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Abstract: Polymer micelles are promising drug delivery systems for highly hydrophobic photosensi-
tizers in photodynamic therapy (PDT) applications. We previously developed pH-responsive polymer
micelles consisting of poly(styrene-co-2-(N,N-dimethylamino)ethyl acrylate)-block-poly(polyethylene
glycol monomethyl ether acrylate) (P(St-co-DMAEA)-b-PPEGA) for zinc phthalocyanine (ZnPc) de-
livery. In this study, poly(butyl-co-2-(N,N-dimethylamino)ethyl acrylates)-block-poly(polyethylene
glycol monomethyl ether acrylate) (P(BA-co-DMAEA)-b-PPEGA) was synthesized via reversible
addition and fragmentation chain transfer (RAFT) polymerization to explore the role of neutral hy-
drophobic units in photosensitizer delivery. The composition of DMAEA units in P(BA-co-DMAEA)
was adjusted to 0.46, which is comparable to that of P(St-co-DMAEA)-b-PPEGA. The size distribution
of the P(BA-co-DMAEA)-b-PPEGA micelles changed when the pH decreased from 7.4 to 5.0, indicat-
ing their pH-responsive ability. The photosensitizers, 5,10,15,20-tetrakis(pentafluorophenyl)chlorin
(TFPC), 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TFPP), protoporphyrin IX (PPIX), and ZnPc
were examined as payloads for the P(BA-co-DMAEA)-b-PPEGA micelles. The encapsulation effi-
ciency depended on the nature of the photosensitizer. TFPC-loaded P(BA-co-DMAEA)-b-PPEGA
micelles exhibited higher photocytotoxicity than free TFPC in the MNNG-induced mutant of the rat
murine RGM-1 gastric epithelial cell line (RGK-1), indicating their superiority for photosensitizer
delivery. ZnPc-loaded P(BA-co-DMAEA)-b-PPEGA micelles also exhibited superior photocytotoxicity
compared to free ZnPc. However, their photocytotoxicity was lower than that of P(St-co-DMAEA)-b-
PPEGA. Therefore, neutral hydrophobic units, as well as pH-responsive units, must be designed for
the encapsulation of photosensitizers.

