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Abstract: Inspired by classical graph neural networks, we discuss a novel quantum graph neural
network (QGNN) model to predict the chemical and physical properties of molecules and materials.
QGNNs were investigated to predict the energy gap between the highest occupied and lowest
unoccupied molecular orbitals of small organic molecules. The models utilize the equivariantly
diagonalizable unitary quantum graph circuit (EDU-QGC) framework to allow discrete link features
and minimize quantum circuit embedding. The results show QGNNs can achieve lower test loss
compared to classical models if a similar number of trainable variables are used, and converge faster
in training. This paper also provides a review of classical graph neural network models for materials
research and various QGNNs.
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1. Introduction

The idea to use quantum computers to model physical systems was one of the driving
forces of the early development of quantum computers. A prominent quote that enlightens
this point comes from the physicist Richard Feynman [1]:

. . . nature isn’t classical, dammit, and if you want to make a simulation of nature,
you’d better make it quantum mechanical.

This is still conjectured until now, as many quantum algorithms for quantum simula-
tion are actively being developed and optimized [2,3]. There are quantum algorithms for
calculating ground states, excited states, and the time evolution of molecules and crystals.
These algorithms can be divided into pure quantum algorithms such as quantum phase
estimation [4] and classical–quantum hybrid algorithms such as the variational quantum
eigensolver [5].

Classical machine learning including deep learning has been recently used for predict-
ing the properties of molecules and materials [6,7]. These studies often used datasets of ab
initio calculation results as training data to train the models. The trained models could then
be used to perform a quick initial screening of materials to find candidates with desired
properties. Currently, one of the promising frameworks used for this task is graph neural
networks, since structural information can be represented in the form of graph data.

On the other hand, molecule and crystal property prediction by machine learning
is still an under-explored research topic in quantum computing. There have been many
theoretical studies investigating the possible advantages that quantum machine learning
could have over classical machine learning [8–14], and hence, using quantum machine
learning for material design can be an interesting approach.

This paper first reviews classical graph neural network methodologies proposed for
the property prediction of molecules and solids. Next, brief introductions to variational
quantum machine learning, current quantum graph neural network (QGNN) models,
and their applications are presented. Lastly, QGNN models based on the equivariantly
diagonalizable unitary quantum graph circuit (EDU-QGC) framework [15] are compared
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with classical and classical–quantum hybrid models. The novelty of this paper can be found
in the QGNN consisting of EDU-QGCs that models atomic bonds in a molecule as discrete
link features using a specific parameterization method and EDU ordering, which is used
for molecular property prediction.

2. Related Works
2.1. Classical Graph Neural Networks for Materials Research

A graph is a mathematical structure that consists of nodes (or vertices) and links (or
edges), where a link represents the connection between a pair of nodes. While there are
many different types of machine learning problems on graphs, in chemistry and materials
applications, the most-common task is the regression of graph-wide properties or the clas-
sification of graphs. These tasks require that the model output the same value regardless of
the order in which the links or the nodes are taken in the graph network model description.
In the case where the 3D structure of the graph is given, various symmetries such as rota-
tional or translational symmetries can be inherent in the problem. Building these inductive
biases into the machine learning model is an important factor in determining the model’s
performance. Graph neural networks are neural networks built specifically for processing
graph data.

In order to discuss the details of the models, the message-passing neural network
(MPNN) framework will be introduced [16]. The MPNN framework encompasses most
models discussed in this section and is even relevant in understanding some quantum
models. MPNNs assume an input graph G with nodes N, links E, and optional features of
these nodes {~xv} and links {~evw}. There are two phases in the forward pass: the message-
passing phase and the readout phase. In the message-passing phase, the hidden feature
vector of each node ht

v is updated using message mt+1
v , as written in Equation (1). The

message is calculated by aggregating individual message function values from neighboring
nodes (Equation (2)). This aggregation (aggr) is invariant about the permutation of nodes,
such as the summation of all the messages or taking the maximum.

ht+1
v = Ut(ht

v, mt+1
v ) (1)

mt+1
v = aggr

w∈N (v)
Mt(ht

v, ht
w, evw) (2)

After T times of message passing, the final node features are passed to a readout function,
which calculates the outputs in a node-permutation-invariant manner:

y = R({hT
v |v ∈ N}). (3)

The updating functions {Ut}, message calculation functions {Mt}, and the readout function
R can be trained. A diagram summarizing the MPNN is shown in Figure 1.

In the case of molecules, it is intuitive to represent them as atomistic graphs (atoms as
nodes and bonds as links). For instance, Gilmer et al. (2017) [16] used an MPNN with gated
graph-neural-network (GGNN)-type message passing [17] and a set-to-set [18] readout
function for various property regression tasks on atomistic graphs. Several variants of this
model exist, such as a directed MPNN (2019) [19] model, which uses message passing of
directional link features.
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(a) Message Passing (b) Readout

Figure 1. The message-passing neural network (MPNN) framework. (a) One message passing step
for Node 0. The blue section indicates the process of the calculation of individual messages; the
green arrows indicate the aggregation; the yellow arrow represents the node feature update. (b) The
readout phase.

Some models use the 3D positional information of each atom for predicting some
quantum properties of molecules. SchNet (2018) [20] takes the 3D positions and nuclear
charges of each atom in a molecule as the input. The atomic features are updated using
filters determined by distances between other atoms. The filter-generating network is also
trainable. Recent models have begun to take angle and torsion into account. DimeNet
(2020) [21] uses an aggregation of directional embeddings to represent atoms. The update
function for the directional embeddings used a radial basis function representation of the
interatomic distance and a 2D representation of the angle. The ALIGNN (2021) [22] uses an
atomistic graph (atoms as nodes and bonds as links) along with an atomistic line graph
(bonds as links and pairs of bonds as links) input. Graph convolution was applied on each
graph in an alternating fashion. SphereNet (2022) [23] uses update functions that explicitly
take the torsion and angle information as the input. Note that many of these models were
used for molecular dynamics prediction and crystal property prediction.

