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Abstract: In this work, a dual-band transmissive polarization conversion metasurface (PCM), with
omnidirectional polarization and low profile, is proposed. The periodic unit of the PCM is composed
of three metal layers separated by two substrates. The upper patch layer of the metasurface is the
patch-receiving antenna, while the bottom layer is the patch-transmitting antenna. Both antennas
are arranged in an orthogonal way so that the cross-polarization conversion can be realized. The
equivalent circuit analysis, structure design, and experimental demonstration are conducted in
detail, the polarization conversion rate (PCR) is greater than 90% within two frequency bands of
4.58–4.69 GHz and 5.33–5.41 GHz, and the PCR at two center operating frequencies of 4.64 GHz and
5.37 GHz is as high as 95%, with a thickness of only 0.062λL, where λL is the free space wavelength
at the lowest operating frequency. The PCM can realize a cross-polarization conversion, when the
incident linearly polarized wave at an arbitrary polarization azimuth, which indicates that it has the
characteristics of omnidirectional polarization.

Keywords: polarization conversion; dual-band; low profile; omnidirectional polarization

1. Introduction

Polarization converters are devices that can control the polarization direction of elec-
tromagnetic waves. They are mainly used in optics to precisely modulate the polarization
of light [1–5]; in the field of ultrasound they can be used for imaging [6], and in the mi-
crowave field, they can be used where the polarization direction of the electromagnetic
wave is particularly demanding, such as in satellite communications [7–9], electromagnetic
stealth [10], navigation [11], and radar [12,13].

Generally, polarization converters can be classified into linear polarization convert-
ers [14–16], linear-to-circular polarization converters [17–19], and circular polarization
converters [20,21] according to their uses. A linear polarization converter can rotate the
polarization azimuth of an incident linearly polarized wave by a certain angle, such that
the polarization mode of the incident wave is consistent with that of the receiver antenna
at the terminal, and the energy loss due to polarization mismatch can be reduced. In
wireless communication systems, the polarization conversion of incident waves can be
accomplished by loading polarization converters without mechanical rotation of the system,
or by switching the antenna configuration and feeding pattern of the system. The existing
linear polarization converters are designed according to the fixed polarization azimuth
of the incident wave [22,23] which makes the efficiency of the polarization converters
unstable when the polarization azimuth of the incident wave is unknown. However, if
the polarization azimuth difference between the transmitting antenna and the receiving
antenna is up to 90◦, the transmission coefficient between the two antennas will be zero,
which limits the application of the existing polarization converters to a large extent.
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This work is organized as follows. In Section 2, the design principles of the PCM
are explained in detail. The performance of the proposed PCM is demonstrated by both
simulations and measurements, and it is presented and analyzed in depth by means of field
analysis and equivalent circuit theory. In Section 3, the prototype PCM is fabricated and
measured, and the measured and simulated results are compared and discussed. Finally,
the conclusion is expounded and presented in Section 4.

2. Design and Analysis

In this section, the geometrical structure of the proposed omnidirectional PCM will
first be presented in detail. An equivalent circuit model is proposed to explain the contribu-
tions of different parts of the proposed PCM. The comparison and discussion between the
full-wave simulation results and equivalent circuit analysis are presented. Then, the distri-
butions of electric field and current are investigated and analyzed for further verification.

2.1. Design of PCM Element

Figure 1 shows the unit cell of the proposed PCM, where all the yellow parts are
copper foils and the blue parts are substrates. The unit cell size is 16.5 mm × 16.5 mm
(0.25λL × 0.25λL), where λL is the free space wavelength at the lowest operating frequency,
4.58 GHz. It is composed of three metal layers separated by two substrate layers; each
layer is connected by four coaxial via holes. The thickness of PCM is 4.105 mm, about
0.062λL. Additionally, four identical metal patches on the top layer are rectangular patches
with internal grooves and added branches, which are placed in an orthogonal clockwise
rotation along the periodic edge of the element. Furthermore, four coaxial via holes with
the diameter d1 = 0.4 mm are connected to the upper and lower four patches, respectively,
to form the structure of “receiving antenna-non-radiating coupler-radiating antenna”. The
polarizations of the receiving antenna and the radiating antenna are orthogonal. The metal
plate in the middle is the common ground of the upper and lower structures. Tables 1 and 2
show the simulated material parameters of copper and F4B.
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Figure 1. The unit cell of the proposed dual-band PCM where the top layer is connected with the 

bottom layer by four coaxial via-holes. The geometric dimensions are as follows: ℎ1 = 0.035, ℎ2 = 2, 

𝑝 = 16.5, 𝑙1 = 9, 𝑤1 = 0.8, 𝑙2 = 13.2, 𝑤2 = 2.8, and 𝑑1 = 0.4, 𝑑2 = 1.4 (unit: mm). 