Keywords: block copolymer; polymer micelle; photodynamic therapy

1. Introduction

Photodynamic therapy (PDT) is a promising cancer treatment that is minimally inva-
sive, which allows for the maintenance of a high quality of life [1–4]. PDT photosensitizers
must meet several requirements, such as non-toxicity in the dark, efficient reactive oxy-
gen species (ROS) generation upon photoirradiation, absorption ability in the extended
wavelength region, accumulation at tumor sites, and practical water solubility [5–10]. From
the viewpoint of molecular design, these requirements often conflict with each other, es-
pecially light-absorbing ability and water solubility. Most PDT photosensitizers have a
highly planar and rigid molecular structure that absorbs low-energy light. However, this
structural feature tends to form aggregates, thereby reducing water solubility. Moreover,
additional synthetic efforts must be devoted to gain practical water solubility, making PDT
photosensitizers costly.
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Drug delivery systems can provide alternatives for overcoming these conflicting
demands. Among the various types of carriers, polymer micelles of amphiphilic block
copolymers are a promising class of carriers because of their core–corona nanostructure
that can hold hydrophobic molecules, their potential tumor-accumulating nature due to the
enhanced permeation and retention (EPR) effect, and their cost-effective mass production
owing to recently developed controlled radical polymerization. Various amphiphilic block
copolymers, such as poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG) [11–19],
poly(L-lactide)-block-poly(ethylene glycol) (PLLA-b-PEG) [14], polystyrene-block-poly(ethylene
glycol) (PSt-b-PEG) [20–22], and poly(ethylene glycol)-block-poly(propylene glycol)-block-
poly(ethylene glycol) (PEG-b-PPO-b-PEG) [23–27], have been investigated for PDT and
closely related cancer therapies, such as photothermal therapy (PTT). For example, Yan
et al. prepared protoporphyrin IX (PPIX)-loaded PCL-b-PEG micelles and examined their
photocytotoxicity in the human breast cancer cell line MDA-MB-231 [15]. They found that
PPIX-loaded micelles exhibited excellent photocytotoxicity after erlotinib pretreatment.
Gibot et al. investigated PCL-b-PEG and PSt-b-PEG micelles as pheophorbide a (Pheo) carri-
ers [14]. Both Pheo-loaded micelles exhibited higher PDT efficacy than free pheophorbide a
in the 2D monolayers and 3D spheroids of human HCT-116 colorectal cancer cells (CCL-247)
and A375 melanoma cancer cells (CRL-1619). Recently, we developed novel amphiphilic
block copolymers for PDT photosensitizer delivery [28–31]. Our polymers had two charac-
teristic features: (1) a relatively short hydrophobic segment consisting of a hydrophobic
monomer with pH-responsive units, 2-(N,N-dimethylamino)ethyl acrylate (DMAEA), and
(2) a long brush-type hydrophilic segment consisting of polyethylene glycol monomethyl
ether acrylate (PEGA) [28,29]. The significant size difference between the hydrophobic and
hydrophilic segments resulted in a small packing parameter that prevented the formation
of large aggregates. During cellular internalization, the pH-responsive units destabilize
the aggregates in weakly acidic microenvironments, such as tumor sites and endosomes.
According to this molecular design, poly(styrene-co-2-(N,N-dimethylamino)ethyl acrylate)-
block-poly(polyethylene glycol monomethyl ether acrylate) (P(St-co-DMAEA)-b-PPEGA)
was synthesized, and its performance was examined in the delivery of zinc phthalocya-
nine (ZnPc) as a PDT photosensitizer. ZnPc-loaded P(St-co-DMAEA)-b-PPEGA micelles
exhibited superior photocytotoxicity compared to free ZnPc and ZnPc-loaded polymer
micelles without pH-responsive units. Therefore, pH-responsive units are adequate as
the carrier of the PDT photosensitizer. However, little is known about the role of simple
hydrophobic units, such as styrene, in the photosensitizer carrier. In addition, polystyrene
is suspected to be hazardous owing to the potential endocrine-disrupting nature of the
oligomer [32]. Therefore, a pH-responsive amphiphilic block copolymer, poly(butyl-co-2-
(N,N-dimethylamino)ethyl acrylates)-block-poly(polyethylene glycol monomethyl ether
acrylate) (P(BA-co-DMAEA)-b-PPEGA), was synthesized via reversible addition and frag-
mentation chain transfer (RAFT) polymerization as an alternative photosensitizer carrier
to examine the effect of hydrophobic units on the performance of the photosensitizer
carrier. The pH-responsive nature, the photosensitizer-loading ability of the empty poly-
mer micelles, and the photocytotoxicity of photosensitizer-loaded polymer micelles were
examined.

2. Materials and Methods
2.1. Materials and Analytical Techniques

All the chemicals were of analytical grade. First, 1,4-Dioxane was purchased from
FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan) and distilled before use.
Butyl acrylate (BA) and 2-(N,N-dimethylamino)ethyl acrylate (DMAEA) were purchased
from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan) and purified by vacuum distil-
lation. Polyethylene glycol methyl ether acrylate (PEGA; average molecular mass = 480)
and 1,4-bis(trimethylsilyl)benzene (BTMSB) were purchased from Sigma-Aldrich (Tokyo,
Japan). DMAEA and PEGA were passed through a short column filled with aluminum
oxide immediately before use to remove impurities and inhibitors. Azobisisobutyronitrile
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(AIBN) was purchased from FUJIFILM Wako Pure Chemical Corporation and purified
by recrystallization from methanol. Protoporphyrin IX (PPIX) was purchased from FU-
JIFILM Wako Pure Chemical Corporation. Zinc phthalocyanine (ZnPc) was purchased
from Kanto Chemical Co., Inc. (Tokyo, Japan). N-(4-Trifluoromethylbenzyl)-4-cyano-4-
(dodecylthiothiocarbonyl)thiopentanamide (CF3-CDSP), 5,10,15,20-tetrakis(pentafluorophenyl)
porphyrin (TFPP), and 5,10,15,20-tetrakis(pentafluorophenyl)chlorin (TFPC) were prepared
as previously reported [30,33,34]. Acetate-buffered saline ABS (pH 5) was prepared by
dissolving sodium chloride (8.8 g, 150 mmol), potassium chloride (0.332 g, 4.45 mmol),
acetic acid (0.183 g, 3.05 mmol), and sodium acetate (0.570 g, 6.95 mmol) in deionized
water (1 L).