In the case of crystals, representing the input material as a graph is a nontrivial task
because of the periodic structure. The CGCNN (2018) [24] uses an undirected multigraph
to represent the crystal. Nodes are atoms, and links are determined by a threshold dis-
tance and whether or not two atoms share a Voronoi face. This model was used for the
prediction of eight properties of crystals and was able to demonstrate potential uses in
materials design by observing the characteristics of different chemical environments. This
method of representing crystals as a graph was improved in the following studies. MEGNet
(2019) [25] aims to provide a unified framework for both molecules and crystals. It added a
global feature to the MPNN framework along with node, link, and global feature updates.
Crystal graphs were created using connectivity determined by a simple threshold distance.
MEGNet was able to outperform SchNet and the CGCNN on the formation energy, band
gap, shear modulus, and bulk modulus prediction tasks. The iCGCNN (2020) [26] uses
Voronoi neighbors for determining the links and added explicit three-body interactions
and link feature updates in the message passing. It outperformed the CGCNN in pre-
dicting the stability of inorganic materials and in discovering TrCr2Si2-type compounds.
Schmidt et al. (2021) [27] used a form of graph attention network [28] on crystal graphs
where the connectivity is determined by the five nearest neighbors. This was used to
predict the distance to the convex hull on a custom dataset and was used to predict stable
quaternary perovskites. The GeoCGNN (2021) [29] uses the 12 nearest atoms within an
8 Angstrom radius as the connection and creates a directed multigraph with directional
information encoded into the link features. This allowed for the GeoCGNN to incorporate
3D structural information into the model and outperform the CGCNN, MEGNet, and
iCGCNN in predicting formation energy per atom and band gap.
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Other structures than molecules and crystals are also studied with graph neural
networks. The effective magnetostriction of polycrystalline materials was predicted using
graph neural networks [30]. By training on crystals with vacancies or grain boundaries
and their atomic properties, stress fields and the energy distribution were predicted for
unseen crystals [31]. Polymer property prediction is also an application of graph neural
networks [32–34]. The classification of amorphous materials into either liquid or glass is
also possible [35].

Generative models that output molecules and materials with desired properties can
be an alternative to screening. Generative adversarial networks (GANs) [36] and varia-
tional autoencoders (VAEs) [37] are the most-widely studied models for chemistry and
materials applications. The MolGAN (2018) [38] is a GAN with a generator that creates the
adjacency matrix and node features for a molecular graph, a discriminator, which learns
to classify whether or not a molecule is generated or not, and a reward network, which
steers the model to create molecules with certain properties such as solubility in water. The
discriminator and reward networks are graph neural networks. The CGVAE (2018) [39]
uses an iterative method to generate molecular graphs. Node features are updated using
a graph neural network, while links and their parameters are added by sampling from a
learnable distribution, which takes the features of two nodes, their graph distance, initial
node features, and node features at that iteration.

The various problems and models discussed in this subsection are summarized in
Figure 2. For more information, the authors suggest a recent review article by Reiser et al.
(2022) [6] and another review by Choudhary et al. (2022) [7].

Graph neural
networks for

materials research

Systems

Molecules

Crystals

Polymers

Etc.

Models

MPNNs

Graph
attention
networks

GANs

VAEs

Tasks

Property
regression

Classification

Graph
generation

Figure 2. Overview of different systems, models, and tasks discussed in this work for graph neural
network methodologies in materials research.

2.2. Variational Quantum Machine Learning

Quantum machine learning is the study of applying quantum computing to machine
learning problems. There are many different groups of algorithms in this field such as
quantum basic linear algebra subroutine-based algorithms [40–43] and quantum kernel esti-
mation [44,45], but this section will focus on variational quantum machine learning [44–46],
which is suitable for the near and midterm future applications with noisy intermediate-scale
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quantum (NISQ) computers [47]. This can be seen as a quantum analog to deep learning,
and it is among some of the most NISQ-friendly algorithms.

Variational quantum algorithms are hybrid algorithms where a quantum computer
and a classical computer work together in an iterative fashion to solve a problem [48]. A
quantum computer performs calculations with initial state preparation, time evolution, and
measurement. The quantum computer can execute a parameterized quantum circuit (PQC)
in a way that quantum gates for a quantum algorithm, represented as a quantum circuit
diagram, can rotate a quantum state according to a set of given classical parameters. Such a
PQC can map classical input data samples to output predictions or loss function values.
The parts of the circuit that are trainable are often called the quantum neural network
(QNN), while the sections that take data inputs are called the quantum encoding circuit.
A classical computer determines how to update the parameter values according to the
outputs and an optimization algorithm. This feedback loop is repeated until the objective
function value is optimized. In the case of machine learning applications, the quantum
circuit acts like a parameterized model. A circuit diagram showing an example quantum
circuit for a variational QGNN is given in Figure 3.

n|0〉⊗n U(~x) V(~θ) 〈M〉

Figure 3. Quantum variational model circuit. U is a quantum encoding circuit that maps the input
data into a quantum state, while V is the quantum neural network (QNN) that can be trained. The
model output is the expectation value of an observable M.

When working with classical data, it is important to be able to efficiently represent
the input as a quantum state. A key idea in variational quantum machine learning that
allows this is quantum encoding. The classical data are input as rotation angles in quantum
gates to prepare a state that represents the data. A diagram summarizing this concept is
shown in Figure 4. This scheme allows for the Hilbert space to be used as a feature space.
Interestingly, the quantum encoding method affects the types of functions the quantum
machine learning model can learn [13]. Repeating the encoding circuit throughout the
variational model is called re-uploading and can help increase the expressibility of the
model [13]. It has been also shown that one could construct a learning problem where
one would be able to solve the task with one qubit in the re-uploading case, while a
model without re-uploading would require a number of qubits affected by the input data
dimension [49]. Some works even focused on framing supervised learning as training
the encoding and using an optimal measurement for separating the two ensembles of
states [50].
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as the rotation angles of rotation Pauli X (RX) gates, creating a quantum state.

Just like classical neural networks, QNNs have different architecture designs depend-
ing on the structure of the gates. Some examples include the quantum convolutional neural
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network [51], the quantum graph neural network [15,52–54], and the dissipative quantum
neural network [55]. These architecture designs are explained further in Figure 5. The
models are also divided by the task that they are designed for. There are quantum autoen-
coders [56], quantum classifiers [44], quantum generative adversarial networks [57,58], and
so on.

Version June 3, 2023 submitted to Materials 6 of 26
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(a) Quantum Graph
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(b) Quantum Convolutional
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(c) Dissipative Quantum
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Figure 5. Examples of different QNN architecture designs. Each empty gate has trainable parameters.
(a) The QGNN is used for processing graph-structured data. The circuit structure is dependent on
the input graph. (b) The quantum convolutional neural network has a convolution operator (white)
and a pooling operator (gray). (c) The dissipative quantum neural network represents each neuron as
a group of qubits, and unitary operators transform one layer to another. This example is an input
layer of one perceptron (the top group of qubits) being mapped to a layer of two perceptrons (the
bottom two groups of qubits).
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Figure 5. Examples of different QNN architecture designs. Each empty gate has trainable parameters.
(a) The quantum graph neural network (QGNN) is used for processing graph-structured data. The
circuit structure is dependent on the input graph. (b) The quantum convolutional neural network has
a convolution operator (white) and a pooling operator (gray). (c) The dissipative quantum neural
network represents each neuron as a group of qubits, and unitary operators transform one layer to
another. This example is an input layer of one perceptron (the top group of qubits) being mapped to
a layer of two perceptrons (the bottom two groups of qubits).

