the most direct infection-targeting methods, featuring good tissue adhesion, a
long-lasting effect, good repeatability, and great photothermal performance [109]. Wounds
infected with bacteria can also be successfully treated by using hydrogels prepared from
poly(aspartic acid) modified with a quaternary ammonium compound/boronic acid cross-
linked with poly(vinyl alcohol) polymers. These hydrogels reduced epidermal bacterial
survival to 2.3% with an optimal healing rate of 92% after 7 days [110].

3.2. Polymer Materials as Antifouling Agents

Apart from drug delivery and antibacterial treatments, the natural and synthetic
nanocomposites are applied in cancer therapy, dental applications, and tissues engineer-
ing [111].

Bacterial infections, apart from mechanical damage, are one of the main causes of
transplant failures. Polymeric biomaterials are often used as an antibacterial surface in
regenerative medicine, and as the coating for medical implants that prevent bacterial biofilm
generation. Bacterial biofilm formation is a defence mechanism against host immune cells,
ensures chronicity of infection, and is initiated by a bacterial recognition known as quorum
sensing. According to statistics, as much as 80% of clinical infections in humans are caused
by biofilms. The presence of biofilm is often observed on the surface of orthopedic screws
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made of stainless steel and titanium. A mechanism of biofilm formation is presented in
Figure 8. The first step is the bacteria;s adhesion to the surface. At a distance of about
50 nm from the implant surface, bacterial cells are attracted by Van der Waals forces. At
a distance of 20 nm, between the bacteria and the implant, electrostatic repulsive forces
occur depending on the interaction between the surface and the usually negatively charged
bacteria. At 5 nm from the surface, the strongest Van der Waals and electrostatic forces, as
well as hydrophobic and site-specific interactions, begin to occur. After adhesion to the
surface, bacteria start to proliferate and grow, producing extracellular polymeric substances
that help them capture nutrients and improve their survivability. Due to the cell–to–cell
communication in biofilm, bacteria are able to adapt to environmental conditions and
colonize new surfaces. After biofilm maturation, some of it dissipates, releasing floating
bacteria that can redeposit on the surface [112–114].
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Among the polymeric materials that can be helpful in preventing biofilm formation are
antifouling polymers, which repel the bacteria from the surface with chemical or physical
mechanisms, and antibacterial ones, e.g., peptide mimetic polymers and cationic poly-
mers [115]. Within the antifouling agents, the surfaces functionalised with hydrophilic,
zwitterionic, and superhydrophobic polymers should be listed [116]. The feature of hy-
drophilic polymers is their favourable interaction with water, which provides them good
solubility and swellability [117]. In transplantology, hydrophilic polymers are of great
interest due to their ability to mimic the properties of natural cartilage [118]. Poly (ethylene
glycol) (PEG) and poly (acrylamide) (PAM) (Figure 9) are popular representatives of such
hydrophilic polymers [119].
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An alternative to hydrophilic polymers such as PEG is zwitterionic polymers, which
shows better antifouling properties [120]. Zwitterionic polymers also exhibit significant
chemical and thermal stability, and excellent biocompatibility even in complex surround-
ings, e.g., serum or blood [121]. The structure of these polymers mimics natural compounds
occurring in human cells, such as glycine betaine [122]. The repeating constitutional units
of zwitterionic polymers contain both negative and positive charges which make them
electrically neutral and hydrophilic; furthermore, the entire network of such a polymer
exhibits the same characteristics (electrical neutrality and hydrophilicity) [123]. On the
other hand, the hydrophilicity of zwitterionic polymers is one of their greatest disadvan-
tages, as it leads to a strong absorption of water. High solubility in water and susceptibility
to hydrolysis limit their ability to form a film, and as a result, it curbs the use of these
polymers as antifouling agents [124]. To overcome this difficulty, cross-linking molecules
such as polydimethylsiloxane (PDMS) are used to form thin zwitterionic films [125].
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The most popular zwitterionic polymers are polybetaines. The positive charge in their
monomeric units is provided by a quaternary ammonium group, while the negative one is
related to the presence of the anionic groups such as sulfonates, carboxylates, phosphonates,
phosphates, and phosphinates. According to the charge distribution mode, apart from
polybetaines, among the zwitterionic materials, the polyampholytes are also distinguished.
The main difference between polybetaines and polyampholytes is the position of the charge.
Polybetaines have both cationic and anionic groups located on the same monomer unit
separated by an alkyl chain, while polyampholytes have their negative and positive charges
situated on different monomer units [126].

