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Abstract: A mathematical model of heat generation due to friction in a disc–pad braking system
was developed with consideration of a thermal barrier coating (TBC) on the friction surface of the
disc. The coating was made of functionally graded material (FGM). The three-element geometrical
scheme of the system consisted of two homogeneous half-spaces (pad and disc) and a functionally
graded coating (FGC) deposited on the friction surface of the disc. It was assumed that the frictional
heat generated on the coating-pad contact surface was absorbed to the insides of friction elements
along the normal to this surface. Thermal contact of friction between the coating and the pad as
well as the heat contact between the coating and the substrate were perfect. On the basis of such
assumptions, the thermal friction problem was formulated, and its exact solution was obtained for
constant and linearly descending specific friction power over time. For the first case, the asymptotic
solutions for small and large values of time were also found. A numerical analysis was performed on
an example of the system containing a metal ceramic (FMC-11) pad, sliding on the surface of a FGC
(ZrO2–Ti-6Al-4V) applied on a cast iron (ChNMKh) disc. It was established that the application of a
TBC made of FGM on the surface of a disc could effectively reduce the level of temperature achieved
during braking.

Keywords: braking; frictional heating; functionally graded material; temperature; thermal barrier
coating

1. Introduction

Frictional heating occurs when two contacting elements slide against each other,
resulting in the conversion of mechanical energy into heat [1,2]. Modern braking systems
operate based on this phenomenon [3]. Therefore, the main requirement for friction
elements is resistance to elevated temperature, which can be improved by thermal barrier
coatings applied on friction surfaces [4,5]. Due to their high thermal and wear resistance,
ceramic materials are mostly used in the production of protective coatings for friction
components [6,7]. However, in conventional coated elements, cracking may appear on the
interface between the layer and a substrate, because of material properties mismatch [8].
To overcome this problem, functionally graded coatings have been introduced that possess
smooth gradation of properties to reduce stress concentration on the interface and to
reinforce the bond cohesion [9,10].

Accurate models of the frictional heating process are critical in the design of brakes,
because they can provide insights into the temperature and thermal stress distributions
initiated in the friction elements during braking actions [11]. Such models are developed
on the basis of the thermal problems of friction which, in most cases, are obtainable only for
bodies bounded by parallel planes (e.g., semi-spaces and strips) [12]. The simplest model
used to formulate thermal problems of friction constitutes a single body, obtained after a
virtual separation of the friction pair elements. Then, the friction interaction on the contact
surface of the elements is replaced by a heat flux with an intensity proportional to the
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specific friction power. For this purpose, the heat partition ratio is introduced a priori to the
model in order to determine the amount of heat absorbed by each element of the friction
pair [13]. The most commonly used in the literature is the two-element geometric scheme,
which represents both elements of the friction pair and considers heat generation on the
contact area due to friction. Another scheme is a three-element model of a tribosystem,
consisting of a semi-space sliding on the outer surface of a strip deposited on a semi-
infinite substrate. Such a scheme can be adopted to simulate a frictional disc/pad/caliper
system, consisting of a coated disc paired with a brake pad. A comparative analysis of the
solutions to the thermal problems of friction for a disc brake system, obtained by means
of two- and three-element models, was demonstrated in [14]. The three-element scheme
considered the influence of the material properties of the caliper, on which the brake
pad was placed, on the distribution of temperature and thermal stresses. Other transient
thermal problems of friction for braking systems on the basis of a three-element scheme
have been studied in [15–22]. The analytical solution to a boundary value problem of heat
conduction for such a system was obtained under uniform sliding in a study by [8]. A three-
element scheme to formulate thermal problems of friction for single braking with constant
deceleration was used in [17,18]. The achieved solutions determined the temperature
distribution and corresponding quasi-static thermal stresses in the disc, pad, and caliper
of a tribosystem, both in the sliding phase during braking as well as in the cooling phase
after braking action. The same scheme was used to consider a three-element braking
system, i.e., a top semi-space (the disc) and a strip (the pad) deposited on a substrate (the
caliper), in a study by [19]. The heat conduction problem was formulated and solved with
time-dependent pressure and the assumption of imperfect thermal contact conditions on
the disc–pad interface, in order to study the influence of heat resistance on the thermal
behavior of the system. A generalization of this solution for a case considering fluctuations
in pressure on the contact surface was presented in [20]. Such a temporal profile of contact
pressure during braking with consideration of its oscillations was also considered in [23].
Asymptotic solutions (at large and small values of time) of the heat conduction problem for
a three-element tribosystem with generalized boundary conditions on the sliding surface
were obtained in [21]. All the mentioned studies concern the thermal problems of friction
formulated for homogeneous materials. The thermal problems of friction for a three-
element system with a brake pad made of periodic composite material was considered
analytically in [22]. The assumption was made that the composite contained four sub-cells
with rectangular cross sections, with different thermo-physical properties. The influence of
geometrical dimensions of composite sub-cells on the maximum temperature in the system
was investigated. However, modern friction elements can have far more complicated
internal structure, such as functionally graded materials (FGMs), which have continuously
changing properties throughout the volume of material [24]. Some analytical solutions to
the heat conduction problems formulated for braking systems with functionally graded
friction materials have already been obtained in [25–30]. However, these studies concerned
simpler geometrical schemes, including a two FGM semi-spaces system [25,26]; functionally
graded semi-infinite body coupled with homogeneous element [27,28]; and a one-element
system consisting of a heating semi-space with deposited functionally graded coating,
heated by the frictional heat flux on the friction surface [29]. A comparative analysis of
frictional heating models formulated for FGMs by means of two-element and one-element
schemes was performed in [30]. Based on the obtained results, a new heat partition ratio
formula was proposed for a functionally graded friction couple.