Training variational QNNs is often limited by the “barren plateau” phenomenon [59].
Under certain conditions, the training landscape of the variational parameters becomes
flat, which is characterized by an exponentially vanishing variance of the gradient. Unlike
classical neural networks where the gradient vanishes as the number of layers grows
larger [60], QNNs face this problem in general when the number of qubits increases.
This prohibits the training of quantum models designed for high-dimensional data, even
when gradient-free optimization algorithms are used [61]. Barren plateaus are affected by
quantum noise [62], as well as the design of the cost function [63]. It is also dependent on the
quantum circuit architecture: for example, the quantum convolutional neural network [64]
and permutation equivariant quantum circuits [65] do not suffer from barren plateaus,
while dissipative quantum neural networks show barren plateaus [66]. Different training
and initialization methods have been suggested to solve this problem [67–69].

An interesting variant of QNNs is the hybrid classical–quantum neural network [54,70–74].
Since one can calculate gradients for the QNN layers [75–77], it is possible to create a neural
network with classical and quantum layers. Quantum encoding is used to turn classical
data into quantum states, and measurement is used to turn quantum states into classical
data. This scheme is expected to improve QNNs. For instance, it is often difficult for
QNNs to work with high-dimensional data since NISQ computers are limited in their qubit
numbers. Using a hybrid classical–quantum neural network can help alleviate this problem
by allowing the classical neural network to reduce the data dimension for the QNN layers.

Whether or not variational quantum machine learning using NISQ machines will
show useful advantages over classical machine learning and how this advantage will be
quantified are still open questions. Nevertheless, there have been many studies aiming to
find conditions and situations where quantum machine learning is superior to classical
machine learning.

Sample complexity is a candidate for quantum advantage. When trying to learn a
unitary in a supervised manner, one may be able to surpass the classical no-free-lunch
theorem by using entangled input states [8]. In some tasks for learning properties or
outcomes of quantum states and processes, a model that has access to a quantum memory
may be able to achieve low prediction error with exponentially fewer copies/access of the
state/process compared to classical models [9,10].
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The generalization error of QNNs is determined by the training set size and number
of trainable parameters. Therefore, a task where a QNN with a relatively small number
of trainable parameters and a classical model achieve similar training error may show
quantum advantage [11].

Quantum neural networks were shown to be expressive and trained with fewer
iterations compared to classical neural networks [12]. In fact, it can become a universal
function approximator if the encoding allows for a wide spectrum [13]. PQCs as generative
models also possessed better expressivity compared to classical models [14].

2.3. Quantum Graph Neural Networks

There have been several proposals for quantum variational machine learning models for
graph-structured data. Some of these works are summarized below in chronological order.

Verdon et al. (2019) [52] proposed a QGNN whose rotation-generating Hamiltonian
operators have the topology of the problem graph. This means that the state of each node
is represented in a Hilbert space, and there are node-local terms along with interactions
between nodes connected with links. More specifically, for an input graph with nodes V
and links E , a single layer of this QGNN would be made up of operators that can be written
as Equation (4).

e−iĤ(θ,φ), Ĥ(θ, φ) = ∑
(j,k)∈E

∑
r∈Ijk

θrjkÔr
j ⊗ P̂r

k + ∑
v∈V

∑
r∈Jv

φrvR̂v
j (4)

Ô, P̂, R̂ are operators acting on the node designated in the subscript, while θ and φ are
trainable variables. Ijk(Jv) are index sets of the corresponding link (nodes), which allows
for multiple Hamiltonian terms per link (node). Depending on the coefficients of the
Hamiltonian terms, models with various properties can be created such as the quantum
graph recurrent neural network and the quantum graph convolutional neural network.
These models were used for various toy problems that included Hamiltonian dynamics
learning and graph clustering.

Beer et al. (2021) [53] first defined graph-structured quantum data. Given a graph,
each node corresponds to a quantum state, and there is a link between two quantum states
if they are within a certain information theoretical distance of each other. Then, one can
define a supervised learning scenario where each node should be mapped to a certain
labeled quantum state. This work provides loss function designs and training methods for
this task using dissipative quantum neural networks.

Zheng et al. (2021) [78] created a model with state preparation, quantum graph
convolution, quantum pooling, and quantum measurements. During state preparation,
the node features are encoded into a quantum register per node, and the connectivity
is encoded as |0〉 or |1〉 on the node-pair-representing qubits. The convolution is then
represented as controlled two-node unitaries and the pooling as measurement-conditioned
unitary operations on the node qubits. The remaining qubits are measured for the model
output value. This was used for the classification of handwritten digits.

Tüysüz et al. (2021) [54] proposed a hybrid classical–quantum graph neural network.
Here, the link and node features of an input graph are updated using link and node
networks like a classical graph neural network. However, in this model, a QNN layer is
used in between classical fully connected layers to create the link and node networks. This
model was applied to the task of particle track reconstruction at the Large Hadron Collider
and showed similar results with classical models.

Mernyei et al. (2022) [15] used the concept of equivariance taken from geometric
machine learning to create equivariant quantum graph circuits (EQGCs). Given input
graph data made up of a tuple of nodes, links, and node features, some fixed number
of qubits are assigned to each node. Next, the node features are encoded into quantum
states by applying a parameterized unitary onto the corresponding qubits. Next, a node-
permutation-equivariant quantum circuit is applied, followed by a node-permutation-
invariant measurement. Equivariance to permutation means that the permutation can
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commute with the quantum circuit. The node-permutation-invariant measurement is
simple to design, such as the average of the expectation values of a node-local observable
over all nodes. This framework can be visualized as the circuit in Figure 6.

...
...

n

n

n

|0〉⊗n U(~x1)

EQGC(A,~θ) 7→ 〈M〉
|0〉⊗n U(~x2)

|0〉⊗n U( ~x|V|)

Figure 6. The equivariant quantum graph circuit (EQGC) framework. Given an input graph with
nodes V, adjacency matrix A, and node features {~xi}i∈V , the circuit drawn above is used. The EQGC
is equivariant on the permutation of nodes and is trainable, while the measurement is invariant on
the permutation of nodes.

There are two main ways of constructing an EQGC suggested in the original paper.
One is the equivariant Hamiltonian quantum graph circuit (EHQGC), where the QNN is
made up of unitaries with rotation-generating Hamiltonian operators that have the same
topology as the input graph. Note that this is similar to Verdon et al.’s proposition for
a QGNN.

Another is the equivariantly diagonalizable unitary quantum graph circuit (EDU-
QGC). EDU-QGCs are made up of node layers and link layers. Each node layer is made up
of a node-local unitary operator that acts on all the nodes. Each link layer is made up of
equivariantly diagonalizable unitaries (EDUs) acting between two nodes connected by a
link. An EDU is defined as a unitary acting on two nodes that can be decomposed in the
form of Equation (5).

