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Abstract: Accurate prediction of springback is increasingly required during deep-drawing formation
of anisotropic stainless steel sheets. The anisotropy of sheet thickness direction is very important
for predicting the springback and final shape of a workpiece. The effect of Lankford coefficients
(r00, r45, r90) with different angles on springback was investigated using numerical simulation
and experiments. The results show that the Lankford coefficients with different angles each have
a different influence on springback. The diameter of the straight wall of the cylinder along the
45-degree direction decreased after springback, and showed a concave valley shape. The Lankford
coefficient r90 had the greatest effect on the bottom ground springback, followed by r45 and then
r00. A correlation was established between the springback of workpiece and Lankford coefficients.
The experimental springback values were obtained by using a coordinate-measuring machine and
showed good agreement with the numerical simulation results.

Keywords: lankford coefficient; deep drawing; springback; stainless steel cylinder

1. Introduction

As an important metal-forming process, sheet metal stamping is widely applied in the
modern industry [1,2]. Springback is an inevitable physical phenomenon during the metal
sheet-forming process [3–5]. The influence of springback on the accuracy and tolerance
of a dimension is remarkable. The traditional trial-and-error and empirical methods for
weakening springback and obtaining height-precision parts are time-consuming and expen-
sive. The occurrence of defects, such as wrinkling, cracking, and springback, during sheet
formation can be predicted with numerical simulations [6–9]. However, the predictions of
springback and the final shape of the workpieces have a low accuracy rate because of the
strong plastic anisotropy in the thickness direction.

A lot of research has been carried out in order to understand the influence of material
properties and process parameters on springback behavior. Huang [10] analyzed the effects
of different process parameters on springback during the stamping process using finite
element numerical simulations. Minh [11] also used finite element simulation to analyze
the effects of various factors—such as the blank holder force, friction coefficient, and blank
thickness—on the springback of high-strength steel. Based on the numerical simulation
results, it was evident that the blank holder force and blank thickness were the main
factors affecting springback. Hashem and Roohi [12] utilized a numerical simulation to
determine the effect of die and punch profile radii, as well as blank holder force on the
springback and thinning percentage in the deep-drawing process of the cylindrical parts.
The results show that an increased springback is observed due to an increased punch radius,
and punch corner radius has been identified as the most significant effect on springback.
Lajarin [13] found the blank holder force to be the most influential parameter for the spring-
back of high-strength steel, followed by the die radius and friction conditions. Starman [14]
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proposed a numerical method to optimize the blank shape and tool geometry in a 3D
sheet-metal-forming operation, with the effects of sheet-metal edge geometry and spring-
back after forming and trimming being considered throughout the optimization process.
Huang et al. [15] studied the defect behavior during the stamping of thin-walled semicircu-
lar shells with a bending angle via an analytical model, experiments, and a finite element
(FE) simulation. The springback decreased with the increasing of blank holder force and
decreasing of stamping speed. Aydın et al. [16] investigated the formability and springback
behavior of dualphase (DP600) and high-strength low-alloy (HSLA) sheets bonded with
laser-beam welding. The results show that springback behavior changes depending on the
die angle and holding time. Where the die angle is up to 45◦, the springback angle increased
by 10.4%. When holding time was increased by 10-s, the springback angle decreased by
21.2%, on average. Saito et al. [17] carried out a springback experiment of 980 MPa on
high-strength steel sheets with V-shaped and U-shaped bending at temperatures ranging
from room temperature to 973 K. The amount of springback decreased with the tempera-
ture rise, especially at temperatures above 573 K. Springback was much reduced at lower
forming speeds. The influence of stress relaxation on springback was investigated using the
V-shaped bending springback test and viscoplastic stress analysis. Chang et al. [18] studied
the bending springback of medium-Mn steel, a third-generation automobile steel, under
different working conditions through experiment and simulation, and they also analyzed
the influences of rolling direction, bending angle, and punch fillet radius on springback.
The effect of the rolling direction on the springback angle was negligible. The bending
angle had a positive effect on the springback angle, while the punch fillet radius had a
negative effect.