Figure 1. The unit cell of the proposed dual-band PCM where the top layer is connected with the
bottom layer by four coaxial via-holes. The geometric dimensions are as follows: h1 = 0.035, h2 = 2,
p = 16.5, l1 = 9, w1 = 0.8, l2 = 13.2, w2 = 2.8, and d1 = 0.4, d2 = 1.4 (unit: mm).
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Table 1. Material parameters of copper.

Electric Cond. Thermal Cond.

5.96× 107 [S/m] 401 [W/K/m]

Table 2. Material parameters of F4B.

Relative Permittivity Loss Tangent

2.65 0.002

Full wave simulation is carried out by Ansoft High Frequency Structure Simulator
(HFSS). Figure 2a shows the cross-polarization and co-polarization coefficients of the
proposed PCM, where tyx and txy are the cross-polarization transmission coefficients
under x-polarized and y-polarized incident waves, and rxx and ryy are the co-polarization
reflection coefficients under x-polarized and y-polarized incident waves, respectively. The
results show that the proposed PCM can achieve cross-polarization conversion in the dual
bands of 4.58–4.69 GHz and 5.33–5.42 GHz, and the polarization conversion rate (PCR)
in the two passbands is greater than 90%. For the x-polarized incident wave, PCR can be
calculated as:

PCR =

∣∣tyx
∣∣2∣∣tyx

∣∣2 + |txx|2
(1)
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Figure 2. Cross-polarization transmission coefficient and co-polarization reflection coefficient: (a) 

under x-polarized and y-polarized waves; (b) when polarization azimuth φ varies from 0° to 45° 

under x-polarized wave; and (c) when polarization azimuth φ varies from 0° to 45° under y-polar-

ized wave. 
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Figure 2. Cross-polarization transmission coefficient and co-polarization reflection coefficient:
(a) under x-polarized and y-polarized waves; (b) when polarization azimuth ϕ varies from 0◦

to 45◦ under x-polarized wave; and (c) when polarization azimuth ϕ varies from 0◦ to 45◦ under
y-polarized wave.

The txy and tyx are −0.22 dB and −0.35 dB, respectively, at two central operating
frequencies of 4.64 GHz and 5.37 GHz, and the PCR is up to 95%. The results in Figure 2b
verify the polarization omnidirectional characteristics of the proposed PCM. Since the
response of the PCM is consistent under x-polarized and y-polarized waves, only the
variation of ϕ from 0◦ to 45◦ under x-polarized waves is sufficient to demonstrate its
performance.

The simplified circuit model in Figure 3a is obtained by the circuit equivalence of the
PCM unit, where the characteristic impedance of free space is denoted by Z0 = 377 Ω, and
the circuit equivalent of the original model is marked in Figure 1. The parameter values
in the equivalent circuit are extracted by using the optimization algorithm in Microwave
Office 13 software to fit the EM simulation curves from the HFSS 15 software. The boundary
conditions are master and slave in the x and y-axis direction. The maximum edge length of
the numerical grid is 3.121 mm, while the minimum size of the numerical grid is 0.035 mm.
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The distance of the ports from the structure is 15 mm (1/4 λc), where λc is the wavelength
at the central frequency. The resonators with Yau and Ybu admittance are equivalent to the
upper inner and outer metal patches, and the resonators with Yal and Ybl admittance are
equivalent to the lower inner and outer patches, respectively. Yau can be expressed as:

Yau = 1/Zau = 1/
[

1
jωC1

‖
(

jωL1 +
1

jωCd

)
‖ 1

R1

]
= Yal (2)

where ω is the angular frequency, and Ybu is calculated similarly to Yau. The equivalent
circuit model of the PCM is symmetric with respect to the ground, since the lower metal
patches are the same as the upper ones, only at different locations. The coaxial-via-hole
connection can be equivalent to the inductance transmission (Lv1 and Lv2), and the upper
and lower resonators are connected in series. The transmission of the inner and outer
patches from one end of the PCM to the other can be equivalent to two transmission paths.
The transmission matrix of one of the paths can be written as [24]:

AI =

(
A1 B1
C1 D1

)
=

(
1 0

Yau 1

)(
1 jωLv1
0 1

)(
1 0

Yal 1

)
(3)
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Figure 3. (a) Equivalent-circuit model of the proposed PCM (Cd1 = 9.55 pF, L1 = 0.4419 nH,
C1 = 2.5324 pF, R1 = 2772 Ω, Lv1 = 0.16 nH, Cd2 = 8.71 pF, L2 = 0.6424 nH, C2 = 2.3596 pF, R2 = 3030 Ω,
Lv2 = 0.38 nH). (b) Cross-polarization transmission coefficient and co-polarization reflection coeffi-
cient of the PCM are calculated by full-wave simulation and equivalent circuit model.
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The equation of the other transmission matrix AI I is similar to (3). What is more, the
inner or outer upper and lower resonators are connected in series, respectively, and then
parallel to each other. Here, both AI and AI I need to be converted into admittance matrices
(Y = [Y11, Y12; Y21, Y22]):

Y11 =
D
B

, Y12 =
BC− AD

B
, Y21 =

−1
B

, Y22 =
A
B

(4)

Therefore, the admittance matrix Y = YI + YII of the equivalent circuit in Figure 3a
can be obtained, and the cross-polarization transmission coefficient and co-polarization
reflection coefficient can be further calculated as:

tyx/txy =
−2Y21Y0

∆Y
(5)

rxx/ryy =
(Y0 −Y11)(Y0 + Y22) + Y12Y21

∆Y
(6)

where Y0 = 1/Z0, ∆Y = (Y11 + Y0)(Y22 + Y0)− Y12Y21. Therefore, the equivalent circuit
calculation results in Figure 4b are obtained, which are highly consistent with the EM
simulation results.
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with y-polarized wave incident.

2.2. Mechanism of PCM

The dual frequency is due to the different sizes of the inner and outer patches of the
patch antenna, which can produce two resonant frequencies. Figure 4a,b demonstrates
the electric field intensity distribution on the upper and lower surfaces at the two center
operating frequencies of 4.64 GHz and 5.37 GHz under the excitation of the y-polarized
wave, respectively. The results show that the outer metal patch resonates at 4.64 GHz, while
the inner rectangular patch resonates at 5.37 GHz.

It is known that the electric field
→
Eu of a linearly polarized electromagnetic wave,

with arbitrary polarization azimuth ϕ, can be decomposed into components
→
E x and

→
Ey

in the two orthogonal direction x- and y-axes. The proposed PCM exploits this property
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to achieve omnidirectional polarization conversion. The PCM rotates the two orthogonal

components of incident
→
Eu by 90◦, respectively. Thus, the

→
Ev at the transmission terminal

synthesized from the two new orthogonal components is rotated by 90◦ with respect to the

original
→
Eu. This phenomenon is illustrated by the surface current vector distribution at

the top and bottom of the unit cell. Taking 4.64 GHz as an example, Figure 5 shows the
surface current vector distribution between the top and bottom of the unit at 4.64 GHz
when the ϕ of incident wave takes different values.
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Take ϕ = 30◦ as an example, in Figure 5b, where
→
Eu is mainly

→
Ey component and some

→
E x component exist. After the electromagnetic wave reaches the surface of the PCM, the

metal patches placed in the x- and y-directions generate the induced currents of the
→
E x and

→
Ey components, respectively. The current flows through the coaxial via holes and reaches
the bottom, producing a strong current distribution on the patch placed orthogonal to each

other. Now, the
→
E x component of the incident wave becomes

→
Ey, and

→
Ey converts to

→
E x.