EDU = (V† ⊗V†)D(V ⊗V) (5)

Here, the unitary operator V acts on one node, while D is a diagonal unitary that acts on
two nodes. Since the EDU commutes with the SWAP operator and a copy of itself acting
on other qubits, the link layer is equivariant on the permutation of the nodes. Note that
EDU-QGCs can be represented as EHQGCs. There are also some expressibility results
about EDU-QGCs. EDU-QGCs can approximate any real-valued function over bounded
graphs and can pass the 1-WL test, which deterministic classical MPNNs cannot pass [79].
Examples of the two EQGC methodologies are given in Figure 7.

...
...exp

[
−i(∑i∈V Hi(~θ) + ∑(j,k)∈E H′jk(~φ))

]

N(~θ)

EDU(~φ)

N(~θ)

EDU(~φ)

N(~θ)

(a) EHQGC (b) EDU-QGC

Figure 7. Examples of two different EQGC implementation methods. (a) is an example of the
equivariant Hamiltonian quantum graph circuit (EHQGC), and (b) is an example of the equivariantly
diagonalizable unitary quantum graph circuit (EDU-QGC).
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3. Methods
3.1. Data Preprocessing Methods

The QM9 dataset was used to train the QGNN [80,81]. This dataset contains organic
molecules with up to 9 non-hydrogen atoms, and their properties were calculated using
DFT. The molecules included in the dataset ranged from the simplest being methane to more
complicated molecules with substructures such as aromatic rings, chain-like structures,
and other 3D structures. Some examples are shown in Figure 8. A simplified version of
the preprocessing method from Gilmer et al. [16] was used to turn these raw data into
graph-structured data. To summarize the preprocessing method, all non-hydrogen atoms
were chosen to be nodes, and the bonds between them were the links. Table 1 shows the
features that were extracted. Extraction was performed by using RDKit [82] to analyze
the given SMILES representation of the molecule. Note that this resulted in 3D structural
information being lost. However, there are two reasons why this method was chosen.
First, the purpose of this experiment was to create and iterate upon a simple working
model. Second, when given a molecule with which to perform inference, the 3D structural
information may not be known beforehand. This is because often determining the 3D
structure of a molecule is a difficult task in itself.

Figure 8. Examples of molecules in the QM9 dataset. The white atoms are hydrogen; the grey atoms
are carbon; the red atoms are oxygen; the blue atoms are nitrogen. Visualization was achieved with
UCSF Chimera [83].

Table 1. Node features and link features in the processed QM9 dataset.

Feature Explanation→ Data Type

Atomic Number C/N/O/F→ Integer
Nodes Number of Bonded Hs 0~4→ Integer

→ Non-Hydrogen Atoms Aromaticity True/False→ Boolean
Hybridization sp, sp2, sp3 → Integer

Links
→ Bonds Bond Type Single/Aromatic/Double/Triple

→ Integer

One method for enhancing the molecular graph is adding a master node. The master
node does not represent an atom, but is connected to all other nodes. The node and link
features related to the master node are different from all other node or link features. In the
QGNN, this translates into a unique initial quantum state for the master node and separate
trainable parameters for the node operator and EDUs. This preprocessing method was
used by Gilmer et al. [16] to model long-range interactions between atoms.

3.2. Quantum Graph Network Model Design

The design of the EDU-QGC model is divided into 3 sections: the quantum encoding
of node features, the EDU-QGC, and the readout function. The various design choices for
each section are explained in the following paragraphs. In the text, an RP gate, where P is a
Pauli word, is a unitary gate with a single parameter θ and is expressed as exp{−iθP/2}.

3.2.1. Quantum Encoding

One qubit was assigned to each node, and encoding was performed with an RY
gate followed by an RZ gate. The initial qubit state was determined by the node feature
values. Three different encoding methods with three different input features, detailed in
Table 2, were tested in this experiment. For the case of the (Atomic Number) encoding, the
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4 possible qubit states were separated as far as possible from each other, resulting in them
being the vertices of a tetrahedron inscribed in the Bloch sphere. For the (Atomic Number
and Number of Hydrogens) encoding, each feature was assigned to either an RY or RZ
gate, and the possible angles were evenly spaced in [0, 2π]. This same methodology was
used for the (Atomic Number, Aromaticity, and Hybridization) encoding, except that two
features (Aromaticity and Hybridization) were used to determine the RZ rotation angle.

Table 2. Quantum encoding methods. z is the atomic number; nh is the number of bonded hydrogen
atoms; a is the aromaticity as True(1)/False(0); h is the hybridization type (sp: 1, sp2: 2, sp3: 3).

Atomic Number
Atomic Number and

Number of
Hydrogens

Atomic Number,
Aromaticity, and

Hybridization

RY Rotation Angle
z = 4→ 0,

z = 5, 6, 7→ cos(−1/3)
(2z−7)π

4
(2z−7)π

4

RZ Rotation Angle
z = 4, 5→ 0,

z = 6→ 2π/3,
z = 7→ −2π/3

2πnh
5

(−1)a(2h−1)π
6

3.2.2. EDU-QGC

The EDU-QGC design needs to be different from the original suggested architecture
in order to process link features. Since EDUs represent links, the EDU was chosen to be
parameterized by trainable variables that represent a possible link feature. To be more
specific, the diagonal unitary in the EDU was parameterized by a trainable variable that
was different for each layer, while the node-local unitary in the EDU was parameterized by
trainable variables that were determined by the bond order. Thus, even if the bond order
was different, the EDUs inside the same layer would share the diagonal unitary’s rotation
angle while the node-local unitaries would be different. The EDU architectures used in this
experiment are shown in Figure 9. The node-local unitary used in the node layer was the
arbitrary single-qubit unitary with 3 trainable parameters in the case of the default EDU
and the RY gate in the case of the simple EDU. RZZ was used as the diagonal unitary since
the input graph was an undirected graph. Thus, it is natural to use a gate that is unaffected
when the two connected nodes are swapped.

RZ RX
RZZ

RX RZ

RZ RX RX RZ

RX
RZZ

RX

RX RX

(a) Default EDU (b) Simple EDU

Figure 9. The equivariantly diagonalizable unitary (EDU) circuit design. The single qubit gates are
parameterized with trainable link variables, while the diagonal two-qubit gate is parameterized
with a trainable parameter dependent on the layer. (a) The default EDU was used throughout the
experiment. If not otherwise specified, this is the EDU that was used. (b) A simpler EDU was used to
test the effect of the expressibility of the EDU on the model performance.