During recent decades, many researchers have explored the influence of anisotropy on
springback and its prediction. Ragai et al. [19] provided an experimental and computational
study of springback during draw-bending of stainless steel 410. The effect of several
parameters such as blank holding force, lubrication, and anisotropy on springback were
discussed. Parsa et al. [20] studied the springback of hyperboloid sheet metal formation
theoretically, numerically, and experimentally. Emphatically, they analyzed the influence of
thickness and curvature radius on springback. The experimental results showed that the
influence of material anisotropy on the forming springback of hyperboloid sheet metal is
related to material parameters. Gomes et al. [21] investigated the variation in springback
in high-strength steels due to material anisotropy. They analyzed and compared material
models based on different yield criteria using the geometry of a standard U-shape. The
results showed a discrepancy between springback predicted by the various material models
and the variations in springback from 0- and 90-degree material orientation. Leu and
Zhuang [22] developed a simplified approach by considering the thickness ratio, normal
anisotropy, and the strain-hardening exponent to estimate the springback angle in the vee
bending process for high-strength steel sheets. The numerical simulation showed that the
springback ratio increased as normal anisotropy increased or as the thickness ratio and
the strain-hardening exponent decreased. Verma and Haldar [23] investigated the effect of
anisotropy on springback for the benchmark problem in Numisheet-2005. An analytical
model was developed to cross-check the prediction from the finite element analysis. Both
of the models predicted that higher anisotropy leads to more springback. Lee et al. [24]
investigated the influences of the anisotropy and friction models for high-strength steel
sheets during U-draw/bending and suggested the optimum selection of the models for
springback simulations. Jung et al. [25] developed an elastoplastic material constitutive
model with anisotropic evolution, which they then applied to a U-bending process. By
comparing the measured springback angle with the predicted springback angle, they showed
that the model could accurately predict the springback angle in different directions.

Stainless steel sheets are widely used in modern industry, and springback during the
stamping process is a common problem. Various process parameters can affect springback
during the deep-drawing process of anisotropic stainless steel sheets. Although many
scholars have conducted investigations on the springback problem during sheet metal
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formation using the finite element numerical simulation method and experimental methods,
the research on springback of anisotropic sheet metal is still mostly confined to the forming
of V/U-shaped parts, and there is little research on other common forming parts, for
example, cylindrical cups. The influence of Lankford coefficients with different angles on
springback during the cylinder deep-drawing process has not been clearly researched.

In this paper, a cylinder deep-drawing process with anisotropic stainless steel sheets
was simulated based on the Barlat–Lian 1989 anisotropy yield criterion [26] by using
Dynaform 5.9 software, and was used to predict springback. The Taguchi and ANOVA
techniques were utilized to establish the correlation between springback at different angles
from the rolling direction and Lankford coefficients (r00, r45, r90) of 304 stainless steel. The
ANOVA showed that the Lankford coefficient had a significant effect on springback. This
research shows that each Lankford coefficient has an obvious influence on springback in dif-
fident angles from the rolling direction by using the experimental and numerical simulation.

2. Finite Element Simulation (FEM) Analysis
2.1. FEM Simulation Procedure

In this paper, the finite element numerical simulation was carried out on Dynaform.
Dynaform software is a special piece of software jointly developed by ETA and LSTC for
numerical simulation of sheet metal formation. It is a combination of LS-DYNA solver and
ETA/FEMB front and back processor, and it is one of the most popular CAE tools for sheet
metal formation and die design. Figure 1 shows the cylinder deep-drawing die; the actual
object of the model is thecooking pot. The dimensions of the blank, die, punch, and blank
holder are given in Table 1. One quarter of the 3D numerical model can be applied to the
FEM model. The simulations require a large amount of computational time if they are not
simplified, but they can provide a greater degree of precision. In this paper, a complete
3D numerical model was used. The 3D numerical model is shown in Figure 2. Table 2
shows the Lankford coefficients of metal sheets in different rolling directions with two
horizontal factors set. The other mechanical properties of the materials were imported
from the materials library in Dynaform. The punch and die were set as rigid, and the
velocity of the punch was set at 2000 mm/s. The friction coefficient between the tools and
the blank were set to 0.125. The contact-one-way surface-to-surface mode was employed
to determine the friction type, and the adaptive meshing method was adopted to mesh
the geometry model [27]. The full integrated planar shell was used, and the element type
was defined as the time-efficient full-order integral Belytschko–Tsay shell element. This
allowed for the adoption of four-point integration in order to avoid the appearance of
“hourglassing” mode. A dynamic explicit algorithm was used to calculate the forming
process. The implicit algorithm was applied to calculate the springback process.
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Figure 2. Model in FEM.

Table 1. Basic geometrical parameters.

