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Abstract: Recent advances in materials science have led to the development of smart materials
that can continuously adapt to different loading conditions and changing environment to meet the
growing demand for smart structural systems. The unique characteristics of superelastic NiTi shape
memory alloys (SMAs) have attracted the attention of structural engineers worldwide. SMAs are
metallic materials that can retrieve their original shape upon exposure to various temperatures or
loading/unloading conditions with minimal residual deformation. SMAs have found increasing
applications in the building industry because of their high strength, high actuation and damping
capacities, good durability, and superior fatigue resistance. Despite the research conducted on the
structural applications of SMAs during the previous decades, the existing literature lacks reviews
on their recent uses in building industry such as prestressing concrete beams, seismic strengthening
of footing–column connections, and fiber-reinforced concrete. Furthermore, scarce research exists
on their performance under corrosive environments, elevated temperatures, and intensive fires.
Moreover, the high manufacturing cost of SMA and the lack of knowledge transfer from research to
practice are the main obstacles behind their limited use in concrete structures. This paper sheds light
on the latest progress made in the applications of SMA in reinforced concrete structures during the last
two decades. In addition, the paper concludes with the recommendations and future opportunities
associated with expanding the use of SMA in civil infrastructures.

Keywords: shape memory alloys; superelasticity; concrete structures; self-centering; self-healing; prestressing

1. Introduction

Designing buildings today takes more than just satisfying the requirements of func-
tionality and load-carrying capacity. There is a vital need for designing slender, long-span
structures with high adaptability to changes in temperature and loading conditions. Never-
theless, designing structural elements with the highest possible strength-to-weight ratio
continues to gain more popularity in construction sector due to economic reasons. More-
over, code-designed reinforced concrete (RC) moment-resisting frames are used as resisting
structures against lateral cyclic loads. They withstand the damage resulting from seismic
forces, including the collapse and destruction of beam–column joints that are specified
as the weakest elements in structural systems. Most of the traditional strengthening tech-
niques used for enhancing the seismic performance of RC beam–column joints subjected to
cyclic lateral loads are not able to partially or fully recover the residual displacements after
unloading. A promising new way of resolving this problem is to incorporate smart systems
and smart materials within the beam–column joint itself. Smart systems are defined as
systems that can automatically adjust their structural characteristics with respect to differ-
ent loading conditions. Smart materials are the core elements in smart systems [1], which
can be integrated into smart systems and provide several functions including sensing,
actuation, self-adapting, self-healing, and information processes needed for monitoring.

SMAs can adapt themselves to a wide range of loading conditions and changing
environments such as thermal, seismic, and wind loads, and magnetic fields. SMAs can
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undergo a reversible phase transformation when exposed to a temperature change and
magnetic fields, which give them an advantage for changing their shape, and for use
in actuation and sensing applications. SMAs can also display superelastic properties
by recovering their original shape upon unloading. Moreover, SMAs can exhibit high
damping capacity, by absorbing and dissipating energy under mechanical loading. This
property makes them suitable for use in vibration control systems, thus improving the
seismic performance of structures. SMAs are also among the smart materials that have
the capability to recover their pristine shape after a significant deformation of about
8% strain [2–6]. This shape recovery is due to either stress- or temperature-induced phase
transformations. Owing to their distinct self-centering capability, SMAs can be used in
different civil engineering applications.

SMAs were first introduced in civil engineering by Graesser and Cozzarelli [7] in the
1990s as seismic isolation materials due to their outstanding damping properties. Since then,
several researchers have continued to conduct studies and present cutting-edge processing
technologies to explore the distinctive characteristics of SMAs for potential applications in
construction industry sector. A recent study indicated that the estimated world market size
for SMA was about 11.2 billion USD in 2018 and is likely to achieve an annual growth rate of
about 13% in the next 15 years [8]. Although the market share is dominated by the actuator
and automotive industry, the infrastructure sector is expected to be the fastest-growing
industry in the coming 5 years, with an annual growth rate of about 15% [9]. To identify
the gaps in research in this area, an extensive review of the experimental studies conducted
on SMAs during the last two decades is presented. Moreover, a statistical evaluation is
carried out on the data gathered from more than 100 international journals indexed in web
of science core collection. The statistical results are based on country of the authors, SMA
distinct properties, SMA type, SMA applications, and structural elements, presented in
a simple way using pie charts throughout the paper. The distribution of publications on
SMA worldwide are shown in Figures 1 and 2. It can be observed that about 60% of the
research conducted on SMAs is shared by USA, followed by Japan, Canada, and China.
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Despite the increased number of publications on SMAs during the last 5 years, they
still have limited applications in various important structural elements. SMAs have mainly
been used to enhance the seismic performance of the structures due to their superelastic
properties. The main objective of this investigation is to present the state-of-the-art ap-
plications of SMAs under different loading conditions including monotonic, quasi-static,
and reversed cyclic loadings, as well as under different environments, including elevated
temperatures, intensive fires, and corrosive conditions. It provides a critical overview
of the progress made in applications of NiTi SMAs in civil infrastructures during recent
years, with a focus on seismic retrofitting of footing–column connections, prestressing
of reinforced concrete beams, and fiber-reinforced concrete, in addition to their perfor-
mance under corrosive environments and elevated temperatures. The corrosion behavior
of SMA bars compared to steel bars, especially for coupled SMA–steel bars, is not yet well
established in the literature. Moreover, this paper provides a summary of the properties,
applications, and numerical studies of NiTi SMAs that have received limited coverage in the
existing literature. The applications of SMAs covered in this paper include self-centering,
retrofitting, self-healing, prestressing, and fire protection. This paper also provides detailed
comparisons on the effects of SMAs in concrete structures, in terms of residual displacement,
energy dissipation, and load capacity. The exact percentage increases and decreases in these
properties were calculated from the published studies and presented in separate tables.
The new information presented in this investigation is expected to encourage structural
designers and materials scientists to explore the potential applications of smart materials
for enhancing the performance of concrete structures under various loading conditions
and different environments. Lastly, this paper concludes with the recommendations and
opportunities for future research projects on SMA applications. It should be noted that
NiTi is referred to as Nitinol SMA or simply SMA throughout this paper.
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2. Background on SMAs and Their Distinct Properties