A naive use of this parameterization scheme results in a breaking of the node permu-
tation equivariance. This is because EDUs with different parameter values will generally
not commute with each other. In order to solve this issue, an ordering of the EDUs was
enforced. The EDUs representing the same link feature would be applied together, while
the order of the link features would be fixed. In this experiment, the following order of
the bonds was enforced: single bond→ aromatic bond→ double bond→ triple bond. An
example of an EDU-QGC with bond information is shown in Figure 10.
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Cq1

Cq2

Cq0 Nq3

Oq4 =⇒

N(~θl
node)

q0

E(~θsingle,~θl
link)

N(~θl
node)

q1

E(~θsingle,~θl
link) E(~θdouble,~θl

link)
N(~θl

node)
q2

N(~θl
node)

q3

E(~θsingle,~θl
link)

N(~θl
node)

q4

Figure 10. An example of a bond-information-encoding EDU-QGC layer. The input molecule is
drawn on the left without its hydrogen atoms. The superscripts are the assigned qubit indices.
The circuit on the right shows one EDU-QGC layer. N and E are node-local unitaries and EDUs,
respectively. ~θl

node and~θl
link are trainable parameters that depend on the layer number l, while~θsingle

and ~θdouble are trainable variables that depend on the bond order. Note that the single bonds are
applied first, then the double bond.

This experiment used two different types of variational circuits. One has simple
repetitions of the EDU-QGC layer, while the other uses a re-uploading model [13]. When
there is no explicit mention of re-uploading, the QGNN will use a simple repetition of the
circuit architecture. Re-uploading repeats the quantum encoding after every EDU-QGC
layer. This has been shown theoretically to improve the expressibility of the model.

3.2.3. Readout Function

The readout function is a measurement that is invariant about the permutation of the
qubits. Two readout functions were tested in this experiment. The readout function given
in Equation (6) is called the local readout function, as it is made up of node-local terms.

r0 +
r1

|V| ∑
v∈V
〈Zv〉 (6)

The readout function represented as Equation (7) is called the global readout function,
since there is a term that acts on all nodes.

r0 +
r1

|V| ∑
v∈V
〈Zv〉+ r2

〈
⊗

v∈V
Zv

〉
(7)

The Zi operators are the Pauli Z operators acting on qubit i, and the r parameters are all
trainable variables. The r variables are needed since the expectation values are all bounded
between −1 and 1.

3.3. Neural-Network-Assisted Quantum Encoding

The quantum encoding methods used in typical QNNs are quite empirical and ar-
bitrary. We aimed to automate the process of finding the optimal encoding method by
forming a hybrid classical–quantum neural network where the classical neural network
only aids in the encoding process. Explicit node features are input into an artificial neural
network, which outputs rotation angles that are to be used in the quantum encoding step.
This artificial neural network will be called the angle extraction network and is trainable.
We call this model the neural-network-assisted quantum encoding EQGC. A diagram
summarizing this idea is shown in Figure 11. Note that similar ideas were used in previous
works, especially in the context of classical–quantum transfer learning [70] and quantum
few-shot encoding learning [74].
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...
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Figure 11. Neural network-assisted quantum encoding EQGCs. Explicit input features {x⃗} are
transformed into rotation angles {⃗a} for the QGNN to use for encoding using a trainable angle
extraction neural network. In the case of EQGCs, the same angle extraction network should be used
for all nodes.
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Figure 11. Neural network-assisted quantum encoding EQGCs. Explicit input features {~x} are
transformed into rotation angles {~a} for the QGNN to use for encoding using a trainable angle
extraction neural network. In the case of EQGCs, the same angle extraction network should be used
for all nodes.

In order to directly compare with the fixed encoding methods detailed in Table 2,
the (Atomic Number and Number of Hydrogens) input case and the (Atomic Number,
Aromaticity, and Hybridization) input case were tested. Since the features were discrete,
one-hot encoding was used on the features. The angle extraction networks had an output
layer of dimension 2 and one hidden layer of dimension 4. All layers were fully connected.
The activation function between the input and hidden layer was ReLU, and the activation
function between the hidden layer and output layer was 2π × Sigmoid. This was to ensure
that the output was between 0 and 2π. One output element was input into an RY gate and
the other into the following RZ gate.

3.4. Classical Graph Neural Network Models

The training results of the QGNNs should be compared to classical graph neural
network models. However, the current state-of-the-art classical models use different pre-
processing methods, as well as more complicated models with more trainable parameters.
Therefore, in order to isolate the effect of introducing QGNNs to this problem, some custom
classical models were created.

The following conditions were imposed on the classical model. The classical model
was set to have 3 message-passing steps, as the QGNN used up to 3 EDU-QGC layers. The
node feature dimension was also kept to 2 since the quantum network assigned one qubit
to each node. The readout function was the mean of the final layer’s node feature vectors
since the quantum network also used a simple mean.

Two different classical graph neural network layers were used. One was a GGNN-type
convolutional layer [17], which was used on the QM9 dataset with similar preprocessing
methods [16] and in point cloud classification [84]. The update of the node features ~xi was
performed with Equation (8).

~xt+1
i = Φ~xt

i + aggr
j∈N (i)

NN(~eij)~xt
j (8)

NN is a neural network that outputs a matrix when the link feature is input. In the experi-
ment, this network always has one hidden layer of dimension 2. aggr is an aggregation
function, and N (i) is the neighbor of the node i. The addition, mean, and maximum func-
tions were tested for the aggregation function. Another graph neural network layer was
the convolutional layer of a graph convolutional network (GCN) [85], which was chosen
for its simplicity. The link features were used as entries in the input adjacency, matrix and
ReLU was used for the activation between GCN layers. Various models were created by
combining these layers.
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3.5. Training and Evaluation Methods

The entire dataset was randomly reduced to 10,000 training samples, 1000 validation
samples, and 1000 testing samples due to simulation time concerns. The quantum circuits
were simulated using conventional server-class computers. While this is not more efficient
than using quantum hardware, it eliminated the effect of quantum noise and finite shot
error, which will help compare the ideal performance of the various models. All quantum
circuit simulation was achieved with Pennylane [86], and PyTorch [87] was used for the
classical neural network calculations. The classical graph neural networks were calculated
using PyTorch Geometric [88]. During training, a batch size of 128 was used.

Learning was achieved with an Adam optimizer [89] with learning rate 0.01 and
β1 = 0.9, β2 = 0.999. The loss function was the mean-squared error between the model
output and the target value. While the dataset contained many targets, this experiment
focused only on the highest occupied molecular orbital—lowest unoccupied molecular
orbital (HOMO-LUMO) energy gap. The validation loss was calculated every 10 epochs for
150 epochs, and the weights with the lowest validation loss were chosen. In the case of the
classical models, 3 different training runs with different initial parameter values were used
to determine the optimal weights. For the quantum or classical–quantum hybrid models,
only one run was used, and the initial quantum weights were all initialized to 1.