Parameter Dimension in mm

blank size diameter (BD) 315
blank thickness (t) 0.6

punch diameter (PD) 180
punch nose radius (rp) 8
die shoulder radius (rd) 4

die diameter (DD) 181.32
radial clearance between punch and die (wc) 0.66

height of drawing (h) 80

The material was modeled as an elastic–plastic material. The anisotropic characteristic
was described by the Barlat–Lian 1989 anisotropic yield criterion [28]. The Barlat–Lian
1989 anisotropic yield criterion and the Hosford series’ yield criterion were used to analyze
the plastic flow law of the drawing process [29–31]. Three stress–strain curves were
obtained from the tensile test for the model material, as shown in Figure 3. The different
curves were determined according to the ratio of the Lankford coefficients in each direction
of the actual material.
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coefficient material hardening curve and (b) low-level Lankford coefficient material hardening curve.
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Table 2. Test factors and their levels.

Level

Factors r

r00 r45 r90

Low-level 0.99 1.26 0.92
High-level 1.07 1.36 1.03

2.2. Taguchi Technique

The Taguchi technique was applied to the design scheme of the numerical
simulation [32]. The two levels of the three-parameter orthogonal design, considering
interactions (27), are presented in Table 3. The springback of different angles from the
rolling direction was the process response. In order to understand the influence of Lankford
coefficients, the ANOVA technique was applied to illustrate the degree of significance of
each Lankford coefficient, including interactions.

Table 3. Experimental design of orthogonal considering interactions (27) for FEM simulation.

Simulation
No.

Factors

r90 r45 r90 × r45 r00 r90 × r00 r45 × r00 Error

1 Low Low Low Low Low Low Low
2 Low Low Low High High High High
3 Low High High Low Low High High
4 Low High High High High Low Low
5 High Low High Low High Low High
6 High Low High High Low High Low
7 High High Low Low High High Low
8 High High Low High Low Low High

2.3. Measurement Set-Up

Figure 4 shows the typical shape characteristics and measurement locations of the
cylindrical cup. After formation, the workpiece was measured using CMM. Angles (α)
were measured every 45 degrees from the rolling direction, and diameters were measured
every 15 mm in the five sections along the height. A diagrammatic sketch of angles from
the rolling direction is shown in Figure 4.
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2.4. Formation Analysis

The forming limit diagram (FLD) and thickness change diagram can intuitively show
the dynamic drawing process of the sheet metal and predict the formation of defects, such
as cracking and wrinkling, and the thickness distribution of the sheet metal [33]. Figure 5a
shows the forming limit diagram of the cylindrical cup after deep-drawing formation,
Figure 5b shows the forming limit diagram of the cylindrical cup after springback, and
Figure 5c is the cloud diagram of springback change in the cylindrical cup after springback
calculation. It can be seen that the cylindrical cup fluctuates after springback with different
degrees in the flange. The springback is apparent at 0◦, 45◦, and 90◦ positions, which shows
a cyclical trend of first decreasing and then increasing along the rolling direction. The
straight wall of the cylinder also showed uneven springback.
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(a) limit diagram of the cylindrical cup, (b) Limit diagram of the cylindrical cup after springback, and
(c) cloud map of the cylindrical cup after springback.

Due to the uneven springback deformation of the straight wall of the cylindrical
cup, the sections with heights of 45 mm and 60 mm were selected for measurement, and
120 coordinate points were measured for each section. The difference between coordi-
nate values of data points before and after springback was calculated. The cross-section
difference point cloud diagrams are shown in Figure 6. The co-ordinates only represent
the position of data points on the section of the cylindrical drawing section. The distance
between each point and the origin represents the springback value. It can be seen that the
springback difference between the two heights is similar, and is in the range of 0.150–25 mm.
Within the angle of 0–45◦ from the rolling direction, the springback difference firstly de-
creases, and then it increases. At the position of the maximum plastic strain value of r45,
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that is, at the positions 45◦, 135◦, 225◦, and 315◦ from the rolling direction, the springback
difference of the cylinder drawing part reaches its maximum value.
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2.5. Stress–Strain Analysis

The straight wall of the cylindrical cup is an area of force transmission during deep
drawing, and no more plastic deformation occurs. The straight wall experiences a single
axial tensile stress. There is a small amount of axial elongation and deformation. The state
of stress and strain during deep drawing is shown in Figure 7. The first principal stress and
strain of the model of the straight wall model’s middle layer was extracted to analyze the
reasons for uneven springback.
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Figure 7. The stress and strain state of straight wall area.

The stress–strain analysis diagrams of cylindrical deep drawing at the heights of
45 mm and 60 mm are shown in Figure 8. The stress–strain data of 60 points on the
circumference of the straight wall were extracted, and the red circle represents the average
stress–strain value of all points. It can be seen that, at the height of 45 and 60 mm, the first
principal stress was greater than the other two directions at the position of 45◦ from the
rolling direction, while the first principal strain was smaller than the other two directions.