SMAs are a new group of smart materials characterized by their ability to recover
large plastic strains induced while the crystal structure is in the martensitic form as shown
in Figure 3. This plastic strain is recovered by raising the temperature and changing the
crystal structure to the austenitic form. The alloy returns to its deformed shape once the
crystal structure is transformed back to martensitic form. The speed of transformation
is dependent on the speed with which the alloy can be heated. The temperature level at
which martensitic transformation takes place and the shape of the hysteresis curve are
dependent on the alloy composition and processing technique. When electric current is
used for heating the alloy, the change can be very fast [10].
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The distinct thermomechanical properties of SMA include their shape memory effect
(SME) and superelasticity effect (SE). This makes SMA an outstanding alternative for use
in structures built in seismic regions. The maximum temperature that forms the start of the
martensite phase and the temperature at the end of the martensite phase transformation
are designated as Ms and Mf, respectively, as demonstrated in Figure 3. The austenite finish
temperature (Af) is the minimum temperature at which the superelastic effect occurs. As
refers to the temperature at which the austenite phase starts. The statistical analysis shown
in Figure 4 indicates that 62% of the applications of SMAs in civil infrastructures are based
on their superelastic effect (SE), followed by 32% based on their shape memory effect (SME).
Therefore, superelastic SMAs receive more attention in the building industry sector than
those based on the shape memory effect.
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2.1. Superelasticity of SMAs

The maximum superelastic strain is the permanent strain induced by the shape mem-
ory effect of SMAs. The SMA is able to recover this strain if the temperature is above the
austenite finish temperature. The superelasticity of SMAs (also known as pseudoelasticity)
is determined by performing cyclic tensile testing as described in ASTM F2516 [12]. After
loading the SMA specimen to 6% strain, two types of stress are identified: lower plateau
stress (LPS) at 2.5% strain, and upper plateau stress (UPS) at 3% strain. The typical cyclic
tensile curve presented by Khan et al. [13] for superelastic SMAs consisted of different
segments (Figure 5), as demonstrated by Wu and Schetky [14] (Figure 6). Initially, it can be
observed that the austenite phase displays representative elastic deformation from A to B
where the UPS is reached, followed by an isostress state from B to C as the cubic austenite
structure shears into detwinned SIM, and elastic deformation from C to D. After unloading
from D to A, the elastic strain is recovered, and the SIM returns into the previous austenite
phase. A typical Nitinol SMA displays superelasticity up to 8% strain before the onset
of permanent deformation. However, depending on the SMA type, some percentage of
residual deformation is there [14–17].
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2.2. Shape Memory Effect

The shape memory effect, SME (also known as pseudoplasticity) is the ability of SMAs
to return to their predetermined shape upon heating. The shape memory effect of SMAs
is mainly induced by thermal phase transformations between martensite and austenite
phases. This effect can best be illustrated using the stress–strain–temperature graph and
the crystal structure presented by Wu and Schetky [14] (Figure 7). Depending on the crystal
structure of the SMA, two phases can be identified: the austenite phase, which is strong
and stable at high temperature; the martensite phase, which is weak and stable at low
temperature. The characteristic of the transformation temperature is the hysteresis existing
between the heating and cooling paths of the transformation curve shown in Figure 7.
The temperature level at which the martensite transformation takes place and the shape
of the hysteretic curve are dependent on the composition of the alloy and its processing
technology [18].
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3. Commonly Used SMAs

The most common type of SMAs used in civil infrastructures is NiTi (nickel–titanium),
also called Nitinol alloy. This is due to the superior properties of this alloy compared to
carbon steel, e.g., superelasticity, the corrosion resistance, wide range of working tempera-
tures, and high values of strength. To date, several types of SMAs have been developed,
including copper (Cu)-, niobium (Nb)-, and iron (Fe)-based SMAs [19–22]. Cu-based SMAs
are alloys that contain copper as one of the main alloying elements, in addition to others.
They are relatively inexpensive materials with a recoverable strain limited to 2–4% [23].
Another potential low-cost SMA type is Fe-based. Fe-based alloys have limited use in
building industry applications because they are not available in large-diameter bar or wire
forms. [24]. However, NiTi SMAs are widely used today, because of their excellent prop-
erties including high strength, good corrosion resistance, high fatigue life, good electrical
properties, and superior SME and SE properties [25].

The pie chart shown in Figure 8 indicates that NiTi SMAs have been researched the
most among all SMAs, and they have become the most commonly used for commercial
applications. Thus, the subsequent sections focus more on Nitinol SMAs, along with their
properties, performance, and applications in civil infrastructures.
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4. Mechanical Characteristics of NiTi SMAs

The behavior of SMAs under different thermal and loading/unloading conditions is
classified into two phases: martensite phase and austenite phase. Two important parame-
ters are required in order to define the stress of an SMA and its phase: the applied strain
and the working temperature [26]. Table 1 summarizes the main mechanical properties of
superelastic NiTi used by researchers in civil infrastructure applications. Since the statistical
analysis in Figure 4 indicated that 62% of the applications of SMA in civil infrastructures are
based on their superelastic effect (SE), the superelastic response of NiTi SMAs is reviewed
in depth in this paper. The dependency of this response on cyclic loading, strain rate, and
working temperature is also examined in separate sections.

Table 1. Summary of the SMA properties used in the literature for concrete applications.