In our previous paper [29], the problem we considered was a coated brake disc
simulated using a homogeneous substrate with a deposited coating made of functionally
graded material. The outer surface of the coating was assumed to be heated by the frictional
heat flux. The current study is a continuation of that study, by introducing a second element
in a friction pair, i.e., a brake pad, as the counterbody in a tribosystem. In this study, the
thermal problem of friction is considered for a three-element system consisting of two
homogeneous semi-spaces (pad and disc) and a functionally graded coating (FGC) is
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deposited on the friction surface of the disc, considering the heat generation on the disc–
pad interface due to the friction during braking. The mathematical model obtained was
based on the following algorithm:

(1) Formulation of the proper boundary value problem of heat conduction.
(2) Transition of the problem to the Laplace integral space.
(3) Finding the solutions in the form of Laplace transforms.
(4) Proceeding from the transforms of the solutions to the originals.
(5) Verification of the obtained solutions.
(6) Designating the asymptotic solutions for small and high values of the Fourier number.
(7) Performance of a numerical analysis for a selected case.

2. Problem Formulation

In this study, we consider the sliding contact of two semi-infinite bodies (half-spaces)
taking into consideration the generation of heat due to friction (Figure 1). The upper half-
space consists of a protective coating applied on the surface of the substrate. The materials
of the substrate and lower semi-space (counterbody) are homogeneous, so their properties,
i.e., thermal conductivity (Kl), specific heat (cl), and density (ρl) are uniform throughout
volumes of the elements, whereas the coating is made of a two-element functionally
gradient material (FGM) with a thermal conductivity coefficient K1 increasing exponentially
along its thickness [31]:

K1(z) = K1,1eγ∗z/d, γ∗ = ln(K1,2 K−1
1,1 ), 0 ≤ z ≤ d, (1)

where d is the thickness of the coating, γ∗ ≥ 0 is the gradient parameter FGM [32],
K1,1 ≡ K1(0) and K1,2 ≡ K1(d) are the thermal conductivity coefficients of the FGM con-
stituents, and z is the spatial coordinate in the axial direction.
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Figure 1. Scheme of the considered three-element tribosystem.

At the initial moment t = 0, the temperature T of all bodies in the system are constant
and equal to T0. Next, both semi-spaces, under the effect of pressure p0 and acting parallel
to the axis Oz, come into contact and simultaneously begin to slide in the positive direction
of the axis Ox with constant velocity V0. Due to friction on the contact surface z = 0, heat is
generated, and the bodies heat up. Assuming that the friction thermal contact is perfect,
i.e., at a set moment of time t > 0 the friction surfaces of the coating and counterbody
are heated to the same temperature, and the sum of the intensities of heat fluxes, directed
to the insides of the coating and counterbody along the normal to the contact surface, is
equal to the specific friction power q0 = f p0V0, where f is the friction coefficient. The
thermal connection of the coating with the substrate is perfect, i.e., the temperature and
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intensity of heat fluxes of these elements at the interface z = d are the same. Thermal
sensitivity of materials and wear are neglected. All assumptions in more detail are listed in
our previous papers [25,26]. The aim of this study is to develop a mathematical model for
the analytical determination of the temperature T of the considered three-element system
at a fixed location |z| < ∞ at the selected time moment t > 0:

∂

∂z

[
K1(z)

∂Θ(z, t)
∂z

]
= ρ1c1

∂Θ(z, t)
∂t

, 0 < z < d, t > 0, (2)

K2
∂2Θ(z, t)

∂z2 = ρ2c2
∂Θ(z, t)

∂t
, z > d, t > 0, (3)

K3
∂2Θ(z, t)

∂z2 = ρ3c3
∂Θ(z, t)

∂t
, z < d, t > 0, (4)

Θ(0+, t) = Θ(0−, t), t > 0, (5)

K1(z)
∂Θ(z, t)

∂z

∣∣∣∣
z=0+

− K3
∂Θ(z, t)

∂z

∣∣∣∣
z=0−

= −q0, t > 0, (6)

Θ(d+, t) = Θ(d−, t), t > 0, (7)

K1(z)
∂Θ(z, t)

∂z

∣∣∣∣
z=d+

= K2
∂Θ(z, t)

∂z

∣∣∣∣
z=d−

, t > 0, (8)

Θ(z, t)→ 0 , |z| → ∞ , t > 0, (9)

Θ(z, 0) = 0, |z| < ∞, (10)

where K2 and K3 are the thermal conductivities of the substrate and counterbody materials,
respectively; ρl and cl , respectively, are the density and specific heat of materials of the
coating (l = 1), the substrate (l = 2), and the counterbody (l = 3).

Incorporating the following dimensionless variables and parameters:

ζ =
z
d

, τ =
k1t
d2 , K∗3 =

K3

K1,1
, k∗2 =

k2

k1
, k∗3 =

k2

k1
, Θ∗ =

Θ
Λ

, (11)

where
k1 =

K1,1

c1ρ1
, k2 =

K2

c2ρ2
, k3 =

K3

c3ρ3
, Λ =

q0d
K1,1

, (12)

Problem (2)–(10) was written in the form:

∂2Θ∗(ζ, τ)

∂ζ2 + γ∗
∂Θ∗(ζ, τ)

∂ζ
− e−γ∗ζ ∂Θ∗(ζ, τ)

∂τ
= 0, 0 < ζ < 1, τ > 0, (13)

∂2Θ∗(ζ, τ)

∂ζ2 − 1
k∗2

∂Θ∗(ζ, τ)

∂τ
= 0, ζ > 1, τ > 0, (14)

∂2Θ∗(ζ, τ)

∂ζ2 − 1
k∗3

∂Θ∗(ζ, τ)

∂τ
= 0, ζ < 0, τ > 0, (15)

Θ∗(0+, τ) = Θ∗(0−, τ), τ > 0, (16)
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∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0+

− K∗3
∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0−

= −1, τ > 0, (17)

Θ(1+, τ) = Θ(1−, τ), τ > 0, (18)

eγ∗ ∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=1+

= K∗2
∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=1−

, τ > 0, (19)

Θ∗(ζ, τ)→ 0 , |ζ| → ∞ , τ > 0, (20)

Θ∗(ζ, 0) = 0, |ζ| < ∞. (21)

3. Exact Solution

By means of the Laplace integral transform [33]:

Θ∗(ζ, p) ≡ L[Θ∗(ζ, τ); p] =
∞∫

0

Θ∗(ζ, τ)e−pτdτ, Rep ≥ 0, (22)

the boundary value problem (13)–(21) was reduced to the following boundary problem for
a system of three ordinary differential equations of the second order:

d2Θ∗(ζ, p)
dζ2 + γ∗

dΘ∗(ζ, τ)

dζ
− pe−γ∗ζ Θ∗(ζ, p) = 0, 0 < ζ < 1, (23)

d2Θ∗(ζ, p)
dζ2 − p

k∗2
Θ∗(ζ, p) = 0, ζ > 1, (24)

d2Θ∗(ζ, p)
dζ2 − p

k∗3
Θ∗(ζ, p) = 0, ζ < 0, (25)

Θ∗(0+, p) = Θ∗(0−, p), (26)

dΘ∗(ζ, p)
dζ

∣∣∣∣∣
ζ=0+

− K∗3
dΘ∗(ζ, p)

dζ

∣∣∣∣∣
ζ=0−

= − 1
p

, (27)

Θ∗(1+, p) = Θ∗(1−, p), (28)

eγ∗ dΘ∗(ζ, p)
dζ

∣∣∣∣∣
ζ=1+

= K∗2
dΘ∗(ζ, p)

dζ

∣∣∣∣∣
ζ=1−

, (29)

Θ∗(ζ, p)→ 0 , |ζ| → ∞ . (30)

The solution to problem (23)–(30) has the following form:

Θ∗(ζ, p) = e−α̃ζ Θ∗0(p)Θ∗1(ζ, p), 0 ≤ ζ ≤ 1, (31)

Θ∗(ζ, p) = α̃ Θ∗0(p)Θ∗2(ζ, p), ζ ≥ 1, (32)

Θ∗(ζ, p) = Θ∗0(p)Θ∗3(ζ, p), ζ < 0, (33)

where
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Θ∗0(p) =
1
√

p
, Θ∗1(ζ, p) =

∆1(ζ, p)
p∆(p)

, Θ∗2(ζ, p) =
e−ζ2

√
p

p
√

p∆(p)
, Θ∗3(ζ, p) =

∆3(p)e−ζ3
√

p

p∆(p)
, (34)

∆1(ζ, p) = A(p)I1(ζ1
√

p) + B(p)K1(ζ1
√

p) , ∆3(p) = A(p)I1(α
√

p) + B(p)K1(α
√

p), (35)

∆(p) = A(p)[I 0(α
√

p) + ε3I1(α
√

p)]− B(p)[K 0(α
√

p)− ε3K1(α
√

p)], (36)

A(p) = K0(β
√

p) + ε2 e−α̃K1(β
√

p), B(p) = I0(β
√

p)− ε2 e−α̃I1(β
√

p), (37)

α =
2

γ∗
, α̃ =

1
α

, β =
α

eα̃
, ε2 =

K∗2√
k∗2

, ε3 =
K∗3√

k∗3
, ζ1 =

α

eα̃ζ
, ζ2 =

ζ − 1√
k∗2

, ζ3 =
|ζ|√

k∗3
, (38)

where In(x) and Kn(x) are the modified Bessel functions of the nth order of the first and
second kind, respectively [34].

Considering the forms of the transformed solutions (31)–(33) and based on the convo-
lution theorem of the two functions, the dimensionless temperature rises were found [33]:

Θ∗(ζ, τ) = e−α̃ζ

τ∫
0

Θ∗0(τ − s)Θ∗1(ζ, s)ds, 0 ≤ ζ ≤ 1, τ ≥ 0, (39)

Θ∗(ζ, τ) = α̃

τ∫
0

Θ∗0(τ − s)Θ∗2(ζ, s)ds, ζ ≥ 1, τ ≥ 0, (40)

Θ∗(ζ, τ) =

τ∫
0

Θ∗0(τ − s)Θ∗3(ζ, s)ds, ζ ≤ 0, τ ≥ 0, (41)

where
Θ∗0(τ) ≡ L−1[Θ∗0(p); τ] =

1√
πτ

, (42)

Θ∗l (ζ, τ) ≡ L−1[Θ∗l (ζ, p); τ] =
1

2πi

ω+i ∞∫
ω−i ∞

Θ∗l (ζ, p)epτdp, l = 1, 2, 3, ω ≡ Rep > 0, i ≡
√
−1. (43)

Integration on the complex plane (Rep, Imp) in Equation (43) was carried out accord-
ing to the methodology described in detail in [29] and using the following relations [34]:

I0(±ix) = J0(x), K0(±ix) = −0.5π[Y0(x)± iJ0(x)], (44)

I1(±ix) = ±iJ1(ix), K1(±ix) = −0.5π[J1(x)∓ iY1(x)], (45)

where Jn(x) and Yn(x) are Bessel functions of the nth order of the first and second kind,
respectively. As a result, it was obtained:

Θ∗1(ζ, τ) =
eα̃ζ

ε2 + ε3
+

2
π

∞∫
0

Φ1(ζ, x)
xΨ(x)

e−x2τdx, 0 ≤ ζ ≤ 1, τ ≥ 0, (46)

Θ∗2(ζ, τ) =
α

ε2 + ε3
− 4

π2

∞∫
0

Φ2(ζ, x)
x2Ψ(x)

e−x2τdx, ζ ≥ 1, τ ≥ 0, (47)



Materials 2023, 16, 4308 7 of 20

Θ∗3(ζ, τ) =
1

ε2 + ε3
+

2
π

∞∫
0

Φ3(ζ, x)
xΨ(x)

e−x2τdx, ζ ≤ 0, τ ≥ 0, (48)

where
Φ1(ζ, x) = ∆R(x)∆1,I(ζ1, x)− ∆I(x)∆1,R(ζ1, x), (49)

Φ2(ζ, x) = ∆R(x) cos(ζ2x)− ∆I(x) sin(ζ2 x), (50)

Φ3(ζ, x) = [∆R(x)∆3,I(x)− ∆I(x)∆3,R(x)] cos(ζ3x)−
[∆R(x)∆3,R(x) + ∆I(x)∆3,I(x)] sin(ζ3x) ,

(51)

Ψ(x) = ∆2
R(x) + ∆2

I (x), (52)

∆R(x) = Y0(αx)J0(βx)− J0(αx)Y0(βx) + ε3∆3,R(x), (53)

∆I(x) = ε3∆3,I(x)− ε2e−α̃[Y0(αx)J1(βx)− J0(αx)Y1(βx)], (54)