The stress–strain values for the three rolling directions of 0◦, 45◦, and 90◦ were com-
pared and analyzed, and the results are shown in Table 4. The stress at 45◦ at the height of
45 mm is 23% higher, and the stress at 45◦ at the height of 60 mm is 19.37% higher than
that of the other rolling directions. This is because the hardening curves are for different
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rolling directions. The value of the hardening curve at 45◦ from the rolling direction was
larger, and the stress value required during deep drawing was larger. The strain in the
45◦ direction was smaller and contained more elastic stress in the deformation process,
resulting in greater springback deformation after unloading.

Materials 2023, 16, x FOR PEER REVIEW 8 of 19 
 

 

of 45 mm is 23% higher, and the stress at 45° at the height of 60 mm is 19.37% higher than 

that of the other rolling directions. This is because the hardening curves are for different 

rolling directions. The value of the hardening curve at 45° from the rolling direction was 

larger, and the stress value required during deep drawing was larger. The strain in the 

45° direction was smaller and contained more elastic stress in the deformation process, 

resulting in greater springback deformation after unloading. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Stress and strain states on sections with different heights: (a) stress values at the 45 mm 

height position, (b) strain values at the 45 mm height position, (c) stress values at the 60 mm height 

position, and (d) strain values at the 60 mm height position. 

Table 4. The stress and strain in three directions at the heights of 45 mm and 60 mm of high-level 

Lankford coefficient material. 

Direction  

Height 
0° 45° 90° 

Difference 

(Max–Min) 

H45     

Stress/Mpa 770.475 947.854 782.773 177.379 (23%) 

Strain 0.407 0.349 0.396 0.058 

H60     

Stress/Mpa 973.37 1162 997.662 188.63 (19.37%) 

Strain 0.468 0.368 0.463 0.1 

  

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

-1000

-800

-600

-400

-200

0

200

400

600

800

1000  s1

 s1
F

ir
st

 p
ri

n
ci

p
al

 n
o

rm
al

 s
tr

es
s/

M
p

a

First principal normal stress/Mpa

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

F
ir

st
 p

ri
n
ci

p
al

 n
o
rm

al
 s

tr
ai

n
/%

First principal normal strain/%

 e1

 e1

-1200 -900 -600 -300 0 300 600 900 1200

-1200

-900

-600

-300

0

300

600

900

1200

F
ir

st
 p

ri
n
ci

p
al

 n
o
rm

al
 s

tr
es

s/
M

p
a

First principal normal stress/Mpa

 s1

 s1

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

F
ir

st
 p

ri
n

ci
p

al
 n

o
rm

al
 s

tr
ai

n
/%

First principal normal strain/%

 e1

 e1

Figure 8. Stress and strain states on sections with different heights: (a) stress values at the 45 mm
height position, (b) strain values at the 45 mm height position, (c) stress values at the 60 mm height
position, and (d) strain values at the 60 mm height position.

Table 4. The stress and strain in three directions at the heights of 45 mm and 60 mm of high-level
Lankford coefficient material.

Height

Direction
0◦ 45◦ 90◦

Difference
(Max–Min)

H45
Stress/Mpa 770.475 947.854 782.773 177.379 (23%)

Strain 0.407 0.349 0.396 0.058
H60

Stress/Mpa 973.37 1162 997.662 188.63 (19.37%)
Strain 0.468 0.368 0.463 0.1
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2.6. Boundary Inflow Analysis

The diagram of inflow of the cylindrical cup boundary material is shown in Figure 9.
It shows a cyclical trend of first increasing and then decreasing between 0◦ and 90◦ from
the rolling direction. At the positions 45◦, 135◦, 215◦, and 315◦, there was a larger inflow,
and the maximum value was 40.76 mm. The Lankford coefficients in the 45◦ direction were
greater than those for the 0◦ and 90◦ directions. When the Lankford coefficients were large,
the deformation resistance of the flange of the metal sheet was reduced, and the material
flowed more easily. The flow stress value in the 45◦ direction was large, so the inflow of
material was larger. The flow stress in the 0◦ and 90◦ directions was smaller, elongation
deformation was easier, and the inflow was smaller. This may be one of the reasons for the
greater springback difference in this direction.
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Figure 9. The boundary inflow of material and the trend of material inflow: (a) schematic diagram of
the material boundary inflow and (b) numerical change diagram.