Element
Type

Type of
SMA

Ultimate
Stress (MPa)

Yield Stress
(MPa)

Recovery
Stress (MPa)

Recovery
Strain

Elastic Modulus
(GPa) Reference

Fiber/wire
NiTi

915 350 130 6% 31 [27]
1150 550 200 8% 75 [28]
920 560 230 7% 60 [29]

NiTiNb
1059 635 550 8% 83 [30]
1030 580 460 5% 56 [31]

Bar NiTi

700 485 260 6% 55 [32]
NR * 401 220 6% 62 [33]
752 549 140 7% 54 [34]

1068 380 190 6% 38 [35]
830 480 250 7% 36 [36]

* NR: not recorded.
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4.1. Cycling Loading

The superelasticity of Nitinol SMAs can be utilized effectively under lateral cyclic loads
simulating earthquake loads on structures built in active seismic zones. A comparison of
the hysteretic responses of three different superelastic SMAs under cyclic loads is illustrated
in Figure 9 [37]. It can be seen that NiTi SMAs have good self-centering ability and high
strength with adequate energy dissipation compared to copper- and iron-based SMAs.
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Furthermore, under cyclic loading, the hysteretic response of NiTi compared to steel
reinforcement is shown in Figure 10. The figure clearly shows the superior behavior of NiTi
and its high capability to provide self-centering behavior compared to reinforcing steel.
The superelasticity of the NiTi alloy used is almost the same in compression and tension, as
shown in Figure 11 [38].
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A few researchers have investigated the effect of cyclic loading on NiTi wires with a
diameter of about 1–2 mm, and bars with 25.4 mm diameter [39–46]. They found that the
energy dissipated decreased upon increasing the loading cycles and the material leaned
toward having a stabilized performance after a specified number of cycles.

4.2. Strain Rate Effects

The experimental tests conducted by Azadi et al. [47] indicated that the strain rate has
an important effect on the mechanical response of NiTi SMAs. Some researchers [48–51]
observed that the material liberates energy as heat during the forward phase transfor-
mations, whereas it absorbs energy during unloading. They also found that the material
may not have sufficient time to transfer heat to the surroundings at high strain rates. A
few researchers observed a reduction in the energy dissipated with the increase in strain
rate [39,42], while some other researchers [52] noticed a larger dissipation of energy at
higher strain rates. Furthermore, Ozbulut and Hurlebaus [18] studied the influence of
loading frequency within a common range for seismic events on the performance of SE
Nitinol SMA wires. They observed up to a 47% decrease in the dissipated energy by
increasing the frequency to 2 Hz. The contradiction in the results of the aforementioned
studies could be due to variations of strain rates, composition of the material, and testing
conditions. Saigal and Fonte [53] reported that Nitinol has an endurance limit greater than
10 million cycles at 400 MPa stress, while a small increase in stress up to 450 MPa forced
the specimen to fail at 435,525 cycles (~23-fold reduction).

4.3. Shape Memory Effect

Many researchers have investigated the effects of a change in temperature on the phase
transformations and superelastic behavior of NiTi wires [18,40,54–57]. Their experimental
test results revealed a significant effect of the temperature on the superelastic response of
SMA. Moreover, they observed that the stress that initiates the phase transformations of
SMA increases with temperature. In contrast, they found that the residual deformation and
stiffness were not influenced by the temperature change in the superelastic range. A vibrant
illustration of the stress–strain response of Nitinol SMA wires at different temperatures is
shown in Figure 12, where the material tested exhibited a superelastic response only within
0–40 ◦C.



Materials 2023, 16, 4333 10 of 37

Materials 2023, 16, x FOR PEER REVIEW 9 of 35 
 

 

A few researchers have investigated the effect of cyclic loading on NiTi wires with a 
diameter of about 1–2 mm, and bars with 25.4 mm diameter [39–46]. They found that the 
energy dissipated decreased upon increasing the loading cycles and the material leaned 
toward having a stabilized performance after a specified number of cycles. 

4.2. Strain Rate Effects 
The experimental tests conducted by Azadi et al. [47] indicated that the strain rate 

has an important effect on the mechanical response of NiTi SMAs. Some researchers [48–
51] observed that the material liberates energy as heat during the forward phase transfor-
mations, whereas it absorbs energy during unloading. They also found that the material 
may not have sufficient time to transfer heat to the surroundings at high strain rates. A 
few researchers observed a reduction in the energy dissipated with the increase in strain 
rate [39,42], while some other researchers [52] noticed a larger dissipation of energy at 
higher strain rates. Furthermore, Ozbulut and Hurlebaus [18] studied the influence of 
loading frequency within a common range for seismic events on the performance of SE 
Nitinol SMA wires. They observed up to a 47% decrease in the dissipated energy by in-
creasing the frequency to 2 Hz. The contradiction in the results of the aforementioned 
studies could be due to variations of strain rates, composition of the material, and testing 
conditions. Saigal and Fonte [53] reported that Nitinol has an endurance limit greater than 
10 million cycles at 400 MPa stress, while a small increase in stress up to 450 MPa forced 
the specimen to fail at 435,525 cycles (~23-fold reduction). 

4.3. Shape Memory Effect 
Many researchers have investigated the effects of a change in temperature on the 

phase transformations and superelastic behavior of NiTi wires [18,40,54–57]. Their exper-
imental test results revealed a significant effect of the temperature on the superelastic re-
sponse of SMA. Moreover, they observed that the stress that initiates the phase transfor-
mations of SMA increases with temperature. In contrast, they found that the residual de-
formation and stiffness were not influenced by the temperature change in the superelastic 
range. A vibrant illustration of the stress–strain response of Nitinol SMA wires at different 
temperatures is shown in Figure 12, where the material tested exhibited a superelastic 
response only within 0–40 °C. 

 
Figure 12. Stress–strain response of NiTi SMA at various temperatures. Reprinted from [58], with 
permission from Society for Experimental Mechanics. 

Figure 12. Stress–strain response of NiTi SMA at various temperatures. Reprinted from [58], with
permission from Society for Experimental Mechanics.