∆1,R(ζ, x) = ε2e−α̃[J 1(βx)Y1(ζ1x)− Y1(βx)J1(ζ1x)], (55)

∆1,I(ζ, x) = J0(βx)Y1(ζ1x)− Y0(βx)J1(ζ1x), (56)

∆3,R(x) = ε2e−α̃[Y 1(αx)J1(βx)− J1(αx)Y1(βx)], (57)

∆3,I(x) = Y1(αx)J0(βx)− J1(αx)Y0(βx). (58)

Taking into consideration the functions Θ∗0(τ) (42) and Θ∗l (ζ, τ), l = 1, 2, 3 (46)–(48) in
Equations (39)–(41), after performing the integration, the sought dimensionless temperature
rise was found in the form:

Θ∗(ζ, τ) = 2
√

τ

π

 1
ε2 + ε3

+
2
π

e−0.5γ∗ζ
∞∫

0

Φ1(ζ, x)
xΨ(x)

F(x
√

τ)dx

, 0 ≤ ζ ≤ 1, τ ≥ 0, (59)

Θ∗(ζ, τ) = 2
√

τ

π

 1
ε2 + ε3

− 2γ∗

π2

∞∫
0

Φ2(ζ, x)
x2Ψ(x)

F(x
√

τ)dx

, ζ ≥ 1, τ ≥ 0, (60)

Θ∗(ζ, τ) = 2
√

τ

π

 1
ε2 + ε3

+
2
π

∞∫
0

Φ3(ζ, x)
xΨ(x)

F(x
√

τ)dx

, ζ ≤ 0, τ ≥ 0, (61)

where

F(x) =
e−x2

x

x∫
0

es2
ds. (62)

To calculate the function F(x) (62) the following approximation formulas were used [35]:

F(x) =
∞

∑
n=0

(−1)n (2x2)
n

(2n + 1)!!
, 0 < x < 3, F(x) =

N

∑
n=0

(2n− 1)!!

(2x2)n+1 , x ≥ 3. (63)

where (−1)!! = 1, (2n + 1)!! = 1× 3× 5× . . .× (2n + 1).



Materials 2023, 16, 4308 8 of 20

4. Verification of the Solution

Correctness of solutions (59)–(61) will be shown by proving that they satisfy the
boundary conditions (16)–(20) and the initial condition (21). By comparing the forms of
solutions (59) and (61), it follows that the Equation condition (16) of the temperature of the
coating and counterbody on the contact surface ζ = 0 will be met if:

Φ1(0+, x) = Φ3(0−, x). (64)

Substituting in Formulas (55)–(58) ζ = 0 (ζ1 = α) it was found that

∆1,R(0, x) = ∆3,R(x), ∆1,I(0, x) = ∆3,I(x), (65)

from where, on the basis of Equations (49) and (51), we obtain the Equation (64).
Comparing solutions (59) and (60), it can be seen that condition (18) of the temperature

equality at the interface ζ = 1 will be met, when

e−0.5γ∗πx Φ1(1+, x) + γ∗Φ2(1−, x) = 0. (66)

For ζ = 1 from Equation (38), it follows that ζ1 = β and ζ2 = 0. Then, Formulas (55) and (56)
yield [34]:

∆1,R(1, x) = 0, ∆1,I(1, x) = J0(βx)Y1(β x)− Y0(βx)J1(β x) ≡ −2(πβx)−1. (67)

Including definition (38) of parameter β, from Equations (49), (50) and (67) it was found:

Φ1(1+, x) = −γ∗e0.5γ∗

πx
∆R(x), Φ2(1−, x) = ∆R(x), (68)

which proves that Equation (66) is fulfilled, which means that the boundary condition (18)
is met.

After differentiating solution (59) with respect to a spatial variable, ζ (the correspond-
ing derivatives hereinafter are denoted by the symbol « ’ ») was obtained:

Θ′∗(ζ, τ) =
2
π

e−0.5γ∗ζ√τ

∞∫
0

[Φ′1(ζ, x)− 0.5γ∗Φ1(ζ, x)]
xΨ(x)

F(x
√

τ)dx, 0 ≤ ζ ≤ 1, τ ≥ 0, (69)

where, from Equation (49), it yields:

Φ′1(ζ, x) = ∆R(x)∆′1,I(ζ, x)− ∆I(x)∆′1,R(ζ, x). (70)

Considering derivatives [34]:

J′1(x) = J0(x)− x−1J1(x), Y′1(x) = Y0(x)− x−1Y1(x), (71)

from Formulas (53)–(56) it was found:

∆′1,R(ζ, x) = 0.5γ∗∆1,R(ζ, x)− xe−0.5γ∗ζ ∆̂I(ζ, x), (72)

∆′1,I(ζ, x) = 0.5γ∗∆1,I(ζ, x)− xe−0.5γ∗ζ ∆̂R(ζ, x), (73)

where
∆̂R(ζ, x) = J0(βx)Y0(ζ1x)− Y0(βx)J0(ζ1x), (74)

∆̂I(ζ, x) = ε2e−0.5γ∗ [J 1(βx)Y0(ζ1x)− Y1(βx)J0(ζ1x)]. (75)



Materials 2023, 16, 4308 9 of 20

Substituting derivatives (72)–(75) to the right side of Equation (70), it was obtained:

Φ′1(ζ, x) = 0.5γ∗Φ1(ζ, x)− xe−0.5γ∗ζ Φ̂1(ζ, x), (76)

where
Φ̂1(ζ, x) = ∆R(x)∆̂R(ζ, x)− ∆I(x)∆̂I(ζ, x). (77)

Taking into consideration the Formulas (76) and (77), the derivative of function Φ1(ζ, x)
in Equation (69) gives:

Θ′∗(ζ, τ) = − 2
π

e−γ∗ζ√τ

∞∫
0

Φ̂1(ζ, x)
Ψ(x)

F(x
√

τ)dx, 0 ≤ ζ ≤ 1, τ ≥ 0. (78)

Next, differentiating solutions (60) and (61), it was found:

Θ′∗(ζ, τ) = −2γ∗

π2

√
τ

∞∫
0

Φ′2(ζ, x)
x2Ψ(x)

F(x
√

τ)dx, ζ ≥ 1, τ ≥ 0, (79)

Θ′∗(ζ, τ) =
2
π

√
τ

∞∫
0

Φ′3(ζ, x)
xΨ(x)

F(x
√

τ)dx, ζ ≤ 0, τ ≥ 0, (80)

where, based on relations (50)–(54) and (57) and (58), the following was determined:

Φ′2(ζ, x) = − x√
k∗2

[∆R(x) sin(ζ2x) + ∆I(x) cos(ζ2 x)], (81)

Φ′3(ζ, x) = − x√
k∗3
{[∆R(x)∆3,I(x)− ∆I(x)∆3,R(x)] sin(ζ3x)−
[∆R(x)∆3,R(x) + ∆I(x)∆3,I(x)] cos(ζ3x)}.