The 1H and 19F NMR spectra were measured using an AVANCE III HD spectrometer
(500 MHz; Bruker Biospin K.K., Yokohama, Japan). The excitation spectra were measured
using a spectrofluorometer (FP-6300, JASCO Co., Ltd. (Tokyo, Japan)). Preparative gel
permeation chromatography (preparative GPC) was carried out using an LC-908 Recycling
Preparative high-performance liquid chromatography system (Japan Analytical Industry
Co., Tokyo, Japan) using two polystyrene gel columns (JAIGEL-2.5H and JAIGEL-2H) as
the stationary phase and CHCl3 as the eluent. Size-exclusion chromatography (SEC) was
performed using a high-performance liquid chromatography instrument (pump, LC-20AT;
refractive index detector, RID-10A, Shimadzu Co.). Styragel HR4 (7.8 × 300 mm; Waters
Co., Milford, MA, USA), Styragel HR3 (7.8 × 300 mm), and Styragel HR1 (7.8 × 300 mm)
columns were used at 40 ◦C as the stationary phase. Tetrahydrofuran was used as the
mobile phase at a flow rate of 1 mL min−1. The plots of log M vs. retention volume were
prepared using 11 polystyrene standards (Showa Denko, K.K., Tokyo, Japan) ranging in
molecular mass from 1.31 to 3740 kg mol−1. The number average molar mass (Mn) and
dispersity (Mw/Mn) were calculated using polystyrene calibration. The size distribution
measurement was performed with a Zetasizer Nano ZSP (ZEN5600, Malvern Instruments,
Herrenberg, Germany) equipped with a He−Ne laser (λ = 633 nm).

2.2. Synthesis and Characterization of P(BA-co-DMAEA) macroCTA

BA (765.3 mg, 6.0 mmol), DMAEA (567.7 mg, 4.0 mmol), CF3-CDSP (55.85 mg,
0.10 mmol), AIBN (1.63 mg, 0.010 mmol), and BTMSB (11.21 mg, 0.050 mmol) were placed
in a test tube and completely dissolved. The test tube was tightly sealed with a rubber
septum and cooled in an ice bath. Nitrogen was bubbled through the solution for 30 min.
The test tube was then stirred at 60 ◦C for 3 h. An aliquot of the polymerization mixture
was taken before and after polymerization to determine the monomer conversion via
quantitative 1H NMR spectroscopy. The polymerization mixture was evaporated under
reduced pressure to remove unreacted monomers. The crude product was purified using
preparative GPC to obtain the P(BA-co-DMAEA) macromolecular chain transfer agent
(macroCTA) as a yellow viscous product. The yield was 356.0 mg (25%) and the total
monomer conversion was 0.21 (DPn = 21, FDMAEA = 0.46, Mn,NMR = 3397, Mn = 3230, and
Mw/Mn = 1.13 (polystyrene std.)).