5. Performance of SMAs under Different Environments

Scarce information exists in the literature on the performance of SMAs under different
environments. This section provides a critical review of the recent work carried out on the
performance of SMAs under elevated temperatures and corrosive environments.

5.1. Performance of SMA under Elevated Temperatures

Sadiq et al. [59] carried out some experimental tests on the effect of elevated tempera-
tures on the stress–strain curve of NiTi SMA in tension. Unlike reinforcing steel, they found
that the Young’s modulus and the yield strength of NiTi SMA increased with the increase
in temperature. Moreover, the test results (Figure 13) indicated that the SMA specimens
exposed to 500 ◦C exhibited up to a 100% increase in stress with a corresponding increase
in strain of about 6% compared to the same specimens exposed to 20 ◦C. Furthermore,
Sadiq et al. [59] found that the normalized values of Young’s modulus and yield strength
shown were above 1.0 for temperatures reaching 600 ◦C and about 1.0 for ultimate strength
at temperatures reaching 300 ◦C, and then dropped to 0.13 at 600 ◦C, as shown in Figure 14.
The above results confirm that NiTi SMAs have the potential to improve the strength and
resistance of RC structures against elevated temperatures and intensive fires, as discussed
later in this paper.
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5.2. Performance of SMA under Corrosive Environment

The experimental investigations carried out by some researchers indicated that SMAs
possess corrosion resistance in aggressive solutions comparable to that of carbon steel.
Zhao et al. [60] found that the NiTiNb SMA was able to maintain adequate mechanical
properties even after being subjected to a harsh chemical environment. Joo et al. [61]
found that the corrosion resistance of an Fe-based shape memory alloy (FSMA), was
about 150% more than that of steel, which had a passive coat in an alkaline environment.
Furthermore, the passivated FSMA displayed a higher corrosion resistance in concrete
because of its high alkalinity. Alarab et al. [62] investigated the corrosion resistance of the
coupling between NiTi-based SMA and steel when immersed in a simulated concrete pore
solution. Three corrosion measurements were taken for the samples: SMA alone, steel alone,
and coupled SMA and steel. The specimens were submerged in a pure water solution for
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20 days followed by keeping them for 70 days in a 3% chloride solution. The electrochemical
measurement techniques of the corrosion resistance showed superior performance of the
SMA specimens compared to steel and coupled specimens, as shown in Figure 15. However,
Alarab et al. [62] observed (Figure 15) that coupling SMA with carbon steel increased the
corrosion of steel significantly compared with steel-only specimens. Up to 50% more mass
loss of steel was measured compared with the steel-only specimens. Alarab et al. [62] also
observed from the corrosion potential values (Figure 16) that the addition of chlorides
after 20 days shifted the potential values of the carbon steel and coupled specimens in the
negative direction, indicating the initiation of active corrosion. Moreover, Alarab et al. [62]
noticed through visual inspection of the surface of the specimens (Figure 17) no signs of
corrosion for SMA specimens for both cases, i.e., coupled and uncoupled. However, some
signs of corrosion products were observed on the surface of steel in coupled specimens
compared with steel specimens alone, indicating that coupling increased the corrosion of
steel specimens due to the galvanic effect.
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6. Application of NiTi SMAs in Civil Infrastructures

Although SMAs have been recognized for decades, they were not commonly used
in the building sector until rather recently. Over the past two decades, some researchers
presented several reviews in the literature [63–74] on applications of SMAs in civil infras-
tructures. The percentage distribution of applications based on the distinctive properties of
SMAs is distributed among five major applications: self-centering, retrofitting, self-healing,
prestressing, and fire protection, as shown in Figure 18a. The percentage distribution
of applications based on the structural components is dominated by beams, followed in
order by beam–column joints, column–footing joints, shear walls, bridges, and columns, as
shown in Figure 18b. This section reviews the applications of superelastic SMAs in civil
infrastructures because of their simplicity to use, and no need for a heat source to trigger
their superelasticity. This section focuses more on the structural applications that have
received little or no coverage in the recent literature.

6.1. Self-Centering Applications

Following the 1995 Kobe earthquake in Japan, over 100 RC columns with a resid-
ual drift ratio of over 1.75% were demolished even though they did not collapse [75].
Recently, with the increased awareness of the importance of residual displacements for
post-earthquake functionality in bridges and buildings, several novel systems using SMA
elements have been investigated to mitigate their effects and improve the displacement
recovery of concrete structures [76–83]. These techniques are summarized in Table 2 and
presented in detail in this section.
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6.1.1. Column–Footing Connections

Miralami et al. [34] conducted an experimental investigation on strengthening circular
RC bridge column–foundation connections using SMA bars and concrete jacketing, in
addition to CFRP wrapping, as shown in Figure 19. Compared to control specimens, the
specimens strengthened with the six SMA bars and wrapped with CFRP sheets, showed
up to a 76% increase in lateral load capacity, up to a 43% increase in energy dissipation,
recovery up to 77% of the lateral displacement, up to 82% improvement in the initial
stiffness, up to 209% increase in displacement ductility, and up to 240% maximum ductility
ratio, as shown in Figure 20.

Table 2. Summary of the previous publications in self-centering application of SMAs in concrete structures.

Number Structural
Member * Technique Residual

Displacement **
Energy

Dissipation **
Load

Capacity **
Study

Method Reference

1 Beam SMA fiber concrete 79% decrease 22% decrease 8% decrease Experimental [28]

2 CFJ

Strengthening
using external

SMA bar at
plastic hinge

58% increase 39% increase 72% decrease = [34]

3 CFJ
SMA bars at the

plastic hinge using
normal concrete

100% decrease 70% decrease 8% decrease Numerical [84]

4 CFJ

SMA bars at the
plastic hinge using
ultra high perfor-
mance concrete

100% decrease 56% decrease 30% increase = [84]
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Table 2. Cont.