Another type of bacteria-repelling molecule is superhydrophobic polymers, inspired
by lotus leaves, covered by hydrophobic wax. The fluorinated silica-colloid-based surfaces
are an example of superhydrophobic polymers exhibiting antiadhesive activity towards
S. aureus and P. aeruginosa [127]. There is also growing interest around titanium-based
materials. Their superhydrophobic properties, bioavailability, and favourable mechanical
properties make them useful for cardiac implants [128]. In orthopaedics and dentistry, the
magnesium alloy coated by hydroxyapatite (HA) and stearic acid confer great antibacte-
rial adhesion capacity [129]. The polymers applied in regenerative medicine and tissue
engineering must cope with the changes of the extracellular environment that accompany
physiological and pathological processes.

Chemically synthesized materials that mimic the extracellular matrix (ECM) appear
to be a promising approach to imitate the biological activity of cells [130]. The ECM are
mostly composed of proteins that perform essential functions in biological processes such
as enzymatic reactions, immunological response, cells motility, or signal transduction [131].
Thus, protein-mimetic polymers offer hope for accessing complex natural mechanisms.
The amphiphilic polymers imitating antimicrobial peptides (AMPs) are highly efficient in
preventing biofilm formation. One example of AMPs is photoresponsive AMP based on
the N-substituted glycine skeleton, which—due to its efficiency, controllability, and high
selectivity—has been used in hydrogels and antifouling surfaces [132].

Another kind of polymeric material used as an antifouling agent are the cationic
polymers mentioned above, which have been proved to exhibit excellent antibacterial
properties. In implantology, polyurethane catheters are often used as implantable medical
instruments. Unfortunately, their surface is susceptible to the adhesion of bacteria, which
necessitates their frequent replacement in order to prevent bacterial infection. To thwart
the formation of a biofilm on polyurethane catheters, the surface modification with cationic
polymers can be applied. For this purpose, quaternary ammonium compounds or metal
ions are used [133].

Some examples of a quaternized compound are benzophenone-based esters and ben-
zophenone quaternary amides, which can be cross-linked on surfaces upon UV radiation.
These coatings are efficient against the methicillin-resistant Staphylococcus aureus (MRSA),
fluconazole-resistant Candida albicans spp., and influenza virus with 100% efficiency [134]. A
modified (quaternized or alkylated) polyethyleneimine (PEI) is a cationic polymer contain-
ing amino- and imino-groups, also known for its antibacterial properties. PEI is positively
charged in neutral and basic solutions, having a high zero potential point at pH values up
to 10 [135].

The cationic polymers can also be obtained in the innovative reaction of photopolymer-
ization. This method is applied to prepare Sulphur-containing polymers, whose monomers
are ionized giving a positive charge, which provides the polymer with antifouling proper-
ties [136].

4. Antibacterial Water Filters

One of the biggest problems facing developing countries is the treatment of tap water,
as microbial contamination makes it unfit for drinking [137]. For the sake of human
health, water treatment devices with antibacterial and adsorptive properties are of great
importance and are the subject of our further research. The aim of our future research
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will be the development of non-polluting, highly efficient, and environmentally friendly
antibacterial filters modified with natural organic acids.

Drinking contaminated water for a long time can contribute to a decrease in immunity
or even malnutrition. One of the most frequently chosen methods of preventing microbial
contamination are membrane filters. Among the most commonly used filtration materials
are zeolites, activated carbons, and resins. Hu et al. prepared an antibacterial composite
based on CTS/biocarbon nanosilver (C-Ag), obtained by carbonization of corn straw as a
carbon substrate, with good adsorption capacity towards metals such as Cu, Cd, Zn, and
Pb, and antibacterial activity against B. subtilis and E. coli [138].

The mechanism of operating membrane filters is often based on popular purification
processes: reverse osmosis (RO), forward osmosis (FO), nanofiltration (NF), microfiltration
(MF), and ultrafiltration (UF), which differ in operating procedures and pore sizes. High
thermal and chemical resistance as well as low manufacturing costs contribute to the grow-
ing interest in polymer membranes, such as polysulfone, polyether sulfone, polypropylene,
and polyvinylidene fluoride. However, biofouling on these materials significantly reduces
their direct use in the water treatment process.