2.3. Synthesis and Characterization of P(BA-co-DMAEA)-b-PPEGA

P(BA-co-DMAEA) macroCTA (33.4 mg, 0.0098 mmol), PEGA (481.5 mg, 1.0 mmol),
AIBN (0.33 mg, 0.002 mmol), BTMSB (1.08 mg, 0.005 mmol), and 1,4-dioxane (1 mL) were
placed in a test tube and thoroughly dissolved. The tube was tightly sealed with a rubber
septum. Nitrogen was bubbled through the solution for 30 min. The test tube was then
stirred at 60 ◦C for 24 h. An aliquot of the polymerization mixture was taken before and
after polymerization to determine the monomer conversion via quantitative 1H NMR
spectroscopy. The solution was poured into hexane and the supernatant was removed
via decantation. The crude product was purified using preparative GPC to obtain P(BA-
co-DMAEA)-b-PPEGA as a pale yellow viscous product. The yield was 349.3 mg (68%)
and conversion of PEGA was 0.83 (DPn,BA+DMAEA = 21, FDMAEA = 0.46, DPn,PEGA = 108,
Mn,NMR = 55,237, Mn = 16,900, and Mw/Mn = 1.28 (polystyrene std.)).
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2.4. Preparation of Polymer Micelles in Buffered Saline

The typical procedure was as follows: P(BA-co-DMAEA)-b-PPEGA (12.8 mg) was dis-
solved in N,N-dimethylformamide (DMF; 1 mL). The solution was dialyzed with phosphate-
buffered saline (PBS) using Spectra/Por® Biotech cellulose ester dialysis membranes (molec-
ular weight cut-off (MWCO): 500–1000 Da) for 3 days. The polymer concentration was
adjusted to 2 mg mL−1 using PBS.

2.5. Preparation of Photosensitizer-Loaded Polymer Micelles in PBS

The typical procedure was as follows: P(BA-co-DMAEA)-b-PPEGA (15.0 mg) was
dissolved in 121 µM TFPC in DMF solution (3 mL). The solution was dialyzed with PBS
using Spectra/Por® Biotech cellulose ester dialysis membranes (MWCO: 500–1000 Da)
for 3 days. The polymer concentration was adjusted to 2 mg mL−1 using PBS. The pho-
tosensitizer concentration in the resulting polymer micelles was determined via UV-vis
spectroscopy using a plate reader (Multiscan JX, Thermo Fisher Scientific Co., Yokohama,
Japan) after dilution ten times with DMF. The initial concentrations of TFPC, TFPP, PPIX,
and ZnPc in DMF solution were 121, 42.8, 111, and 72 µM, depending on the solubility of
the photosensitizer in DMF.

2.6. Critical Micelle Concentration

Critical micelle concentration (CMC) was evaluated by fluorospectroscopy using
pyrene as a microenvironment probe. The typical procedure was as follows: a stock
solution of polymer micelles was diluted with distilled water in a concentration range of
1000–5.12 × 10−4 mg L−1. An aqueous pyrene solution (2 µM; 160 µL) containing 0.1 vol%
acetone was added to the diluted polymer solution (160 µL) and then thoroughly mixed.
The solution was maintained at 25 ◦C for 1 h in the dark. The fluorescence intensities at
390 nm were measured upon photoexcitation at 333 nm (I333) and 338 nm (I338) at 25 ◦C.
The fluorescence intensity ratio (I338/I333) was plotted as a function of the logarithm of the
polymer concentration. The CMC value was determined as the intersection point of the
two tangents in the plot at higher and lower concentrations.

2.7. In Vitro Photocytotoxicity Test
2.7.1. Cell Culture

An MNNG-induced mutant of the rat murine RGM-1 gastric carcinoma mucosal cell
line (RGK-1) was kindly provided by Dr. Hirofumi Matsui (Faculty of Medicine, University
of Tsukuba, Ibaraki, Japan). RGK-1 cells were grown in a 1:1 mixture of Dulbecco’s modified
Eagle’s medium (DMEM) and F12 Ham’s medium (Sigma-Aldrich Japan, Tokyo, Japan)
supplemented with 10 vol% fetal calf serum (FCS; Hyclone Laboratories, Inc., Logan, UT,
USA) and 1 vol% Antibiotic-Antimycotic (Life Technologies, Tokyo, Japan).

2.7.2. Sample Preparation

• Photosensitizer-loaded polymer micelles: A PBS solution of polymer micelles was
diluted with PBS to double the predetermined concentration, and then completely
mixed with the same volume of the culture medium.