Number Structural
Member * Technique Residual

Displacement **
Energy

Dissipation **
Load

Capacity **
Study

Method Reference

5 CFJ

Strengthening
using external

SMA bar at plastic
hinge and

concrete jacketing

25% decrease 88% increase 183%
increase = [85]

6 CFJ

Strengthening
using external

SMA bar at plastic
hinge and

ECC jacketing

40% decrease 110% increase 230%
increase = [85]

7 BCJ SMA bar at
plastic hinge 75% decrease 37% decrease 3% increase Experimental [33]

8 BCJ SMA bar at plastic
hinge with slots 86% decrease 43% decrease 4% decrease = [32]

9 Shear wall SMA bars at the
plastic hinge 42% decrease 21% decrease 15% decrease = [35]

10 Shear wall

SMA bars at the
plastic hinge with

steel angle for
precast wall

87% decrease 17% decrease 10% increase Numerical [36]

11 Bridge NiTi SMA
rubber bearings 84% decrease 30% increase 20% increase = [86]

12 Bridge
SMA bars at the

plastic hinge
near footing

88% decrease 73% decrease 7% decrease = [87]

13 Bridge
SMA–steel bars at
the plastic hinge

near footing
75% decrease 48% decrease 7% decrease = [87]

* BCJ: beam–column joint, CFJ: column–footing joint; ** results of SMA specimen compared to control steel specimen.
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Figure 19. (a) Strengthened column–footing joint. (b) Reinforcement details of SMA specimen,
(c) Reinforcement details of SMA–CFRP specimen (all dimensions are in mm). Reprinted from [34],
with permission from Elsevier.
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Khan [85] presented another technique to reinforcing steel and concrete for strengthen-
ing deficient RC moment-resisting frames, using engineered cementitious composites (ECC)
and shape memory alloy (SMA) bars. SMA–ECC jacketing displayed superior performance
in terms of lateral load capacity and self-centering ability under repeated lateral cyclic
loadings, as shown in Figure 21.
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6.1.2. Beam–Column Joints

Youssef et al. [33] tested two full-scale joint specimens to numerically and experimen-
tally investigate the possibility of using superelastic SMA as a reinforcement for reducing
the residual displacement of the joint under cyclic loading. All the investigated specimens
were strengthened with a hybrid system of NiTi and steel bars, as shown in Figure 22, in
addition to a control specimen reinforced with steel rebars alone. The total length of SMA
rebars was 450 mm, whereas the total length of the beam was equal to 1750 mm. The results
shown in Figure 23 demonstrated that SMA-reinforced beam–column joints regained a
high proportion of their residual deformation, while the connection reinforced with steel
rebars experienced large residual deformations. This indicates that the joint reinforced with
SMA bars could remain functional after the occurrence of a severe earthquake.

Oudah and El-Hacha [32] developed a single-slotted beam technique for a self-
centering RC concrete connection reinforced using SMA bars. Using this technique, the
plastic hinge could be relocated away from the face of the column by slotting the beam
vertically at a certain distance from the face of the column, as shown in Figure 24. The test
results shown in Figure 25 proved the effectiveness of the system in mitigating the pinching
shear effect, improving the self-centering capability, reducing the deformation of the joint,
and relocating the plastic hinge away from the column face compared with conventional
RC–BCJ connections.
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6.1.3. SMA Fiber Concrete

Shajil et al. [28] carried out an experimental study to estimate the self-centering
capability of reinforced beams strengthened with shape memory alloy hooked fibers, as
shown in Figures 26 and 27, under repeated cyclic loading. The NiTi fibers used in the
study had 0.5 mm diameter, 75 GPa elastic modulus, and 8% recoverable strain. According
to the self-centering factor defined by the authors,

sel f centering f actor =
δUltimate − δResidual

δUltimate
, (1)

the NiTi fiber-reinforced beam displayed a self-centering factor of 0.7, whereas the steel
fiber-reinforced beam displayed a self-centering factor of 0.1. This confirmed the superior
performance of NiTi fibers compared to steel fibers, as demonstrated in Figure 28.
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Sherif et al. [27] performed an experimental investigation on the performance of
mortar mixtures reinforced with different volume fractions of SMA fibers under cyclic
loading. They found that the mortar reinforced with SMA fibers exhibited considerable
improvements in ductility. Moreover, for high displacement amplitudes, they concluded
that the specimens reinforced with long fibers were more effective at recovering the cracks
than the short fibers. Sherif et al. [27] also observed that mortars reinforced with around
0.5% fiber content exhibited superior flexural behavior and self-centering ability compared
to plain mortars.

6.1.4. Shear Walls

Wang et al. [36] developed a unique precast reinforced concrete wall using SMA bars
and an energy-dissipating device to enhance the seismic resistance. As shown in Figure 29,
the SMA–RC walls strengthened with steel angles were found to exhibit outstanding self-
centering and adequate energy dissipating capabilities. Minimal cracks were observed
in the RC wall, and no yielding of the steel angles was noticed. Moreover, the energy-
dissipating device can be inspected and replaced at low cost without interrupting its
operation, which is highly desirable in earthquake-resistant structures. Abdulridha and
Palermo [35] conducted an experimental study to assess the performance of a hybrid SMA-
deformed steel reinforced concrete shear wall under reversed cyclic loading as shown in
Figure 30. Their test results demonstrated that the hybrid SMA wall was more effective in
recovering its self-centering ability than the steel reinforced walls, after being subjected to
drifts exceeding 4%, as shown in Figure 31. The restoring capacity of the hybrid SMA wall
was about 92% compared to 31% for steel-reinforced walls.