The sheet firstly underwent elastic deformation, and then plastic deformation occurred
after the stress exceeded the flow stress during the deformation process. After unloading,
the internal stress was redistributed, and then springback occurred. The deformation and
plastic deformation of the cylindrical cup drawing in the 45◦ direction was less severe than
the other two directions. The circumferential stress in the 45◦ direction was relatively large,
resulting in larger springback deformation at this position. The diameter of the cylinder
after springback in the 45◦ direction was smaller, showing a greater springback difference.

3. Experimental Procedures
3.1. Experimental Set-Up

Two different stainless steel sheets with the same thickness were selected for the
experimental test. Based on the previous experimental tests [34,35], strong anisotropic
properties were present in the two materials. Lankford coefficients of r00, r45, and r90 are
listed in Table 2. For cylinder deep drawing, circular blanks with a diameter of 315 mm
and a thickness of 0.6 mm were prepared. Figure 10 shows the drawing die designed and
fabricated based on the simulation model.
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Figure 10. Die assembly for experimental drawing.

3.2. Experimental Results

After calculating the weighted average of the co-ordinates of two types of stainless
steel workpieces at different heights, the radius values at different angles were obtained, as
shown in Figure 11. The average values of the cross-section point cloud can be compared
at the height of 30 mm, 45 mm, and 60 mm. The valley shape of the depression was clearer
and more obvious in the material with the larger Lankford coefficients at the positions
of 45◦, 135◦, 225◦, and 315◦. At the height of 15 mm near the bottom of the cylinder,
the low-Lankford-coefficient material showed a more rounded cross-section. The high-
Lankford-coefficient material showed a less rounded cross-section after drawing, and
it was close to an ellipse along the long axis of the rolling direction and the short axis
perpendicular to the rolling direction. At a height of 75 mm near the flange, the sections of
both kinds of stainless steel showed an elliptical shape after deep drawing and springback.
The experimental results are in good agreement with the FEM simulation results.
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Figure 11. Average vertical wall shell’s dimension of the experiments and simulations: (a) high-
level Lankford coefficient material simulation results, (b) low-level Lankford coefficient material
simulation results, (c) high-level Lankford coefficient material experimental results, and (d) low-level
Lankford coefficient material experimental results. Note: Black: H = 15 mm Red: H = 30 mm Green:
H = 45 mm Blue: H = 60 mm Light Blue: H = 75 mm.

Tables 5–8 compare the radius values along the three rolling directions at five section
heights obtained from numerical simulation and experiments. It can be seen that the differ-
ence in radius between different rolling directions is more obvious in the simulation, and it
was the largest at the heights of 45 mm and 60 mm. In the material with high-level Lankford
coefficients, the differences reached 0.433 mm and 0.318 mm, respectively. In the material
with low-level Lankford coefficients, the differences reached 0.387 mm and 0.32 mm, re-
spectively. The experimental difference between radii in different rolling directions was
close to the simulation result in the material with high-level Lankford coefficients. The
difference at the heights of 30 mm and 45 mm reached 0.158 mm and 0.204 mm, respectively.
The experimental radius difference between different rolling directions in material with
low-level Lankford coefficients was small, reaching 0.127 mm and 0.08 mm at the heights
of 45 mm and 60 mm, respectively.

Table 5. The radius values of the simulations with high-level Lankford coefficients on the
three directions.

Height/mm
Direction

0◦/mm 45◦/mm 90◦/mm Difference
/mm

H15 89.561 89.492 89.537 0.068
H30 89.987 89.740 89.983 0.246
H45 90.506 90.072 90.486 0.434
H60 90.617 90.299 90.592 0.318
H75 90.599 90.575 90.517 0.024

Table 6. The radius values of the simulations with low-level Lankford coefficients on the
three directions.

Height/mm
Direction

0◦/mm 45◦/mm 90◦/mm Difference
/mm

H15 89.541 89.490 89.495 0.051
H30 89.884 89.710 89.883 0.174
H45 90.428 90.041 90.404 0.387
H60 90.603 90.283 90.557 0.320
H75 90.652 90.585 90.515 0.067
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Table 7. The radius values of the experiments with high-level Lankford coefficients on the
three directions.

Height/mm
Direction

0◦/mm 45◦/mm 90◦/mm Difference
/mm

H15 90.546 90.506 90.452 −0.007
H30 90.781 90.563 90.660 0.158
H45 90.841 90.597 90.760 0.204
H60 90.811 90.642 90.708 0.118
H75 90.905 90.837 90.775 0.003

Table 8. The radius values of the experiments with low-level Lankford coefficients on the
three directions.