(82)

Substituting the derivatives (78), (80), and (82) for ζ = 0 (ζ1 = α,ζ3 = 0) to the left side
of boundary condition (17), it was achieved:

Θ′∗(0+, τ)− K∗3 Θ′∗(0−, τ) = − 2
π

√
τ

∞∫
0

{
Φ̂1(0, x) + ε3[∆R(x)∆3,R(x) + ∆I(x)∆3,I(x)]

}
Ψ(x)

F(x
√

τ)dx, τ ≥ 0. (83)

Considering relation (77), the following was written:

Φ̂1(0, x) + ε3[∆R(x)∆3,R(x) + ∆I(x)∆3,I(x)] =
∆R(x)[∆̂R(0, x) + ε3∆3,R(x)]− ∆I(x)[∆̂I(0, x)− ε3∆3,I(x)].

(84)

Then, taking into consideration the forms of functions ∆3,R(x) (57) and ∆3,I(x) (58)
and the following functions from Equations (74) and (75):

∆̂R(0, x) = Y0(αx)J0(βx)− J0(αx)Y0(βx), (85)

∆̂I(0, x) = ε2e−0.5γ∗ [Y 0(αx)J1(βx)− J0(αx)Y1(βx)], (86)

it was established that

∆̂R(0, x) + ε3∆3,R(x) = ∆R(x), ∆̂I(0, x)− ε3∆3,I(x) = −∆I(x), (87)
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where the functions ∆R(x) and ∆I(x) have the Formulas (54) and (55), respectively. Consid-
ering the results (87) in the right side of Equation (84), as well as the function Ψ(x) (52), the
Equation (83) can be written in the form:

Θ′∗(0+, τ)− K∗3 Θ′∗(0−, τ) = − 2
π

√
τ

∞∫
0

F(x
√

τ)dx, τ ≥ 0. (88)

Bearing in mind that [35]
∞∫

0

F(x)dx =
π

2
, (89)

from the Equation (88), it follows that the boundary condition (17) has been fulfilled.
Substituting ζ = 1 (ζ1 = β, ζ2 = 0) in Equations (78) and (79) gives:

eγ∗Θ′∗(1+, τ) = − 2
π

√
τ

∞∫
0

Φ̂1(1, x)
Ψ(x)

F(x
√

τ)dx, τ ≥ 0, (90)

K∗2 Θ′∗(1−, τ) = −2γ∗K∗2
π2

√
τ

∞∫
0

Φ′2(1, x)
x2Ψ(x)

F(x
√

τ)dx, τ ≥ 0, (91)

where, based on relations (77) and (81), it was found:

Φ̂1(1+, x) = ∆R(x)∆̂R(1, x)− ∆I(x)∆̂I(1, x), K∗2 Φ′2(1
−, x) = −ε2x∆I(x). (92)

From (74) and (75), it follows that [34]

∆̂R(1, x) = 0, ∆̂I(1, x) = ε2e−0.5γ∗ [J 1(βx)Y0(βx)− Y1(βx)J0(βx)] ≡ ε2γ∗(πx)−1, (93)

and the first Equation (92) takes the form

Φ̂1(1+, x) = −ε2γ∗(πx)−1∆I(x). (94)

Considering Equations (93) and (94) in the right sides of Equations (90) and (91), it
was determined:

eγ∗Θ′∗(1+, τ) =
2

π2 ε2γ∗
√

τ

∞∫
0

∆I(x)
xΨ(x)

F(x
√

τ)dx = K∗2 Θ′∗(1−, τ), (95)

which confirms that the obtained solutions meet the boundary condition (19).
Fulfillment of condition (20) of the disappearance of dimensionless temperature rises

(60) and (61) for ζ → ∞ was considered by rejecting the terms eζ2
√

p and eζ3
√

p while solving
the boundary problem (23)–(33) and was verified by numerical calculations. Finally, it
should be noted that solutions (59)–(61) also satisfy the initial condition (21).

5. Some Special Cases of Solution

In addition to the exact (in quadrature) solutions (59)–(62), appropriate asymptotic so-
lutions were also obtained for small and large values of the Fourier number (dimensionless
time) τ (11).

Small values of τ (large values of parameter p). Including Formulas (34)–(37) asymptotes
of the modified Bessel functions for large argument values [34]:

In(x) ∼=
ex
√

2πx
, Kn(x) ∼=

√
π

2x
e−x, n = 0, 1, . . . , (96)
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transformed solutions (31)–(33) were written in the forms:

Θ∗(ζ, p) ∼=
e−0.25γ∗ζ

(1 + ε3)

e−(α−ζ1)
√

p

p
√

p
, 0 ≤ ζ < 1, (97)

Θ∗(ζ, p) ∼=
2e−0.25γ∗

(1 + ε2e−0.5γ∗)(1 + ε3)

e−(α−β+ζ2)
√

p

p
√

p
, ζ ≥ 1, (98)

Θ∗(ζ, p) ∼=
e−ζ3

√
p

(1 + ε3)p
√

p
, ζ ≤ 0, (99)

where, based on definition (38), it was obtained:

α− ζ1 =
2

γ∗
(1− e−0.5γ∗ζ) ≥ 0, α− β + ζ2 =

2
γ∗

(1− e−0.5γ∗) +
ζ − 1√

k∗2
> 0, ζ3 ≥ 0. (100)

Proceeding from transforms (97)–(100) to the originals by means of the relation [36]:

L−1

[
e−λ
√

p

p
√

p
; τ

]
= 2
√

τ ierfc
(

λ

2
√

τ

)
, λ ≥ 0, (101)

asymptotes of the dimensionless temperature rise in the initial moments of the heating
process were found in the forms:

Θ∗(ζ, τ) ∼=
2e−0.25γ∗ζ√τ

(1 + ε3)
ierfc

(
α− ζ1

2
√

τ

)
, 0 ≤ ζ < 1, 0 ≤ τ << 1, (102)

Θ∗(ζ, τ) ∼=
4e−0.25γ∗√τ

(1 + ε2e−0.5γ∗)(1 + ε3)
ierfc

(
α− β + ζ2

2
√

τ

)
, ζ ≥ 1, 0 ≤ τ << 1, (103)

Θ∗(ζ, τ) ∼=
2
√

τ

(1 + ε3)
ierfc

(
ζ3

2
√

τ

)
, ζ ≤ 0, 0 ≤ τ << 1, (104)

where ierfc(x) = π−0.5e−x2 − x erfc(x), erfc(x) = 1− erf(x), and erf(x) are Gauss error
functions [34].

Large values of τ (small values of parameter p). For small argument values, the modified
Bessel functions behave as follow [34]:

I0(x) ∼= 1, I1(x) ∼= 0.5x, K0(x) ∼= − ln(x), K1(x) ∼= x−1. (105)

Considering asymptotes (105) in Equations (34)–(37), Laplace transforms (31)–(33)
were presented in the forms:

Θ∗(ζ, p) ∼=
1
b

[
1

p
√

p(
√

p + c)
+

ς

p(
√

p + c)

]
, 0 ≤ ζ ≤ 1, (106)

Θ∗(ζ, p) ∼=
e−ζ2

√
p

b p
√

p(
√

p + c)
, ζ ≥ 1, (107)

Θ∗(ζ, p) ∼=
e−ζ3

√
p

b

[
1

p
√

p(
√

p + c)
+

a
p(
√

p + c)

]
, ζ ≥ 0, (108)

where

a = ε2
(1− e−γ∗)

γ∗
, b = 1 + ε3a, c =

ε2 + ε3

b
, ς = ε2

(e−γ∗ζ − e−γ∗)

γ∗
. (109)
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Bearing in mind that [36]

L−1

[
c e−λ

√
p

p(
√

p + c)
; τ

]
= erfc

(
λ

2
√

τ

)
− eλc+c2τerfc

(
λ

2
√

τ
+ c
√

τ

)
, c > 0, λ ≥ 0, (110)

L−1

[
c2e−λ

√
p

p
√

p(
√

p + c)
; τ

]
= 2c

√
τ

π
e−(

λ
2
√

τ
)

2

− (1 + λc)erfc
(

λ

2
√

τ

)
+ eλc+c2τerfc

(
λ

2
√

τ
+ c
√

τ

)
, (111)

the following asymptotes of the dimensionless temperature rise at high values of the Fourier
number τ were obtained:

Θ∗(ζ, τ) ∼=
1

(ε2 + ε3)

{
2
√

τ

π
−
(

1
c
− ς

)
[1− ec2τerfc(c

√
τ)]

}
, 0 ≤ ζ ≤ 1, τ >> 1, (112)

Θ∗(ζ, τ) ∼=
1

(ε2 + ε3)

{
2
√

τ

π
e−(

ζ2
2
√

τ
)

2

−
(

1
c
+ ζ2

)
erfc

(
ζ2

2
√

τ

)
+

1
c

ecζ2+c2τerfc
(

ζ2

2
√

τ
+ c
√

τ

)}
, ζ ≥ 1, τ >> 1, (113)

Θ∗(ζ, τ) ∼= 1
(ε2+ε3)

{
2
√

τ
π e−(

ζ3
2
√

τ
)

2

−
(

1
c − a + ζ3

)
erfc

(
ζ3

2
√

τ

)
+(

1
c − a

)
ecζ3+c2τerfc

(
ζ3

2
√

τ
+ c
√

τ
)}

, ζ ≤ 0, τ >> 1.
(114)

On the friction surface ζ = 0 and from Equations (38) and (109), it follows that ζ3 = 0
and ς = a, and from solutions (112) and (114) it was determined:

Θ∗(0+, τ) = Θ∗(0−, τ) ∼=
1

(ε2 + ε3)

{
2
√

τ

π
−
(

1
c
− a
)
[1− ec2τerfc(c

√
τ)]

}
, τ >> 1, (115)

In a similar way, considering that on the interface ζ = 1 we have ζ2 = 0 and ς = 0,
from solutions (112) and (113) it was found:

Θ∗(1+, τ) = Θ∗(1−, τ) ∼=
1

(ε2 + ε3)

{
2
√

τ

π
− 1

c
[1− ec2τerfc(c

√
τ)]

}
, τ >> 1. (116)

Linearly descending temporal profile of specific friction power. The exact solutions (59)–(61)
presented above were obtained with the specific friction power q0 remaining constant over
time. Whereas, for modeling the frictional heating process in disc brake systems, the time
profile of the specific friction power is most often used in the form [37]:

q(t) = q0q∗(t), q∗(t) = 1− t t−1
s , 0 ≤ t ≤ ts, τ >> 1, (117)

where ts is the moment of stopping the vehicle, and thus the final moment of the heating
process. The dimensionless temperature rise Θ̂∗(ζ, τ), corresponding to the specific friction
power (117) was found based on the Duhamel’s theorem [38,39]:

Θ̂∗(ζ, τ) =
∂

∂τ

τ∫
0

q∗(τ − s)Θ∗(ζ, s)ds, ζ ≥ 0, 0 ≤ τ ≤ τs, (118)

where Θ∗(ζ, τ) is dimensionless temperature increase (59)–(61), and function q∗(τ) has the
following form:

q∗(τ) = 1− τ τ−1
s , 0 ≤ τ ≤ τs, τs = k1tsd−2. (119)
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Substituting solutions (59)–(61) and function q∗(τ) (119) as the integrand in the right
side of Equation (118), after performing the integration according to the methodology
from [29], it was found:

Θ∗(ζ, τ) = 2
√

τ

π

 P(τ)
ε2 + ε3

+
2
π

e−0.5γ∗ζ
∞∫

0

Φ1(ζ, x)
xΨ(x)

Q(τ, x)dx

, 0 ≤ ζ ≤ 1, 0 ≤ τ ≤ τs, (120)

Θ∗(ζ, τ) = 2
√

τ

π

 P(τ)
ε2 + ε3

− 2γ∗

π2

∞∫
0

Φ2(ζ, x)
x2Ψ(x)

Q(τ, x)dx

, ζ ≥ 1, 0 ≤ τ ≤ τs, (121)

Θ∗(ζ, τ) = 2
√

τ

π

 P(τ)
ε2 + ε3

+
2
π

∞∫
0

Φ3(ζ, x)
xΨ(x)

Q(τ, x)dx

, ζ ≤ 0, 0 ≤ τ ≤ τs, (122)

where

P(τ) = 1− 2τ

3τs
, Q(τ, x) =

(
1 +

1
x2τs

)
F(x
√

τ)− 2√
πx2τs

, (123)

and functions Φk(ζ, x), k = 1, 2, 3 are determined from (49)–(51) and (53)–(58).

6. Numerical Analysis

Calculations were carried out for a friction pair consisting of two half-spaces; one
has a two-component FGM coating applied on the substrate, and the other (counterbody)
slides on the working surface of the FGC with constant or linearly decreasing velocity. The
base and core of the FGM are, respectively, zirconium dioxide ZrO2 and titanium alloy
Ti-6Al-4V. The substrate is ChNMKh gray cast iron, and the counterbody is cermet FMC-11.
The properties of these materials, at initial temperature T0 = 20◦C, are given in Table 1.

Table 1. Materials properties [23,29].

Material Thermal Conductivity
Wm−1K−1

Specific Heat
J kg−1K−1

Density
kg m−3

ZrO2 K1,1 = 1.94 c1,1 = 452.83 ρ1,1 = 6102.16
Ti-6Al-4V K1,2 = 6.87 c1,2 = 538.08 ρ1,2 = 4431.79
ChNMKh K2 = 52.17 c2 = 444.6 ρ2 = 7100
FMC-11 K3 = 35.0 c3 = 478.9 ρ3 = 4700

The specific heat and density of the coating material were determined according to
the mixture law, based on the data for ZrO2 and Ti-6Al-4V (Table 1). For equal partici-
pation of the volume fractions of the base and core components, it was established that
c1 = 495.55 J kg−1K−1 and ρ1 = 5266.98kg m−3. The dimensionless gradient parameter
of the FGM and the time of braking were equal to γ∗ = ln(K1,2 K−1

1,1 ) = 1.26 and τs = 1,
respectively.

The results of the calculations for dimensionless temperature rises Θ∗(ζ, τ) (59)–(63)
for constant, and Θ̂∗(ζ, τ) (120)–(123) for linearly decreasing specific power of friction are
presented in Figure 2 (evolutions) and Figure 3 (isotherms). For numerical integration,
the QAGI procedure from the QUADPACK library was implemented [40]. A numerical
analysis was carried out to compare the results obtained for the applied FGC on the
substrate (solid lines) with the corresponding data found for a homogeneous coating made
entirely of zirconium dioxide (dashed lines).
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The spatial-temporal distributions of the dimensionless temperature rises for the 
constant and time-dependent intensity of specific friction power are demonstrated in 
Figure 3. They confirm the result from Figure 2 that the effective absorber of heat gener-
ated by friction on the contact surface is the coating made of the considered 
two-component FGM. It is clearly visible here that it plays the role of a thermal barrier, 
effectively protecting the substrate against overheating. 
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Figure 2. Evolutions of dimensionless temperature rises Θ∗(ζ, τ) (59)–(63) (a,c,e) and Θ̂∗(ζ, τ)

(120)–(123) (b,d,f) for selected values of dimensionless distance from the contact surface ζ in: (a,b)
The coating; (c,d) the substrate; (e,f) the counterbody. Solid lines—FGC, dashed lines—coating made
of ZrO2.
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Figure 3. Isotherms: (a) Θ∗(ζ, τ) (59)–(63); (b) Θ̂∗(ζ, τ) (120)–(123). Solid lines—FGC, dashed lines—
coating made of ZrO2.

The Ti-6Al-4V titanium alloy, with its thermal conductivity 3.5 times greater than
zirconium dioxide ZrO2, effectively dissipates heat from the contact surface. As a result,
the temperature of the FGC is lower compared to that determined using a homogeneous
material (Figure 2a,d). Such a temperature mode changes to the opposite, starting from the
interface (ζ = 1) and further into the substrate (ζ > 1) (Figure 2b,e). The ChNMKh cast iron
used for the disc substrate has significantly (about 7.8 times) higher thermal conductivity
than the Ti-6Al-4V titanium alloy. As a result, the temperature of the substrate at a fixed
distance from the interface during the entire heat generation process is lower in the case of
a homogeneous coating made of zirconium dioxide. In both cases, the level of substrate
temperature is much (by an order of magnitude) lower than the coating temperature level.
The change in the counterbody temperature over time (FMC-11, Figure 2c,f) is quantitatively
and qualitatively similar to the evolution of the coating temperature, shown in Figure 2a,d.
However, there are some features of the temporal profiles of the counterbody temperature
that differ from the corresponding time courses of the coating temperature. Firstly, the
effect of the FGM on the temperature of the counterbody is much lower than in the coating
itself. Finally, the drop in the temperature in the counterbody (pad) with the distance from
the contact surface is much slower than in the coating.

The spatial-temporal distributions of the dimensionless temperature rises for the
constant and time-dependent intensity of specific friction power are demonstrated in
Figure 3. They confirm the result from Figure 2 that the effective absorber of heat generated
by friction on the contact surface is the coating made of the considered two-component
FGM. It is clearly visible here that it plays the role of a thermal barrier, effectively protecting
the substrate against overheating.