Effendy et al. [88] retrofitted an RC shear wall using SMA bracing subjected to high
seismic loading as shown in Figure 32. The test results showed that the NiTi bracing
enhanced the performance of shear wall and significantly reduced the residual displacement
by about 67%, as shown in Figure 32.
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bridge decks, and girders with prestressed wires. Li et al. [90] proposed a combined cable–
SMA damper system for mitigating the vibration of a stay-cable bridge, as shown in Fig-
ure 33. They concluded that the proposed superelastic SMA damper could suppress the 
cable’s vibration. DesRoches and Delemont [91] proposed using superelastic SMA bar re-
strainers for seismic retrofit of simply supported bridge decks, as shown in Figure 34. Test 
results indicated that the SMA restrainer provided a large elastic deformation range com-
pared with steel restrainer cables. Tamai and Kitagawa [41] proposed an anchorage sys-
tem made of Nitinol SMA rods and steel bars, as shown in Figure 35, for dissipating en-
ergy and reducing the bridge vibration under severe seismic ground motion. They con-
cluded that the anchorage system was effective in preventing plastic deformation and 
damage in RC columns. 

Zheng et al. [92] proposed novel SMA washer-based piers for enhancing the perfor-
mance of bridges against seismic loading. SMA washers proved to be effective in provid-
ing flexibility and deformability through using different stack patterns. 
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6.1.5. Bridges

The 1995 Kobe and 1994 Northridge earthquakes emphasized the significance of
residual deformations in bridges and buildings, because of the huge post-maintenance
costs incurred following these earthquakes. Many researchers have used SMAs in different
bridge components to improve their performance and reduce the residual deformations
after earthquakes. The proposed components include RC bridge columns, bridge piers,
bridge decks, and girders with prestressed wires. Li et al. [90] proposed a combined
cable–SMA damper system for mitigating the vibration of a stay-cable bridge, as shown in
Figure 33. They concluded that the proposed superelastic SMA damper could suppress
the cable’s vibration. DesRoches and Delemont [91] proposed using superelastic SMA bar
restrainers for seismic retrofit of simply supported bridge decks, as shown in Figure 34.
Test results indicated that the SMA restrainer provided a large elastic deformation range
compared with steel restrainer cables. Tamai and Kitagawa [41] proposed an anchorage
system made of Nitinol SMA rods and steel bars, as shown in Figure 35, for dissipating
energy and reducing the bridge vibration under severe seismic ground motion. They
concluded that the anchorage system was effective in preventing plastic deformation and
damage in RC columns.
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Zheng et al. [92] proposed novel SMA washer-based piers for enhancing the perfor-
mance of bridges against seismic loading. SMA washers proved to be effective in providing
flexibility and deformability through using different stack patterns.
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Bhuiyan and Alam [86] used the high-damping rubber bearing (HDRB) and combined
SMA-based rubber bearing (SRB) shown in Figure 36 for reducing the ground acceleration
of continuous highway bridges subjected to severe earthquake. Their analytical results
indicated that the residual displacement of the deck is markedly reduced after earthquakes
for SRB compared to HDRB bearings.
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(a) HDRB, where the rubber layers are vulcanized by steel shims; (b) SRB in undeformed condition;
(c) SRB in deformed condition. Reprinted from [86], with permission from Elsevier.

Xiang, et al. [87] proposed a novel SMA–steel coupled system for piers of concrete
bridges, to attain a balance between self-centering and energy dissipation capabilities, as
shown in Figure 37. The proposed coupled system proved to be effective for enhancing
the service life of the bridge against seismic excitations. They concluded that the bridge
with λ = 1.0 for SMA–steel reinforcement is the most cost-effective in a life-cycle context
as shown in Figure 38 (λ is defined as a ratio between the self-centering contribution and
the energy dissipation contribution for a particular loading effect). Table 3 summarizes the
applications of superelastic SMA in various bridge components.
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Table 3. Summary of previous publications on the use of NiTi SMAs for bridges in concrete structures.

# SMA
Element Study Type Application Type of

Loading Technique Findings Reference

1 Washer Experimental Pier Reversed
cyclic

SMA-washer-
based
piers

The novel system showed low
damage, negligible residual
deformation, and protection

against over-rocking.

[92]
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Table 3. Cont.

# SMA
Element Study Type Application Type of

Loading Technique Findings Reference

2 Wire Experimental Damper Dynamic by
shake table

SMA damper for
cable-stayed

bridges between
the tower and

the deck

SMA damper reduced the
tower accelerations, relative

displacements, and the
bending moments.

[93]

3 Cable Experimental Girder Dynamic by
shake table

SMA restrainer
cables in-span

hinges of
box girder

SMA restrainer cables had
slight residual strain with
little strength and stiffness

degradation after
repeated loading

[94]

4 Bar Experimental Pier Reversed
cyclic

SMA bars and
engineered

cementitious
composites
(ECCs) at

plastic hinge

The reduction in residual
displacement was 83% when a
combination of SMA bars and
ECC was used in the plastic

hinge zone, while the reduction
was only 67% for conventional

concrete and SMA.

[95]

5 Bar Experimental Pier Dynamic by
shake table

SMA bars and
engineered

cementitious
composites (ECC)

at plastic hinge

SMA minimized residual
displacement, and the hybrid

use of ECC and SMA was
found to reduce significnatly

the earthquake damage.

[96]

6 Bar Numerical Pier Reversed
cyclic

post-tensioned
precast segmental

bridge piers
using SMA bars

SMA bars provided
self-centering capability,

increased the hysteretic energy
dissipation, and achieved high

ductile behavior.

[97]

7 Bar Numerical Pier Reversed
cyclic

SMA bars at
plastic hinge

The SMA RC bridge pier
showed superior performance

to bridge piers reinforced
with steel bars alone.

[98]

8 Wire Numerical Isolation
device

Reversed
cyclic

SMA-based
rubber bearing

Residual displacement of the
deck was reduced after
moderate and strong

earthquakes. Pier
displacements were smaller,

while deck displacement,
bearing displacement, and

deck acceleration were
significantly larger.