4. Results
4.1. Pure Quantum Graph Neural Network Model Training Results
4.1.1. Quantum Encoding Method Comparison

The training curves of three different QGNNs are shown in Figure 12, and the test
loss values of trained models are summarized in Table 3. The models only differed in the
encoding methods, while the rest of the model used three layers of the EDU-QGC and
the local readout function. Therefore, the number of quantum gates in these models were
the same, and the quantum computational cost was the same. Since the model with the
(Atomic Number and Number of Hydrogens) encoding achieved the lowest test loss, this
was used as the baseline model.
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Figure 12. Training curves of 3-layer pure QGNNs with different encoding strategies.

Table 3. Test loss values of pure QGNNs with different encoding.

Encoding Method
Test MSE
(10−4 Ha2)

Test RMSE
(10−2 Ha)

Test MAE
(10−2 Ha)

Atomic Number 6.3394 2.5178 1.9975
Atomic Number and Number of Hydrogens 5.8806 2.4250 1.8793

Atomic Number, Aromaticity, and Hybridization 7.1288 2.6700 2.0811
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4.1.2. Number of Layers Comparison

QGNNs with (Atomic Number and Number of Hydrogens) encoding and local readout
functions were trained with different numbers of layers. The quantum computational cost
increased proportionally with the number of layers. The resulting test losses are shown in
Table 4 and the training curves in Figure 13. As expected, the model improved with more
layers. This effect was expected to saturate, as the expressibility of QGNNs saturated as
the number of layers increased [90].
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Figure 13. Training curves of pure QGNNs with different numbers of layers.

Table 4. Test loss values of pure QGNNs with different numbers of layers.

Number of Layers
Test MSE
(10−4 Ha2)

Test RMSE
(10−2 Ha)

Test MAE
(10−2 Ha)

1 7.3759 2.7159 2.1400
2 6.5147 2.5524 2.0174
3 5.8806 2.4250 1.8793

4.1.3. Readout Function Comparison

In order to test the effectiveness of the readout functions, two models with (Atomic
Number and Number of Hydrogens) encoding and three layers were trained with different
readout functions. The number of quantum gates was the same for the two models. The
test losses are summarized in Table 5 and the training curve in Figure 14. Note that the
local readout function is a special case of the global readout function (r2 = 0). Therefore,
one could assume that the global readout results should be at least as good as the local
readout results. However, the local readout outperformed the global version. One possible
explanation for this result is that the optimization algorithm is prone to be caught in the
barren plateau problem with the global readout function [63].
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Figure 14. Training curves of QGNNs with different readout functions.
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Table 5. Test loss values of pure QGNNs with different readout functions.

Readout Function
Test MSE
(10−4 Ha2)

Test RMSE
(10−2 Ha)

Test MAE
(10−2 Ha)

Local 5.8806 2.4250 1.8793
Global 6.4033 2.5305 1.9307

4.1.4. EDU-QGC Architecture Comparison

Three layers of the default EDU-QGC and the simple EDU-QGC were trained with
local readout and (Atomic Number and Number of Hydrogens) encoding. Note that the
additional one-qubit operations in the default EDU-QGC can be performed in parallel and
the RZ gates between adjacent bond orders can be combined into a single gate. Therefore,
the default EDU-QGC had 2 f l more single-qubit gate layers than the simple EDU-QGC,
where f is the number of different edge features in the input graph and l is the number
of EDU-QGC layers. The training curves are plotted in Figure 15, and the test losses are
summarized in Table 6. The default EDU-QGC had EDUs and node layers that had higher
expressibility compared to the simple EDU-QGC case. This resulted in a better performance
of the default than that of the simple model.
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Figure 15. Training curves of QGNNs with different EDU-QGC architectures.

Table 6. Test loss values of pure QGNNs with different EDU-QGC architectures.

Model
Test MSE
(10−4 Ha2)

Test RMSE
(10−2 Ha)

Test MAE
(10−2 Ha)

Default 5.8806 2.4250 1.8793
Simple 9.8162 3.1331 2.5045

4.1.5. Other Modifications

Two modifications were also tested, specifically aiming at increasing the model per-
formance. One was the master node preprocessing, and the other was the re-uploading
scheme. The test losses and the training curves are shown in Table 7 and Figure 16, re-
spectively. The impact of the master node showed roughly a 31% improvement over the
baseline, which is quite significant. However, this came at the cost of one extra qubit, about
twice the number of trainable variables, and about twice the number of two-qubit gates.
While the theoretical results showed that the re-uploading model was more powerful than
a model with an encoding circuit at the beginning, the test loss was worse than that of the
baseline, despite using six more single-qubit gate layers than the baseline model.
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Figure 16. Training curves of QGNNs with different modifications for higher expressibility.

Table 7. Test loss values of pure QGNNs with different modifications to the baseline model.

Model
Test MSE
(10−4 Ha2)

Test RMSE
(10−2 Ha)

Test MAE
(10−2 Ha)

Baseline 5.8806 2.4250 1.8793
Baseline and Master Node 4.0372 2.0093 1.5106
Baseline and Re-Uploading 5.9863 2.4467 1.9379

4.2. Neural-Network-Assisted Quantum Encoding Model Training Results

Neural-network-assisted quantum encoding models with two different node feature
inputs were trained. The training curves are drawn in Figure 17, and the test losses are
shown in Table 8. For both input features, the angle extraction network introduced a
significant performance increase and test loss decrease by 9.6% and 30.6%, respectively.
Here, 50 and 46 more training variables were used for the (Atomic Number and Number of
Hydrogens) and (Atomic Number, Aromaticity, and Hybridization) encodings, respectively.
In terms of quantum computational resources, all of the models used the same number
of gates.
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Figure 17. Training curves of neural-network-assisted quantum encoding models and their quantum
counterparts.
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Table 8. Test loss values of neural-network-assisted quantum encoding models and their quantum
counterparts.

Node Features Encoding Method
Test MSE
(10−4 Ha2)

Test RMSE
(10−2 Ha)

Test MAE
(10−2 Ha)

Atomic Number Fixed 5.8806 2.4250 1.8793
and Number of Hydrogens Angle Extraction Network 5.3127 2.3049 1.7846

Atomic Number, Fixed 7.1288 2.6700 2.0811
Aromaticity, and Hybridization Angle Extraction Network 5.4597 2.3366 1.8097

4.3. Classical Graph Neural Network Model Training Results

Three different convolutional layer architecture designs were trained and tested. The
training curves are plotted in Figure 18, and the test losses are given in Table 9. Each
training curve in solid line is the average over three runs with different initial weights,
and the 95% confidence interval is shaded. The large confidence intervals show that the
initial weight values seemed to greatly affect the training results of the classical models.
Only the weights out of all of the runs with the lowest validation loss were used for testing.
Interestingly, the best-performing models had different aggregation functions across the
architectures. Overall, the model performance improved with more trainable parameters.