Height/mm
Direction

0◦/mm 45◦/mm 90◦/mm Difference
/mm

H15 90.517 90.498 90.516 0.019
H30 90.694 90.610 90.645 0.060
H45 90.781 90.628 90.729 0.127
H60 90.780 90.654 90.697 0.085
H75 90.895 90.826 90.767 0.005

Figure 12 shows experimental measurements of diameter at five sections along the
height. They have a similar trend. The section at the height of 15 mm was close to the
radius of the punch nose. The section at the height of 75 mm was similar to the radius of
the die shoulder. The fillet radius had a great influence on the workpiece diameter. The
cross-section of the cylinder after deep drawing showed an oval shape after springback. The
diameters at the height of 30, 45, and 60 mm showed a similar trend. The results showed
that the r45 Lankford coefficient is the maximum value. In addition, as the Lankford
coefficient increased, the diameter decreased.

Materials 2023, 16, x FOR PEER REVIEW 12 of 19 
 

 

Table 7. The radius values of the experiments with high-level Lankford coefficients on the three 

directions. 

Direction  

Height/mm 
0°/mm 45°/mm 90°/mm 

Difference 

/mm 

H15 90.546 90.506 90.452 −0.007 

H30 90.781 90.563 90.660 0.158 

H45 90.841 90.597 90.760 0.204 

H60 90.811 90.642 90.708 0.118 

H75 90.905 90.837 90.775 0.003 

Table 8. The radius values of the experiments with low-level Lankford coefficients on the three 

directions. 

Direction  

Height/mm 
0°/mm 45°/mm 90°/mm 

Difference 

/mm 

H15 90.517 90.498 90.516 0.019 

H30 90.694 90.610 90.645 0.060 

H45 90.781 90.628 90.729 0.127 

H60 90.780 90.654 90.697 0.085 

H75 90.895 90.826 90.767 0.005 

Figure 12 shows experimental measurements of diameter at five sections along the 

height. They have a similar trend. The section at the height of 15 mm was close to the 

radius of the punch nose. The section at the height of 75 mm was similar to the radius of 

the die shoulder. The fillet radius had a great influence on the workpiece diameter. The 

cross-section of the cylinder after deep drawing showed an oval shape after springback. 

The diameters at the height of 30, 45, and 60 mm showed a similar trend. The results 

showed that the r45 Lankford coefficient is the maximum value. In addition, as the Lank-

ford coefficient increased, the diameter decreased. 

  
(a) (b) 

Figure 12. Diameter of different sections of experimental measurements: (a) the material with high-

level Lankford coefficients and (b) the material with low-level Lankford coefficients. 

4. Results and Discussions 

4.1. Application of ANOVA 

Table 9 shows the results of springback prediction by FEM simulation, which shows 

that the springback of every angle from the rolling direction is without symmetrical char-

acteristics. 

  

Figure 12. Diameter of different sections of experimental measurements: (a) the material with
high-level Lankford coefficients and (b) the material with low-level Lankford coefficients.

4. Results and Discussions
4.1. Application of ANOVA

Table 9 shows the results of springback prediction by FEM simulation, which
shows that the springback of every angle from the rolling direction is without
symmetrical characteristics.
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Table 9. The results of springback prediction by FEM simulation.

The Amount of Springback/(◦)

θ000 θ045 θ090 θ135 θ180 θ225 θ270 θ315
Difference
(Max–Min)

1 90.205 90.052 90.313 90.623 90.629 90.645 89.999 90.303 0.44
2 90.294 90.748 90.645 90.838 90.617 90.729 90.363 90.315 0.544
3 90.255 90.566 90.779 91.021 90.445 90.931 90.601 90.407 0.766
4 90.217 90.242 90.027 90.342 90.654 90.412 90.268 90.112 0.627
5 90.205 90.518 90.379 90.529 90.626 90.514 90.338 90.577 0.421
6 90.295 90.507 90.652 90.723 90.175 90.481 90.418 90.447 0.428
7 90.027 90.14 90.246 90.006 90.069 89.968 90.148 89.884 0.362
8 90.225 89.968 90.303 90.188 90.249 90.161 90.279 90.058 0.257

average 90.215 90.375 90.385 90.534 90.433 90.480 90.302 90.263 0.319

To investigate the degree of significance of the Lankford coefficients, the ANOVA
technique was used to analyze the springback. The mean overall value S/N

(
S/N

)
is

expressed as Equation (1), where k is the number of simulations. The range of two levels
(SRj) is shown in Equation (2). The sum of squares owing to the variations of the overall
mean (SS) and the mean of the Lankford coefficients with interactions (SSj) are expressed
as Equations (3) and (4), respectively. The percentage values (%p-Valuej) were calculated
using Equation (5), which is generally applied when measuring the degree of significance
of each Lankford coefficient [36].