Since conventional methods such as physical or chemical cleaning of membranes were
developed, the pre-treatment of feed and dosing of biocides are not effective in preventing
biofouling. New membranes with antibacterial properties are obtained by modification of
the surface to control membrane biofouling. The modifiers can be antibacterial agents such
as N-halamine, pyridine, and bio-enzymes [139].

N-halamines are organic or inorganic compounds, containing at least one covalent
bond between nitrogen and halogen. The mechanism of antibacterial action is related to the
hydrolysis of the nitrogen-halogen bond and its reduction to the nitrogen-hydrogen group.
Oxidative halogens released in this reaction directly affect the viability and metabolism
of bacteria [140]. Shao et al. [141] used N-halamine to modify a polyvinylidene fluoride
(PVDF) nanofiber membrane, which showed persistent antibacterial properties, providing
a new idea for water filtration. The PVDF exhibited antibacterial activity against S. aureus
and E. coli [141]. N-halamine has also been applied for the decoration of electrospun porous
polyacrylonitrile nanofibrous (PAN) membranes, which had promising antimicrobial activ-
ity against K. pneumoniae and E. coli. These membranes were obtained via electrospinning
and soaking methods. In the electrospinning technique, N-halamine is mixed with the poly-
meric solution of PAN, while the soaking method relies on immersing the electrospun PAN
nanofibers in an N-halamine solution [142]. For water treatment, polymers with pyridine
quaternary ammonium salts moieties are also used in the form of hollow nanocapsules,
which kill bacteria using a similar mechanism as polycations [143].

In order to control biofilm formation, membranes for water treatment can be also
modified with bio-enzymes, whose role is to enzymatically clean the membrane surface.
The main advantages of this cleaning strategy are the selectivity, specificity, and non-toxicity
of the enzymatic degradation products [144].

Another way to prevent the adhesion of planktonic bacteria and formation of a biofilm
is to use a sulfonated pentablock copolymer (s-PBC) as a coating for water filters. s-PBC can
be used as a coating for polypropylene (PP), providing a more hydrophilic and negatively
charged surface. The resulting water filters are particularly effective against P. aeruginosa,
which is responsible for most nosocomial infections, since the bacterial cells form a biofilm
on the taps, contaminating outflowing water and increasing the risk of infection [145].

In the case of industrial-scale water treatment, modification of membranes with
nanocomposites is gaining importance. The obtained products are known as mixed matrix
membranes (MMM), or nanoparticle-reinforced membranes.

The nanocomposite membranes are not only highly selective, self-cleaning, and easy
to use, but also show a high resistance to contamination. Silver-based nanoparticles are
one of the most common modifiers, but nanoparticles of titanium (TiO2), copper (CuO),
graphene (GO), iron (Fe3O4), silicon (SiO2), aluminium (Al2O3), zinc (ZnO), and zirconium
oxides (ZrO2) are also popular. The polysulfone (PSF) membranes, coated with TiO2-NPs,
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GO, and ZnO, are known for their excellent antifouling properties for water treatment
and for their antibacterial properties [146]. ZnO and ZrO2 incorporated to polymeric
nano-composite materials show enhanced hydrophilicity, porosity, high permeability, and
antifouling properties. ZnO also has great ability for metal ion adsorption, e.g., Cu2+. The
incorporation of ZrO2 into a polysulfone membrane with tin dioxide (SnO2) by the sol-gel
method also improved antifouling behaviour. Graphene oxide (GO) is obtained by the
oxidation of graphene, which leads to the presence of oxygen-containing groups, giving
GO an amphiphilic character. The exact mechanism of the antibacterial action of GO is not
known yet, but it is assumed that bacterial growth is inhibited by ROS (Reactive Oxygen
Species) generation. Although graphene oxide itself is considered to have antibacterial
activity, examples of the metal modification of GO have also been described [147]. GO
modified with quaternary ammonium salt (QGO) has been used to modify PVDF, which
contributed to a significant reduction in the loss of antibacterial substances from the
membranes. Carboxyl and epoxy groups can be involved in the grafting of quaternary
ammonium salts. PVDF membranes modified with QGO are obtained using the liquid-solid
phase transformation method [148].

Other quaternary ammonium salts, e.g., diallyldimethyl ammonium chloride (DAD-
MAC), were also applied for modification of the polyamide composite, which revealed
long-term biofouling resistance. The biocidal activity of the obtained DADMAC-modified
membrane is a result of the interaction of hydrophobic alkyl with the hydrophilic group in
bacteria cells, changing their permeability and resulting in cytolysis [149].