(a) GGNN-GGNN-GGNN Models (b) GGNN-GGNN-GCN Models (c) GGNN-GCN-GCN Models

Figure 18. Classical model training curves. The solid lines are averages over 3 runs, and the 95%
confidence intervals are also shown. (a) GGNN-GGNN-GGNN model. (b) GGNN-GGNN-GCN
model. (c) GGNN-GCN-GCN model.

Table 9. Test loss values of classical graph neural network models.

Architecture GGNN
Aggregation

Test MSE
(10−4 Ha2)

Test RMSE
(10−2 Ha)

Test MAE
(10−2 Ha)

Addition 6.0449 2.4586 1.9597
GGNN-GGNN-GGNN Mean 5.1052 2.2595 1.7742

Max 5.2289 2.2867 1.8053

Addition 6.6965 2.5878 2.0311
GGNN-GGNN-GCN Mean 6.0202 2.4536 1.9460

Max 7.4732 2.7337 2.1468

Addition 8.1737 2.8590 2.2079
GGNN-GCN-GCN Mean 9.0177 3.0029 2.4088

Max 6.3081 2.5116 2.0143

5. Discussion
5.1. The Proposed Quantum Network Model on Quantum Hardware

The numerical experiments in this study were achieved by simulating the quantum
circuits on conventional classical computers. It is an important issue whether or not our
scheme is feasible to be executed as quantum circuits on near-term quantum hardware.
The novel QGNN models designed in this paper require a number of qubits proportional
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to the number of nodes per graph. They also require high qubit connectivity, since when
the molecular graph is not able to be mapped to the qubit connectivity graph, extra
computational resources such as SWAP gates are required to run the circuit. Trapped ion
quantum computers have all-to-all connection and high gate fidelities, which we consider
to be the best hardware for the quantum network models. Currently, the leading trapped
ion quantum computers provide up to 32 physical qubits, such as by IonQ Forte [91]. The
effect of noise will be likely the limiting factor rather than the number of qubits when
working with the QM9 dataset. Nonetheless, it will be a critical challenge to model a larger
molecule by the proposed QGNN considering hardware limitations.

5.2. Model Performance Evaluation and Comparison

The model performance of the best quantum, classical, and hybrid models can be
analyzed more in detail. The baseline QGNN, the baseline and master-node QGNN, the
(Atomic Number and Number of Hydrogens) hybrid model, and the GGNN-GGNN-GGNN
classical model with mean aggregation were chosen for their low test loss. The probability
distribution of the absolute prediction error was calculated using the test dataset, as shown
in Figure 19. The models with the lower test loss showed a probability distribution more
concentrated about 0 error. The three molecules with the most-accurate and most-inaccurate
predictions are also drawn. For the most-inaccurate molecules, some were common among
the different models. On average, the inaccurate molecules had a HOMO-LUMO gap
energy of 0.1900 Ha with a standard deviation of 0.05203 Ha, while the accurate molecules
had that of 0.2684 Ha with a standard deviation of 0.04446 Ha. Hence, the models tended
to give accurate predictions for molecules with high HOMO-LUMO gaps.

Figure 19. Absolute prediction error distribution of quantum, hybrid, and classical models on the
test dataset molecules. The molecules for which the models have accurate and inaccurate predictions
are drawn.
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In order to see if aromatic rings in the molecules resulted in a different prediction
performance, we calculated the mean absolute error on molecules in the test dataset with
and without aromatic rings. The results are shown in Table 10. All models had better
predictions on molecules without aromatic rings, but the difference was more pronounced
in the pure QGNNs compared to the hybrid or classical models.

Table 10. Mean absolute error values of quantum, hybrid, and classical models on molecules with
and without aromatic rings.

Model
With Aromatic Rings

(10−2 Ha)
Without Aromatic Rings

(10−2 Ha)

Quantum (Master Node) 1.9277 1.4128
Quantum (Baseline) 2.2509 1.7921

Hybrid 1.9323 1.7499
Classical 1.9820 1.7254

Lastly, the hybrid models and QGNNs can be compared to the state-of-the-art classical
models using the test mean absolute error values. The ALIGNN (2021) reported a test error
of 1.4001× 10−3 Ha, while SphereNet (2022) was evaluated at 1.1429× 10−3 Ha. This was
about 10-times lower than the best-performing QGNN, which achieved a mean absolute
error of 1.5106 × 10−2 Ha. Note that the training and testing methods were different;
however, one can gain a general sense of the performance difference in these models. We
suggest that the current QGNN is simple and there is room for improvement.

5.3. The Effect of Quantum Encoding Methods

The quantum encoding method used in a quantum machine learning model is a key
decisive factor in the success or failure of the models. Thus, it was important in this
study to test and compare various encoding methods. When comparing the three purely
quantum encoding methods, the number of features being used seemed to be important.
In the case where three features was encoded into a single pure qubit state, there was an
effective dimension reduction. In deep learning models, this feature extraction process is
trainable, but in the case of the pure QGNNs, this is fixed. Thus, it is difficult to optimize
in the quantum case. In addition, the number of possible encoded quantum states would
generally increase when the number of features increases. This means a large overlap in
the latent space between two different inputs. On the other hand, when only one feature
is used, it seems to not contain enough information about the molecule for the model to
make an accurate prediction. Thus, we concluded that, in order to create a pure QGNN
that can meaningfully incorporate high-dimensional input features, more qubits should be
allocated to each node to represent atoms in a molecule. However, finding an exact optimal
number of qubits per node and the corresponding encoding method are open questions
and likely dependent on the problem setting.

This study suggested that an additional neural network can be a good candidate to
reduce the complexity of the problem of high-dimensional input quantum encoding. The
results showed that this scheme, to optimize the encoding process using an angle extraction
network, improved the model performance over heuristic angle selection. Another possible
encoding scheme for future studies is to treat the EDU-QGC model as a single graph neural
network layer. Then, one could use the EDU-QGC model in between several classical graph
neural network layers. This would also allow for high-dimensional input features and
more complex readout functions.

The mapping results of the trained angle extraction networks are represented on the
Bloch spheres in Figures 20 and 21. In the case of the (Atomic Number, Aromaticity, and
Hybridization) input, most of the states were mapped to states near |1〉, except for the
non-aromatic carbon atom with sp2 hybridization. Furthermore, all oxygen atoms, fluorine
atoms, and aromatic nitrogen atoms with hybridization sp2 were mapped to the same
quantum state. For the (Atomic Number and Number of Hydrogens) input, all of the
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states were distributed near |1〉. This is highly counter-intuitive, as the highly localized
distributions of the states seem to suggest that the atomic features had little effect in the
context of the EDU-QGC model.

(a) Carbon (b) Nitrogen (c) Oxygen (d) Fluorine

Figure 20. Angle extraction network results for the (Atomic Number, Aromaticity, and Hybridization)
model. All possible atomic features are grouped together by the atom type. (a) Carbon atom states
are mostly distributed near |1〉, except for the non-aromatic sp2 hybridization case. (b) Nitrogen,
(c) oxygen, and (d) fluorine atoms are all distributed near the |1〉 state.