S/N =
1
8

8

∑
k=1

(S/N)k (1)

SRj =
7

∑
j=1

(
(S/N)1j − (S/N)2j

)
(2)

SS =
8

∑
i=1

(
(S/N)ij − S/N

)2
(3)

SSj =
7

∑
j=1

(
(S/N)ij − S/N

)2
(4)

%p − Valuej =

(SSj

SS
× 100

)
(5)

4.2. Effects of Process Parameters on Springback

The results of the range analysis and variance analysis are shown in Table 10. It is
revealed that the influence of Lankford coefficients on springback is different at different
angles. The source of r00 had a critical effect on the springback at θ000 from the rolling
direction, the r45 is the key factor causing springback at θ045 and θ315, and r90 is key at
θ135, θ180, and θ225. Furthermore, r45 × r00 has significant values for springback at θ090
because of interactions with Lankford coefficients. Meanwhile, r90 × r45 is the key factor of
springback at θ270. The measurement error also easily affected the range analyses, and so
the ANOVA technique was used to analyze the springback. The ANOVA results shown in
Table 9 correspond well with the range analysis results. Based on these analysis results, it
has been found that the interactions of Lankford coefficients at different angles from the
rolling direction have a clear effect on the springback.
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Table 10. Results of range analysis and variance analysis.

Range Analysis Variance Analysis (The Key Factor and Contribution Value)

θ000 r00 r00(28.79%), r45(18.94%)
θ045 r45 r45(37.53%), r45 × r00(23.21%)
θ090 r45 × r00 r45 × r00(54.46%), r45(17.11%)
θ135 r90 r90(29.35%), r45(20.66%)
θ180 r90 r90(48.00%), r45 × r00(23.13%)
θ225 r90 r90(47.89%), r45(15.19%)
θ270 r90 × r45 r90 × r45(38.81%), r45 × r00(23.17%)
θ315 r45 r45(47.64%), r90 × r45(33.00%)

Figure 13a–h shows the sensitivity analysis of the effect of Lankford coefficients
on springback. When the interactions of the Lankford coefficients were not considered,
the amount of springback decreased with r90 and r45 at all angles, and the amount of
springback decreased with increasing r00, except at the angle of θ000. When considering
the interactions, the amount of springback increased with increasing r90 × r45. When the
r45 and r90 increased simultaneously, the interaction of r90 × r45 hindered springback and
caused it to decrease. The amount of springback increased with increasing r45 × r00, except
at the angle of θ180. The amount of springback decreased with increasing r90 × r00, except at
the angles of θ045 and θ180. The results show that the influences of the Lankford coefficient
on springback at different angles are interrelated and interact with each other.
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4.3. Comparing the FEM Simulation and Experimental Results

The experimental results of two kinds of 304 stainless steel were measured using
CMM, as shown in Table 11. The No. 1 and No. 8 FEM simulation results are shown in
Table 12. Figure 14 shows the comparison of an average bottom fillet of the FEM simulation
and experimental results at different angles from the rolling direction. The material with
high-level Lankford coefficients had a larger amount of springback at 0, 90, and 270 degrees
from the rolling direction. The experimental results have good agreement with the FEM
simulation results, with the bottom fillet showing a similar trend. The springback of the
cylinder bottom fillet occurred along the rolling direction, and there was an increasing
trend with every 45◦ decrease.

Table 11. Average experimental results of two kinds of stainless steel.

Material
The Amount of Springback/(◦)

θ000 θ045 θ090 θ135 θ180 θ225 θ270 θ315
Difference
(Max–Min)

High–level
Lankford
coefficient

90.823 90.401 90.962 90.504 90.942 90.620 90.683 90.460 0.561

Low–level
Lankford
coefficient

90.756 90.529 90.845 90.700 91.009 90.792 90.671 90.565 0.48

Difference
(Max–Min) 0.067 −0.128 0.117 −0.196 −0.389 −0.172 0.012 −0.105
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Table 12. FEM simulation results of springback.

Simulation
No.