For the purposes of ultra-purification of water, silver nanoparticles gained great
interest due to their low toxicity and microbial resistivity. Ag-NPs can be embedded in
hollow membranes, rendering them with biocidal properties. The low production costs and
high mechanical stability made the hollow membranes a promising solution for ultra- and
micro-filtration [150]. Incorporation of Ag-NPs in a cellulose acetate (CA) hollow membrane
leads to the improvement of biocidal effects against E. coli and S. aureus. The nanoparticles
of CuO exhibit biocidal activity towards methicillin-resistant S. aureus and E. coli, with
minimum bactericidal concentrations. A mechanism of the antibacterial action of CuO NPs
is also not well described in the literature yet. One of the possible mechanisms assumes
the releasing of copper ions from nanoparticles, which causes damage to the bacterial cell
membrane and even incorporation into bacterial DNA. This interaction contributes to the
disruption of the helical structure of DNA. The last probable mechanism is related to the
generation of ROS, which is responsible for giving rise to oxidative stress and ultimately
damaging bacterial cells [151].

Membrane-based technologies for water treatment also take advantage of modification
with organic compounds, e.g., tannic acid (TA) and polyhexamethylene guanidine (PHMG).
Both of these compounds are environmentally-friendly antimicrobial modifiers, applied as
a coating for PVDF porous membrane [152].

5. Antibacterial Polymers in Food Packaging

According to the newest data published by the WHO in 2010, foodborne illnesses
contribute to 420,000 deaths globally [153]. The main cause of disease are pathogens that
multiply on the surface of food and its packaging. To prevent food from contamination,
innovative packaging that forms a barrier between the food and the external environ-
ment is essential. The stringent requirements that must be met by packaging materials
used to ensure a longer shelf life of food include antibacterial activity, non-toxicity, and
impermeability [154]. Among the materials used to produce food packages, fossil–based
polymers such as polyvinylchloride (PVC), PET (poly(ethylene tetraphtalate)), polyethylene
(PE), and PP are the most common, but the tendency to replace them with biodegradable
biopolymers, such as CTS, starch, or cellulose, is growing.

PVC is one of the most popular thermoplastics, utilized in production of antibacterial
packaging due to its great softness, flexibility, chemical inertness, and excellent self–cleaning
properties in processing. The great easiness in processing is also exhibited by PET, which is
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one of the most common substitutes of PVC in food packaging applications. PET is well
known for its good mechanical strength and toughness. In turn, PP is a thermoplastic
material obtained in the process of propylene polymerization. Due to its high melting point,
it can be applied in packaging processes conducted under high temperatures [155].

Natural polymers such as CTS gained attention in the food industry as packaging films
due to their mechanical and barrier properties, which prevent food spoilage by limiting the
permeability of oxygen, carbon dioxide, water, and organic vapour or liquids [156].

Another biopolymer used in the food packaging industry is starch, due to its high
biodegradability, low cost, and natural abundance. The botanical sources of this biopolymer
are potatoes, maize, or water chestnut. The molecular structure of starch is complex and
consists of amylose and amylopectin [157]. The higher the percentage of amylose in regard
to amylopectin, the higher the tensile strength (TS) and elastic modulus (EM) parameters,
which describe the robustness of starch. In contrast to other polysaccharides, starch has the
ability to become a thermoplastic when food-safe plasticizers are added, including glycerol,
xylitol, and sorbitol [158].

An important biopolymer that can be inexpensively acquired from agricultural waste
and forest residues is cellulose. Cellulose is a natural component of the cell walls of plants.
Chemically, it is a high-molecular-weight homopolymer of β–d-glucopyranose units linked
by β-1,4 linkages, where the cellobiose is the repeated unit. Due to its high thermal stability,
cellulose can be used as a shield against ultraviolet rays. Cellulose esters and ethers are
also of great importance in the packaging and food industry, e.g., cellulose sulphate (CS),
CA, EC, and methyl cellulose (MC) [159].

There are four different strategies for incorporating antimicrobial agents into food
packaging material, e.g., incorporation and coating onto polymeric film, and also releasing
antimicrobial agents from the sachets and direct contact from pads [160]. The antibacterial
agents used to modify polymeric materials to obtain food packaging include compounds
such as proteins and peptides, polyphenols, EOs, organic acids, and natural extracts [161].