The asymptotic solutions for small (102)–(104) and large (112)–(114) values of the
Fourier number τ (11) were an effective tool for estimating the temperature of the consid-
ered system in the case of constant specific friction power. The calculation results presented
in Figure 4 show that the satisfactory convergence of the exact and asymptotic (at small τ)
solutions takes place in the range 0 ≤ τ ≤ 0.5 (Figure 4a). However, it is surprising that
the results obtained using the exact and asymptotic (for large τ) solutions show terrific
agreement in almost the entire range of Fourier number changes (Figure 4b). It is all the
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more valuable due to the fact that asymptotic solutions, unlike exact solutions, do not
require numerical integration.
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Fourier numbers τ for selected values of dimensionless spatial variable ζ.

Based on the Fourier law, dimensionless intensities of heat fluxes for constant specific
power of friction, directed perpendicularly to the contact surface ζ = 0 to the insides of the
FGC and homogeneous counterbody were written in the forms, respectively:

q∗1(τ) = Θ′∗(0+, τ), q∗3(τ) = −K∗3 Θ′∗(0−, τ), τ ≥ 0, (124)

where derivatives were determined from Formulas (78) and (80). Calculations carried out
on the basis of Equation (124) demonstrated that the greater part of the heat generated on
the contact area was absorbed by the cermet pad, which had much better heat conduction
capabilities compared to the zirconium dioxide (Figure 5). At the initial moments of the
heating process, about 80% of the heat is absorbed by the pad, and only 20% by the FGC.
With the elapse of heating time, the amount of heat directed to the pad (coating) decreases
(increases) and, for τ = 1, it is equal to 70% (30%).
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7. Conclusions

An analytical model to determining the temperature field of a three-element friction
system is developed, consisting of a substrate with protective coating deposited on the
surface and a counterbody. The materials of the substrate and counterbody are homoge-
neous, while the coating is made of a functionally gradient material with an exponentially
increasing thermal conductivity coefficient along the thickness. The counterbody slides on
the surface of the coating, as a result of which heat is generated, and the elements of the
system heat up. This type of system is used to simulate the frictional heating process in the
pair, i.e., the pad (counterbody) and the coated disc (substrate with a coating). The crucial
element of the model is the boundary value problem of heat conduction, considering the
generation of heat due to friction at a constant and linearly decreasing specific friction
power. Exact and asymptotic solutions of such a problem were obtained. Based on the
achieved solutions, a numerical analysis was carried out for a cermet (FMK-11) brake
pad sliding on the surface of the FGC (ZrO2–Ti-6Al-4V) perfectly connected to a cast iron
(ChNMKh) disc. It is concluded that:

1. Application of the selected functionally graded coating on the friction surfaces of the
disc is an effective tool to lower the maximum temperature of the system.

2. The temporal profile of the specific friction power has a significant influence on
the spatial-temporal distribution of the isotherms in the coating and the pad. The
temperature of the disc is by an order of magnitude lower than the temperatures of
the coating and the pad.

3. Asymptotic solutions for small and large values of the Fourier number can be used
for quick estimation of temperature with high accuracy for all elements of the system.

4. The higher part of the heat (≈3/4) generated on the contact surface due to friction is
absorbed by the pad, and the smaller part (≈1/4) is absorbed by the FGC.

It should be noted that protective coatings made of functionally graded materials are
applied in braking systems for the following reasons: On the one hand, to reduce wear on
the friction surface of the disc it is desirable to use a component with high wear resistance
in the FGC (in the analyzed case—ZrO2). On the other hand, these materials usually
have a low capacity to dissipate the heat generated by friction on the contact surface. The
problem of lowering the possibly high temperature on the friction surface is solved by
simultaneously using in the FGC a component with a much higher thermal conductivity
coefficient than the previous one (in our case, Ti-6Al-4V). The numerical analysis carried
out on the basis of the proposed analytical model showed that the last task of the FGC of
the selected type is completely solved.

In the future, authors intend to expand research on the heating process in brakes with
a functionally graded friction element and to develop models to investigate the influence
of imperfect thermal contact of friction, convective cooling with the environment, as well
as the finite thickness of friction pair elements.
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Nomenclature

c Specific heat (J kg−1K−1)
d Thickness of coating (m)
f Coefficient of friction (dimensionless)
Imp Imaginary part of a complex Laplace parameter
In(·) Modified Bessel functions of the nth order of the first kind
Jn(·) Bessel functions of the nth order of the first kind
Kn(·) Modified Bessel functions of the nth order of the second kind
k Thermal diffusivity (m2s−1)
K Thermal conductivity (W m−1K−1)
p Parameter of the Laplace integral transform (dimensionless)
p0 Nominal pressure on the contact surface (Pa)
Rep Real part of a complex Laplace parameter
q Specific power of friction (W m−2)
q0 Nominal value of the specific friction power (W m−2)
t Time (s)
ts Stop moment of the process (s)
T Temperature (◦C)
T0 Initial temperature (◦C)
V0 Sliding velocity (m s−1)
Yn(·) Bessel functions of the nth order of the second kind
x Spatial coordinate in tangential direction (m)
y Spatial coordinate in radial direction (m)
z Spatial coordinate in axial direction (m)
γ∗ Gradient parameter of FGM
Λ Temperature rise scaling factor (◦C)
ε Dimensionless coefficient of thermal activity
Θ Temperature rise (◦C)
Θ∗ Dimensionless temperature rise
ρ Density (kg m−3)
τ Dimensionless time
τs Dimensionless stop time
ζ Dimensionless spatial coordinate in axial direction
subscript l Number of the element of the system

References
1. Li, D.; Wang, S.; Fang, X.; Guo, Y.; Hu, N.; Zhang, D. Research progress of temperature field calculation of disc brake braking

interface based on numerical analysis. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2022, 09544070221128288. [CrossRef]
2. Gerlici, J.; Gorbunov, M.; Kravchenko, K.; Prosvirova, O.; Lack, T. Noise and temperature reduction in the contact of tribological

elements during braking. MATEC Web Conf. Mach. Model. Simul. 2018, 157, 02010. [CrossRef]
3. Borawski, A.; Szpica, D.; Mieczkowski, G.; Borawska, E.; Awad, M.M.; Shalaby, R.M.; Sallah, M. Theoretical Analysis of the

Motorcycle Front Brake Heating Process during High Initial Speed Emergency Braking. J. Appl. Comput. Mech. 2020, 6, 1431–1437.
[CrossRef]
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