Therefore, the electric field
→
Ev synthesized at the terminal is orthogonal to that of

→
Eu, which

completes the cross-polarization conversion of the linearly polarized incident waves at any
polarization azimuth. Moreover, the current intensity is not diminished before and after
the polarization conversion. This indicates that the PCM suffers little energy loss during
transmission, since the current induced in the x- and y-directions are independent of each
other, and the transmission mode of the coaxial via hole also minimizes the loss.
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3. Fabrication and Measurement

The proposed PCM prototype is manufactured, as shown in Figure 6a. The measured
sample is composed of 12 × 12 periodic arrays. A pair of the identical linearly polarized
horn antennas (LB-187-15-C-SF) working at 3.95–5.85 GHz are used to transmit and receive
electromagnetic waves, and they are connected to two ports of the vector network analyzer
(Anritsu MS46322A, Kanagawa, Japan). The distance between the sample and the horn
antenna satisfies the far-field condition. The measured environment is shown in Figure 6b,
and the measurement is carried out in the microwave anechoic chamber.
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Figure 6. The PCM prototype and experimental set-up. (a) Top view of the PCM. (b) Experimental
setup for co-polarization reflection coefficient and cross-polarization transmission coefficient.

The measured results are normalized by an equal-sized metallic plate. The co-
polarization reflection coefficient and cross-polarization transmission coefficient, obtained
from the measurement and simulation, are shown in Figure 7. As can be seen from the
comparison of simulated and measured results, the tyx curves were in good agreement.
However, compared with the simulation result, the measurement result of rxx shifted to
the right by about 0.1 GHz at the low resonant frequency, which may be caused by the
slight oblique incidence angle of the incident wave due to the relative position of the two
horns on the same side. Since the current path at low frequencies is longer than that at high
frequencies, low frequency is more sensitive to oblique incidence. In addition, the effect of
the incident wave on the reflected wave can also bias the measured results.
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Figure 7. Simulated and measured (a) rxx and (b) tyx.

The omnidirectional polarization is verified by measurement with different polariza-
tion azimuthal angles. On the basis of the above measurement, a certain angle is rotated
along the normal line of the horn antenna aperture, and ϕ = 0◦, ϕ = 15◦, ϕ = 30◦, and
ϕ = 45◦ are successively measured. The measured results for tyx and rxx are shown in
Figure 8. According to the measured results, when the polarization azimuth ϕ varied
from 0◦ to 45◦, it had no effect on tyx and rxx. The measured results for tyx and rxx well
demonstrate the dual-frequency and omnidirectional polarization characteristics of the
proposed PCM.
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Figure 8. Measured (a) rxx and (b) tyx of the PCM at ϕ = 0◦, 15◦, 30◦, and 45◦.

Comparisons with other reported metasurface-based polarization converters are in-
cluded in Table 3. It can be seen from Table 1 that the PCM proposed in this communication
not only has the advantage of low profile in structure, but also has a low insertion loss
in two operating frequency bands. Moreover, it is also characterized by omnidirectional
polarization, while the existing polarization converters, 9, 10, 17, 19, and 20, can only work
with single or dual polarization.

Table 3. Comparison with other works in terms of performance.

Ref. Passband PCR Thickness
(λL)

Insertion Loss
(dB) * OP

[14] Dual 90% 0.13 0.37/0.2 No (SP)
[15] Single 90% 0.0235 1.16 No (SP)
[22] Single 90% 0.07 0.8 No (DP)
[25] Dual 88% 0.12 1.94/1.2 No (DP)
[26] Dual 86% 0.069 0.4/1.9 No (DP)

This work Dual 90% 0.062 0.22/0.35 Yes
* OP: omnidirectional polarization; SP: single polarization; DP: dual polarization.

4. Conclusions

In this work, a dual-band transmissive PCM, with both omnidirectional polarization
and a low profile, is proposed. The principle of vector orthogonal decomposition is used to
achieve the cross-polarization conversion of an arbitrary azimuth linear polarization wave
incident. Furthermore, the dual-band operation makes the PCM more practical. Moreover,
the PCM realizes the polarization conversion at the level of the planar circuit, which
further reduces the thickness of the substrate and makes it ultra-thin. The transmission of
electromagnetic waves between the receiving and the radiating patches is equivalent to
the coaxial line transmission of electromagnetic waves in the TEM mode, and the currents
induced on each patch are independent of each other, which keeps the insertion loss at a
low value.
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