In accordance with European regulations for materials intended to come into contact
with food, intelligent packaging must be compliant with Regulation 1935/2004/EC, which
says that packaging material should meet the requirements regarding overall migration
limits (OMLs) and specific migration limits (SMLs) in order to prevent the migration of
packaging ingredients towards food [162].

Phenolic acids are used as antimicrobial agents incorporated into the packaging film.
Compared to EOs, phenolic acids are non-volatile and have a lower organoleptic effect
on food matrices. They exhibit antimicrobial activity against Gram-positive and Gram-
negative bacteria, inhibiting cell growth due to their passage in the protonated form to the
plasma membrane. After encountering the higher pH within the bacterial cell, cations and
anions liberated in acid dissociation are unable to pass through the cell membrane [163].
Among the phenolic acids used to modify packaging, ferulic acid and cinnamic acid should
be mentioned. They can be incorporated into packaging films by solution spraying. Due to
the high solubility of these acids in ethanol, it is easy to obtain crystal structures that can be
incorporated into the polylactide surface [164].

Ferulic and cinnamic acids are also applied to obtain plasticized cassava starch films by
melt blending and compression moulding. The addition of these acids to starch leads to the
formation of more extensible, less water-soluble, and breakage-resistant membranes that
inhibit growth of E. coli and L. innocua [165]. The incorporation of ferulic acid into pullulan-
based composite films using a solution-casting method also leads to the antioxidant and
biodegradable bioactive packaging [166].

Active packaging with the controlled release of ferulic acid was also made of low-
density polyethylene (LDPE) and ethylene-vinyl acetate (EVA) [167]. Apart from the acids
described above, sorbic, syringic, boswellic, citric, or tannic acids are also used as modifiers.
Since 1940, sorbic acid has been known for its excellent antibacterial activity. In addition,
this compound swiftly decomposes in the soil, which makes it environmentally friendly.
Sorbic acid is also employed commercially as a preservative agent, designated as E200.
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Active polypropylene films containing sorbic acid show antibacterial properties against
E. coli, S. aureus, and an antifungal effect on A. niger [168].

CTS films, with the addition of citric acid as a cross-linking agent and glycerol as
a plasticizer, have great packaging stability. Additionally, the final products show good
antioxidant properties [169]. CTS-based active packaging can also be obtained by including
boswellic acid (BA), which is a pentacyclic triterpene acid obtained from the resin of decid-
uous trees from the dry regions of India and China. BA is known for its anti-inflammatory
and anti-cancer properties. Packaging films produced out of CTS, PVA, and BA (CPBA
films) show activity against E. coli, S. aureus, and Candida albicans [170].

Composite films based on CTS and syringic acid also have a significant bacteriostatic
effect against E. coli and S. aureus bacteria. Syringic acid belongs to the family of phenolic
acids, which have great antioxidant properties and can be found in RadixIsatidis and
Lenntinulaedodes [171].

Methylcellulose, CTS, and gelatine films doped with tannic acid, which is a gallic
ester of D-glucose, also exhibit antibacterial activity against the bacteria mentioned above.
Apart from antibacterial activity, tannic acid also exhibits antioxidant properties due to
the presence of phenolic groups. As a compound generally recognised as safe (GRAS)
by the Food and Drug Administration (FDA), tannic acid is commercially used in the
food industry [172]. GRAS compounds that can be successfully applied to development
of antimicrobial food packaging materials also include natural extracts and phytochem-
icals, e.g., Murta fruit, green tea, spirulina, citrus and propolis extracts, which all have
antimicrobial activity.

Antimicrobial packaging materials can also contain EOs. Their bacteriostatic properties
result from their hydrophobicity, which increases the permeability of cells and mitochon-
drial membranes, contributing to the leakage of small molecules and ions, and ultimately
results in cell lysis and death. EOs are incorporated in food packaging materials in the form
of nanoparticles, as the encapsulation supports the stability of EOs in packaging film. The
most common EOs are compounds derived from lemongrass, ginger, chamomile, thyme,
or the tea tree [173].

6. Antibacterial Polymers in Textile Industry and Wearable Electronics

Textiles, made from synthetic polymers, are known for their good resistance to chemi-
cals as well as their durability. On the other hand, they are susceptible to microbial growth
on their surface because of retaining moisture, oxygen, warmth, and nutrients from body
exudates. Microorganisms such as bacteria, yeast, fungi, and moulds are responsible for
diseases in textile users (allergies, infections), and have a harmful effect on textile prod-
ucts, causing staining, odour, and deterioration. In order to maintain hygiene when using
synthetic textiles and to prevent the growth of microbes, the textile industry is facing the
development of materials that inhibit the growth of bacteria.