(a) Carbon (b) Nitrogen (c) Oxygen (d) Fluorine

Figure 21. Angle extraction network results for the (Atomic Number and Number of Hydrogens)
model. The states are distributed near |1〉. (a) carbon atoms, (b) nitrogen atoms, (c) oxygen atoms,
and (d) fluorine atoms.

In order to test this observation, a three-layer EDU-QGC model with a local readout
function was trained, where the encoded state for each atom-representing qubit was |1〉.
The optimization and evaluation methods were kept consistent with the main results. This
model showed a test loss of 6.4058× 10−4 Ha2, which is an improvement over the fixed
encoding of (Atomic Number, Aromaticity, and Hybridization), but performed worse than
all neural-network-assisted encoding models or other fixed methods. Therefore, while the
visualization of the learned encodings suggests that the states were concentrated about |1〉,
the slight differences were meaningful.

5.4. Convergence Tendencies in Training

The absolute difference in training set loss was calculated in 10 epoch intervals starting
from Epoch 0 in order to observe the speed for training convergence. The models with
the (Atomic Number and Number of Bonded Hydrogens) inputs and three layers were
grouped together depending on their number of trainable variables. The resulting graph
in Figure 22 shows that QGNNs have a tendency to converge faster than classical models
on average and reached a training loss change of 10−5 Ha2/10 epochs the quickest. The
classical models showed faster convergence as the number of trainable variables decreased.
Interestingly, the hybrid classical–quantum models showed similar convergence with
classical models, which have fewer variables.
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Figure 22. Change in training loss in 10-epoch intervals. The solid lines are averages of the runs, and
the x axis is the beginning epoch number of the interval. The number of trainable variables is written
in the legend in parenthesis.

5.5. Computational Cost of the Quantum Graph Neural Network Models

Assessing the computational cost of the QGNN can be divided into three scopes: the
quantum circuit structure, calculating the gradient, and the actual training. In terms of the
quantum circuit structure, many of the gate operations were able to be performed in parallel
on a single quantum processor. The quantum encoding step and the node operator in the
EDU-QGC applied unitary operators to each node-representing subsystem, so these unitary
operators can be applied at the same time. Thus, there was no scaling of these operators
depending on the input graph size. For the case of the EDU-QGC, the number of EDUs
will scale linearly with the number of edges. However, EDUs that act on different qubits
were able to be applied at the same time. The time cost was then linear to the chromatic
index of the input graph, where it is known that a simple graph with maximum degree n
can be colored with at most n + 1 colors (Vizing’s Theorem [92]). Thus, the quantum circuit
should have a time cost that is at most linear with the number of nodes. Compared to the
MPNN, which has a time cost linear with the number of edges and nodes, this can be an
improvement depending on the connectivity of the input graphs. Scaling of the circuit with
respect to the node feature dimension or link feature dimension is not consistent. This will
depend on the form of quantum encoding and the number of possible link features.

When using quantum hardware, one needs to run the same circuit multiple times
to estimate an expectation value. However, a previous work has shown that, even when
using few shots for the estimation, one can train a quantum circuit [93]. Thus, we suggest
that calculating the gradient is efficient. For the actual training, the speed of convergence
may differ depending on the specific problem. However, the results in Section 5.5 suggest
that the QGNNs showed a tendency to converge faster. Thus, overall, we expected the
EDU-QGC QGNN models to require less computational cost compared to classical graph
neural networks. However, the difference may be marginal depending on various factors
such as the choice of the encoding method, convergence tendencies, and connectivity of the
input graph.

5.6. Relationship between the Number of Trainable Variables and Model Performance

Runs with input node features of (Atomic Number and Number of Hydrogens) and
three message passing or EDU-QGC layers were used to compare the relationship between
the number of trainable variables and the test loss value. From the scatter plot in Figure 23,
one can see a trend that the model performance improved as the number of trainable
variables increased in general. When comparing the classical and quantum graph neural
network models, quantum models are anticipated to show better performance compared
to classical models for the same number of variables. This observation can be a signature
that quantum models can provide the benefits of having less variables when aiming to
build a model with a certain performance, such as faster and better training convergence
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on average. From this point of view, we can hypothesize that attempts to scale-up the
quantum model are worthwhile.
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Figure 23. Relationship between the number of trainable variables and the test loss values of classical
and quantum graph network models.

6. Conclusions

This work aimed to give a brief review of graph neural networks for materials research
and introduce their quantum analog by a novel quantum graph neural network model.
The literature review showed that graph neural networks are being widely studied due
to their natural and flexible representation of different systems and their resulting model
performance. On the other hand, QGNN schemes are just emerging to be investigated for
their potential advantage over classical models. Machine learning models of quantum,
classical, and hybrid graph neural networks were trained for the QM9 dataset, and their
performances in inferring the HOMO-LUMO gap were investigated. Even though the
classical models performed similarly or marginally better than the quantum and hybrid
models, there are certain aspects that would inspire further studies on QGNN models.
When comparing the model performance measured by the number of trainable variables,
the quantum models by the QGNN outperformed the classical models. The QGNNs tended
to show faster convergence during training. Note that we claim no solid evidence for
general quantum advantage, but report an indication that quantum models can achieve
to a certain extent the performance benefits by requiring less trainable variables than
classical models. Hopefully, these results will motivate more work in this converging field
of quantum machine learning for novel materials design.

Author Contributions: Conceptualization, methodology, software, formal analysis, original draft
preparation, J.-Y.R.; investigation, validation, review and editing, E.E.; supervision, methodology,
validation, review and editing, project administration, funding acquisition, J.-K.K.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the Ministry of Science and ICT (MSIT), Republic
of Korea, under the National Research Foundation of Korea (NRF) grant (2021R1A2C2013790),
and under the Information Technology Research Center (ITRC) support program (IITP-2023-2018-
0-01402) supervised by the Institute for Information and Communications Technology Planning
and Evaluation (IITP).

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: The data are available upon request.

Conflicts of Interest: The authors declare no conflict of interest.



Materials 2023, 16, 4300 23 of 26

Abbreviations
The following abbreviations are used in this manuscript:

EDU Equivariantly diagonalizable unitary
EDU-QGC Equivariantly diagonalizable unitary quantum graph circuit
EHQGC Equivariant Hamiltonian quantum graph circuit
EQGC Equivariant quantum graph circuit
GAN Generative adversarial network
GCN Graph convolutional network
GGNN Gated graph neural network
HOMO-LUMO Highest occupied molecular orbital-lowest unoccupied molecular orbital
MPNN Message-passing neural network
NISQ Noisy intermediate-scale quantum
PQC Parameterized quantum circuit
QGNN Quantum graph neural network
QNN Quantum neural network
VAE Variational autoencoder
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