[86]

9 Cable Numerical Restrainer Cyclic SMA-based
restrainer

SMA devices were able to
eliminate residual

joint openings.
[99]

10 Bar Numerical Isolation
device

Reversed
cyclic

Laminated
rubber bearing
with a device
made of SMA

The SMA isolation system
had self-centering ability. For

a medium-size earthquake,
the SMA bars increased the
damping capacity, whereas

the SMA bars provided
hysteretic damping and acted
as a controlling device for a

large earthquake.

[100]
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Table 3. Cont.

# SMA
Element Study Type Application Type of

Loading Technique Findings Reference

11 Bar Numerical Pier Reversed
cyclic

SMA–steel bars
at the plastic

hinge
near footing

The innovative SMA–steel
coupled reinforcing bar

showed similar effectiveness
to the pure SMA bar in

reducing the residual drift,
while dissipating higher
energy compared to pure

SMA reinforcement.

[87]

6.1.6. Beams

Abdulridha et al. [89] investigated the flexural performance of concrete beams re-
inforced with SMA bars or conventional steel bars in the constant-moment zone under
reversed cyclic loading, as shown in Figure 39. The experimental test results (Figure 40)
demonstrated the superior ability of the SMA beams to recover the inelastic displacements,
as well as sustain displacement ductility and strength compared to RC beams. In contrast,
the crack spacing and widths were larger in case of the SMA beams compared to RC beams;
however, the crack openings were recovered upon removal of load. Moreover, the SMA
beams dissipated 54% of the energy dissipated by RC beams.
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6.2. Retrofitting Applications

Smart memory alloys (SMAs) have great potential to be used for repair/retrofit of
new/existing structures under static gravity loads or lateral cyclic loads simulating earth-
quakes. The recent retrofitting applications of SMAs are discussed in this section.

6.2.1. Retrofitting Applications under Static Gravity Loads

Hong et al. (2020) [101] investigated the effect of the amount of SMA and prestrain
level on the compressive behavior of RC columns strengthened using superelastic NiTi
wires. One more specimen was also tested using SMA and FRP bars together, as shown
in Figure 41 The experimental test results indicated that the SMA wires enhanced the
load-carrying capacity of the columns. Although SMA and SMA/FRP had comparable
effects on the load capacity of concrete columns, columns reinforced with SMA had superior
ductility, as shown in Figure 42a. At the same prestrain level, increasing the amount of SMA
by decreasing the spacing from 8 mm to 2.5 mm resulted in increasing the load capacity
from 80% to 135% compared to control columns. Meanwhile, at the same SMA amount,
increasing the prestrain level from 0% to 4% led to an increase from 60% to 120% in the
load capacity compared to control columns, as shown in Figure 42b.
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6.2.2. Retrofitting Applications under Lateral Cyclic Loading

Designing structures to withstand the vibrations induced by seismic actions is of
primary concern for structural engineers worldwide. Different schemes have been proposed
in the literature to enhance the seismic performance of existing non-seismically designed
concrete frames using SMA. These methods are summarized in Table 4 and presented in
detail in this section.



Materials 2023, 16, 4333 28 of 37
Materials 2023, 16, x FOR PEER REVIEW 26 of 35 
 

 

 
Figure 42. Load–displacement curves for RC columns (a) with different amounts of SMA wires, and 
(b) with different prestrain level of SMA wires. Reprinted from [101], with permission from Creative 
Commons Attribution (CC BY) license. 

6.2.2. Retrofitting Applications under Lateral Cyclic Loading 
Designing structures to withstand the vibrations induced by seismic actions is of pri-

mary concern for structural engineers worldwide. Different schemes have been proposed 
in the literature to enhance the seismic performance of existing non-seismically designed 
concrete frames using SMA. These methods are summarized in Table 4 and presented in 
detail in this section. 

Table 4. Summary of the previous publications in self-centering application of SMA in concrete 
structures. 

# 

Structural 

Member 

* 

Technique 
Load 

Capacity ** 

Energy 

Dissipation 

** 

Ductility ** 
Study 

Method 
Reference 

1 BCJ 
Diagonal prestressed SMA loops 

at the joint 
18% increase 56% increase 5% decrease Experimental [30] 

2 BCJ Diagonal post-tension SMA bars 70% increase 160% increase 35% increase Experimental [102] 
* BCJ: beam–column joint. ** The results of SMA specimen compared to control steel specimen 

Suhail et al. [30] proposed using prestressed SMA loops for retrofitting non-seismi-
cally designed beam–column connections, as shown in Figure 43. Despite the noticeable 
increase in strength and ductility of the retrofitted joint as shown in Figure 44, the pro-
posed method may not be the best for enhancing the ductility of beam–column connec-
tions. 

Figure 42. Load–displacement curves for RC columns (a) with different amounts of SMA wires, and
(b) with different prestrain level of SMA wires. Reprinted from [101], with permission from Creative
Commons Attribution (CC BY) license.

Table 4. Summary of the previous publications in self-centering application of SMA in concrete structures.

# Structural
Member * Technique Load

Capacity ** Energy Dissipation ** Ductility ** Study
Method Reference

1 BCJ

Diagonal
prestressed

SMA loops at
the joint

18% increase 56% increase 5% decrease Experimental [30]

2 BCJ
Diagonal

post-tension
SMA bars

70% increase 160% increase 35% increase Experimental [102]

* BCJ: beam–column joint. ** The results of SMA specimen compared to control steel specimen

Suhail et al. [30] proposed using prestressed SMA loops for retrofitting non-seismically
designed beam–column connections, as shown in Figure 43. Despite the noticeable increase
in strength and ductility of the retrofitted joint as shown in Figure 44, the proposed method
may not be the best for enhancing the ductility of beam–column connections.