One of the proposed solutions is the modification of polyacrylonitrile (PAN), often
used in the production of textiles, by immobilizing tetracycline on its surface, which is an
effective antibiotic against Gram-positive and Gram-negative bacteria [174]. Another ap-
proach to provide antibacterial properties to PAN is the incorporation of copper nanowires
and nanoparticles to its surface. The potent antimicrobial properties of copper involve
bacterial cell penetration, generation of reactive oxygen species (ROS), metabolite binding,
and electrostatic interactions of Cu2+ with negatively charged bacteria cells [175].

To protect the artificial textile materials made of polyamide 6 (PA), PET, and PP
from bacteria adhesion, the zinc oxide (ZnO) microrods are proposed to be used as an
antibacterial layer due to their low toxicity and effectivity as an antibacterial agent. The
application of zinc oxide as an antibacterial coating relies on the deposition of ZnO by
immersing the fabric in a colloid solution of ZnO nanoparticles [176].

Furthermore, natural compounds such as tannins are gaining attention as antibacterial
modifiers in textile industry because of adequate properties such as non-toxicity and good
degradation. Tannic acid is an organic acid that belongs to the tannins group and is used
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as a coating in silk, giving it antibacterial properties. Such coatings are often performed
using an adsorption process. Tannic acid exhibits antibacterial activity towards E. coli and
S. aureus [177].

A common natural material used in the textile industry is cotton, also vulnerable to
bacteria adhesion. In order to impart antibacterial properties to these kinds of clothing, a
coating of polydopamine (PDA) connected with silver nanoparticles (AgNPs) is formed.
This treatment gives excellent antibacterial efficiency towards Gram-positive and Gram-
negative bacteria [178].

Antibacterial textile materials are of great significance for medical applications, accel-
erating wound healing and preventing the development of infections. For this purpose,
the curcumin-grafted hyaluronic-acid-modified pullulan polymers (Cur-HA-SPu) was
elaborated by means of chemical coagulation. Curcumin is known for its antimicrobial
and antioxidant properties, but it also enhances tissue formation and remodeling, wound
contraction, and collagen deposition. Hyaluronic acid is a natural component of the ex-
tracellular matrix, responsible for skin hydration. Thanks to its good biocompatibility,
hyaluronic acid is often applied in tissue engineering [179].

Polymers with antibacterial properties are also applied in producing wearable elec-
tronic devices. As in many previously described antibacterial approaches, the wearable
electronics industry uses silver nanoparticles and nano titanium dioxide. These nanoparti-
cles are successfully applied in the production of nanofiber breathable ionotronic flexible
pressure sensors, prepared on the basis of thermoplastic polyurethane (TPU), PET, and
polyimide (PI) nanofiber films [180]. One electronic device gaining growing interest is the
conductive polymer-based hydrogel (CPHs), which is a soft electronic material applied
as wearable and implantable devices, such as a paintable conductive adhesive hydrogel
patch. The role of the self-adhesive hydrogel patch is to bind to the surface of a heart,
effectively supporting its regenerative abilities. There are also CPHs developed to mimic
the mechanical and perception properties of skin. The medical applications of CPHs are
possible due to their surface modification with antibacterial coatings, e.g., the nanostructure
of polydopamine with silver nanoparticles (PDA@Ag NPs) [181].

The electronic skin produced from hydrogels is modified with tannic acid and quater-
nary ammonium to give the final product antibacterial properties [182]. For the purposes
of quantitative detection and imagining, quantum dots (QDs) with integrated targeting are
an excellent solution for drug delivery tracking. After adsorption of crystal violet (CV), the
QDs–CV complex is obtained and dispersed in medical-grade polyurethane. The QDs–CV
complex is effective in combatting MRSA and E. coli [183].

Technological progress forces the development of electrical devices that would operate
independently of conventional batteries. Autonomous triboelectric, polypyrrole-based
generators with modified cotton are a modern solution in electrically driven antibacterial
treatments, showing biocidal effects on Staphylococcus aureus. Self-powering nano genera-
tors can also be produced with poly(vinylidene fluoride) PVDF as a piezoelectric material,
modified with Ag NPs [184].