The Amount of Springback/(◦)

θ000 θ045 θ090 θ135 θ180 θ225 θ270 θ315
Difference
(Max–Min)

1 90.205 90.052 90.313 90.623 90.629 90.645 89.999 90.303 0.44
8 90.225 89.968 90.303 90.188 90.249 90.161 90.279 90.058 0.257

Difference
(Max–Min) 0.02 −0.084 −0.01 −0.435 −0.38 −0.484 0.28 −0.245
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Figure 14. Comparison of the average of experimental results and the FEM simulation results.

The comparison between the bottom fillets of materials with high- and low-level
Lankford coefficients is shown in Figure 15. The experimental results have good agreement
with the FEM simulation results, showing a similar trend in springback. The amount of the
bottom fillet decreased with an increase in the Lankford coefficient at all locations, except
for 0, 90, and 270 degrees. The trend is more apparent in the FEM simulation results.

Materials 2023, 16, x FOR PEER REVIEW 16 of 19 
 

 

Table 12. FEM simulation results of springback. 

Simulation 

No. 

The Amount of Springback/(°) 

θ000 θ045 θ090 θ135 θ180 θ225 θ270 θ315 
Difference 

(Max–Min) 

1 90.205 90.052 90.313 90.623 90.629 90.645 89.999 90.303 0.44 

8 90.225 89.968 90.303 90.188 90.249 90.161 90.279 90.058 0.257 

Difference 

(Max–Min) 
0.02 −0.084 −0.01 −0.435 −0.38 −0.484 0.28 −0.245  

 

Figure 14. Comparison of the average of experimental results and the FEM simulation results. 

The comparison between the bottom fillets of materials with high- and low-level 

Lankford coefficients is shown in Figure 15. The experimental results have good agree-

ment with the FEM simulation results, showing a similar trend in springback. The amount 

of the bottom fillet decreased with an increase in the Lankford coefficient at all locations, 

except for 0, 90, and 270 degrees. The trend is more apparent in the FEM simulation re-

sults. 

 

Figure 15. Comparison of the variation of angles between the FEM simulation results and the ex-

perimental results. 

5. Conclusions 

The influence of Lankford coefficients on stainless steel cylindrical cups was investi-

gated using both experiments and numerical simulation. The conclusions are as follows: 

The simulation and experimental results show that the Lankford coefficients had an 

obvious effect on the cross-section diameter. The flow velocity of the blank was different 

Figure 15. Comparison of the variation of angles between the FEM simulation results and the
experimental results.

5. Conclusions

The influence of Lankford coefficients on stainless steel cylindrical cups was investi-
gated using both experiments and numerical simulation. The conclusions are as follows:

The simulation and experimental results show that the Lankford coefficients had an
obvious effect on the cross-section diameter. The flow velocity of the blank was differ-
ent because of the anisotropy of the metal sheet, which makes the stress–strain values
accumulate in different directions during the deep-drawing process, and finally causes a
clear difference in springback. The simulated springback value for the straight wall was
between 0.15 mm and 0.25 mm. The maximum springback value was at the position of



Materials 2023, 16, 4321 17 of 19

45◦ from the rolling direction. Specifically, the diameters at different height sections were
related to the Lankford coefficients at different angles from the rolling direction, which
were characterized by a concave valley in the 45 degree direction of the straight wall. The
radius difference between the 45 degree rolling direction and the other two directions at
each section height was between 0.1 mm and 0.3 mm.

The ANOVA results illustrated the influence of Lankford coefficients on the springback
of the bottom fillet. The Lankford coefficient has different levels of effects on springback
depending on the angle from the rolling direction. The 90-degree angle had the greatest
influence, followed by the 45-degree, with 0 degrees having the least influence. The
experimental results showed a similar trend to the simulation results. In addition, the
springback of the bottom fillet decreased with the increasing overall Lankford coefficients.

The combination of the FEM simulation, the ANOVA technique, and the experimental
study of the cylinder deep-drawing process is an effective method for studying the influence
of Lankford coefficients on springback and predicting the final shape with high precision.

In this paper, the study of the effect of Lankford coefficients on springback of a
cylindrical cup during the deep-drawing process remained at the macroscopic stage, and
further analysis on the microscopic aspects was not carried out. The mechanism by which
metal anisotropy influences the springback of a cylinder needs to be explored further.
Although some characteristic rules regarding springback and cylindrical cup properties
during deep drawing were obtained in this study, the analysis of the specific degree
of influence of Lankford coefficients on springback properties is still in the preliminary
stage. Therefore, the quantitative analysis of the influence of Lankford coefficients on the
springback of the cylindrical cup during deep drawing will remain the focus of future
research. Based on the previous research on the cylindrical cup, the springback of large
complex thin-walled parts in deep drawing will be further explored.
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