Yurdakul et al. [102] proposed an innovative post tensioning method for enhancing
the seismic performance of non-seismically designed beam–column joints. This method
comprised testing three full-scale joint specimens that are strengthened by post-tension rods
as shown in Figure 45, under quasi-static cyclic loading up to 8% drift ratio. Two different
post-tensioning superelastic NiTi alloy and steel bars were mounted diagonally on the joint,
and then the required post-tension force was applied. The test results (Figure 46) indicated
that the reference RC specimen exhibited a brittle failure with severe damage and excessive
cracks mostly concentrated in the joint region. While the specimen retrofitted by the post-
tensioned steel bar displayed some enhancement in strength, the overall performance
was still dominated by shear failure in the joint region. On the other hand, the specimen
retrofitted by post-tensioned SMA bars was capable of attaining an adequate performance
with no observed strength degradation up to a drift ratio of 5% in both positive and negative
load directions. Moreover, the test results proved that post-tensioning SMA bars with an
applied force of 75% of their strength capacity played an important role in enhancing the
retrofitting effectiveness of SMA without yielding until the last cycles.
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6.3. Self-Healing Applications

Concretes reinforced with Nitinol (NiTi) SMA wires exhibit superior performance
compared to concretes reinforced with steel wires. Their potential contribution to self-
healing mechanism of concrete cracks is based on two approaches: external heating and
superelastic properties of the alloy. In the first approach, with the initiation of cracks in
concrete, the NiTi SMA wires are heated through an external power source, causing them
to return to their original austenitic phase and contract. This contraction generates a force
that closes the cracks and prevents their propagation, thus recovering the original shape
and strength of cracked concrete. In the second approach, SMA wires are embedded in
the concrete in a pretensioned state. When a crack forms, the wires are able to undertake
enormous strains without causing permanent deformation. The strains of the SMA wires
generate a force that closes the crack and restores the integrity of the cracked concrete.
Kuang and Ou [29] used SMA wires to enhance the self-restoration ability of RC beams
under a three-point bending test. The experimental test results indicated that the RC beams
strengthened with SMA wires were able to return the deflected beam to its original shape
before loading. Furthermore, healing of the cracks that occurred on the tension face of the
beam was observed because of the recovery forces of SMA wires.

6.4. Fire Protection Applications

Wong and Liu [103] proposed an innovative technique for enhancing the fire resistance
of reinforced concrete (RC) beams. This technique is based on using hybrid reinforcement
of steel and SMA bars in the tension region of the beam, as shown in Figure 47. The
experimental test results (Figure 48) indicated that the bending moment capacities for
various distances of SMA from the extreme compression fiber of the beam (d2) were
enhanced significantly with the increase in the heating time in minutes. It can be observed
that, for the beams reinforced with hybrid steel–SMA bars with the largest axis distance
of SMA (d2 = 260 mm), the moment capacity was 75% more compared to beams without
SMA, losing about 30% of their moment at the end of 90 min heating time.
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Jia et al. [104] proposed a novel method for enhancing the fire resistance of prestressed
concrete beams SMA bars and prestressed steel. This method is based on using SMA bars
to compensate for the loss of prestressing force in prestressed steel bars upon exposure
to fire. At elevated temperatures, the modulus and strength of SMA bars rise and, thus,
induce a stress that can minimize the reduction in the mechanical properties of the steel
bars. Although the flexural capacity and stiffness of the hybrid prestressed steel–SMA
beam at elevated temperatures were lower than those of the ordinary prestressed beam at
room temperature, the hybrid prestressed beam still maintained an acceptable performance
that met the fire resistance requirements.

7. Conclusions

Shape memory alloys (often referred as smart materials) have great potential for
enhancing the performance of civil engineering systems. The distinctive features of nickel-
based superelastic shape memory alloys (NiTi SMAs) are extremely beneficial for the
design, construction, and retrofit of RC structures. To foster the applications of SMA in the
building industry, researchers should make their new discoveries compatible with existing
design practices and prepare simple guidelines on SMA use for concrete practitioners. This
paper presents a critical review of the applications of Nitinol (NiTi) SMAs in reinforced
concrete structures over the last two decades. Since superelastic, SE SMA-based systems
have numerous properties superior to SME SMAs, the present article focused more on the
applications of SE Nitinol SMAs in civil infrastructure because of their simplicity to use and
no need for a heat source to trigger their superelasticity. The distinctive features of SMA
including the superelastic effect (SE) and the shape memory effect (SME) were discussed
first. Then, the mechanical properties of NiTiSMA and their dependence on loading
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conditions, strain rate, and temperature were briefly examined, followed by a concise
overview of SMA performance under corrosive environments and elevated temperatures.
The most recent applications of NiTiSMA were discussed at length including seismic
strengthening of footing–column connections and self-centering of beam–column joints,
vibration control of bridges, prestressing concrete beams, shear walls, SMA fiber-reinforced
concrete, self-healing of concrete cracks, and fire protection of concrete structures. To
optimize the use of NiTi-based SMA for enhancing the seismic performance of RC structures,
future studies should be directed toward innovative hybrid designs of SMA (bars, wires,
and plates) and low-carbon steel reinforcement (bars, wires, plates, and meshes).

8. Recommendations and Future Opportunities

On the basis of this review, the following aspects need to be addressed adequately
before SMAs can be further implemented in civil infrastructures:

• Bond behavior of SMA bars with concrete.
• Optimal design of concrete structures using SMAs to attain a balance between self-

centering and energy dissipation capabilities.
• New processing technologies for manufacturing SMAs at lower costs.
• Hybridization of SMA with reinforcing steel to achieve optimal performance.
• More studies on the properties of coupled SMA–steel reinforcement system under

corrosive environment.
• The concept of using SMA fibers for prestressing cementitious materials in civil engineering.
• New guidelines should be established to identify the amount of SMA needed for

enhancing the performance of RC structures.
• The numerical modeling of SMA concrete structures should be linked to laboratory

experiments to foster their applications in building industry.
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