7. Conclusions and Future Prospects

An excessive amount of antibiotics released into the environment has significantly
contributed to the development of bacterial resistance to antibiotics [8–13]. The use of
polymers for antibacterial purposes is becoming more and more popular in many indus-
tries where green chemistry and environmental protection are of great importance. There
is a growing interest in the use of polymers for antibacterial purposes. Some natural
macromolecules, e.g., CTS [17–20], exhibit intrinsic antibacterial activity, while starch and
cellulose require surface modification. In many cases, the antibacterial properties result
from the chemical structure of the polymer [16–20], but most synthetic polymers also need
to be functionalized to give them antimicrobial properties. In order to meet the require-
ments of green chemistry, organic compounds of natural origin, i.e., fatty acids [57–59] or
essential oils [60–62], are gaining increasing recognition as modifiers. The mechanisms
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of surface functionalization according to RAFT [66–69] and ATRP [70–72] polymerisation
reactions have been described. AMPs are widely used in medicine due to their synergistic
effect with antibiotics [106–109]. In addition, due to their antifouling activity, they can be
successfully used as antibacterial coatings in tissues and prosthetic materials engineering,
e.g., PEG, PAM [118], and PEI [134]. In the face of the global water crisis, the research and
development of antibacterial membranes for water treatment is crucial for human safety
and health. AMPs such as PVDF [139] or polyamide modified with nanoparticles, i.e., DAD-
MAC [140], Ag NPs, and CuO NPs [141,142], find usage for water filter production. In the
food industry, polymers such as PVC, PET, PP, and PE [146,147] are used for packaging
production. Modified TPU, PET, and PI nanofiber films are applied for the production of
wearable antibacterial electronics [171].

Future research perspectives on antibacterial polymers aim at developing positively
charged nanoparticles that easily penetrate the bacterial biofilm and are able to precisely
release antibiotics in deeper areas of the biofilm, reducing the risk of their uncontrolled
distribution into the environment. The antibiotics-loaded superparamagnetic nanoparticles
enhance their delivery with the help of a magnetic field [185]. Click chemistry and con-
trolled polymerization techniques have considerably high potential as synthetic routes of
antibacterial polymers [186].
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Abbreviations

AMP antimicrobial polymers
ARB antibiotic resistant bacteria
ARGs antibiotic resistance genes
ATRP atom transfer radical polymerization
BA boswellic acid
CA cellulose acetate
CPHs Conductive polymers-based hydrogels
CTS chitosan
CuAAC opper (I)-catalyzed azide- alkyne cycloaddition “click” reaction
CV Cristal violet
DADMAC diallyldimethyl ammonium chloride
DD deacetylation degree
DIVEMA copolymer of maleic anhydride (MA) and divinyl ether (DVE)
DVE divinyl ether
ECM extracellular matrix
EM elastic modulus
EOs Essential oils
ET ethyl cellulose
FO Forward osmosis
FDA Food and Drug administrator
GO Graphen oxide
HA Hydroxyapatite
LDPE low-density polyethylene
Ly Lysozyme
MA maleic anhydride
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MC methyl cellulose
MDRs multidrug-resistant bacteria
MF microfiltration
MMA methyl metacrylate
MMM mixed matrix membranes
MN microneedle
MRSA methicillin resistant Staphylococcus aureus
NHS N-hydroxysuccinimide
NPs nanoparticles
NF nanofiltration
PAMAM poly(amido)amine
PAM poly (acrylamide)
PAN polyacrylonitrile
PBC pentablock copolymer
PCL poly(epsilon-caprolactone
PDA polydopamine
PDLA poly(D-lactide)
PDMS polydimethylsiloxane
PEI polyethyleneimine
PET poly(ethylene tetraphtalate)
PGA poly(glycolide)
PHMB polyhexamethylene biguanidine
PHMG polyhexamethylene guanidine
PI polyimide
PLGA poly(lactic-co-glycolic acid)
PP poypropylene
PPI polypropylenimine
PSF polysulfone
PVC polyvinylchloride
PVP poly(4- vinylpyridine)
QACs Quaternary ammonium polymer
QDs Quantum dots
QGO Quaternary ammonium salt
RAFT reversible addition-fragmentation chain transfer
RO Reversed osmosis
ROS Reactive oxygen species
SA Sulfonamides
TA Tannic acid
TMP trimethoprim
TPU Thermoplastic polyurethane
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