• Bare TFPC: To avoid precipitation, a DMSO solution of TFPC was added to the culture
medium to obtain a culture medium containing twice the target concentration of ZnPc
and 2 vol% DMSO. The culture medium was completely mixed with the same volume
of PBS.

2.7.3. Photocytotoxicity

The cytotoxicity in RGK-1 cells was tested as follows: RGK-1 cells (5 × 103 cells/well)
in 100 µL of culture medium (100 µL) were plated in a 96-well plate (Thermo Fisher
Scientific Co., Yokohama, Japan). The plates were then incubated for 24 h (37 ◦C, 5% CO2).
After removing the culture medium, 100 µL sample solutions were added to each well. The
plates were then co-incubated with each sample for 24 h. After washing the cells twice
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with PBS, 100 µL of the culture medium was added to each well. The cells were irradiated
with light from a 100 W halogen lamp (KBEX-102A, Ushio Inc., Tokyo, Japan) equipped
with a Y-50 cut-off filter (λ > 500 nm, Toshiba Corporation, Tokyo, Japan) and a water
jacket. UV-vis power meter (ORION/TH, Ophir Optronics Ltd., Jerusalem, Israel) was
used to determine the light intensity. The photoirradiation time was regulated to acquire
the predetermined light doses of 0 (dark) and 20 J cm−2. WST-8® reagent (8 µL) from Cell
Counting Kit-8 (Dojindo Laboratories, Kumamoto, Japan) was applied to each well at 24 h
after photoirradiation to determine the mitochondrial activity of NADH dehydrogenase
in the cells according to the manufacturer’s instructions. The absorbance at 450 nm was
determined using a plate reader (Multiscan JX, Thermo Fisher Scientific Co., Yokohama,
Japan). The percentage of cell survival was calculated by the six replicate experiments using
the value for photo-irradiated cells without photosensitizers under the same conditions
as the reference. All values of the cell-survival rate were expressed as mean ± standard
deviation [30].

3. Results and Discussion
3.1. Synthesis of P(BA-co-DMAEA)-b-PPEGA

The RAFT copolymerization of BA with DMAEA was performed using CF3-CDSP and
AIBN as a chain transfer agent and an initiator, respectively, at 60 ◦C for 3 h (Scheme 1). The
total monomer conversion was determined to be 0.21 via quantitative 1H NMR spectroscopy.
Unfortunately, it is difficult to evaluate the conversions of each monomer separately. The
Mn and Mw/Mn values were evaluated to be 3230 and 1.13, respectively, via SEC calibrated
using a polystyrene standard (Figure 1). The Mw/Mn value was sufficiently low, which
is typical of RAFT polymerization. Figure 2a shows the 1H and 19F NMR spectra of
the resulting polymer in the presence of 4-fluorophenoxy-tert-butyldiemthylsilane as a
cross-reference for normalization of peak areas between these two spectra. The mole
fraction of DMAEA (FDMAEA) was determined to be 0.46 based on the peak area ratio in
the methylene region from 3.8 to 4.3 ppm. The trifluoromethyl group at the initiating
end was unambiguously identified in the 19F NMR spectrum by virtue of the nuclear
specificity of NMR spectroscopy. The molar ratio between the polymer and the cross-
reference was determined using 19F NMR spectroscopy, while the molar ratio between the
BA and DMAEA units to the cross-reference was determined using 1H NMR spectroscopy.
The degree of polymerization, DPn, was calculated to be 21 by combining the two ratios.
The chain extension of P(BA-co-DMAEA) macroCTA with PEGA was performed using
AIBN as an initiator in 1,4-dioxane at 60 ◦C. Figure 1 shows SEC traces of the resulting
polymers. The SEC trace shifted toward a shorter retention time compared to that of
P(BA-co-DMAEA) macroCTA, indicating successful chain extension. Figure 2b shows the
1H and 19F NMR spectra of the resulting polymer in the presence of 4-fluorophenoxy-tert-
butyldimethylsilane as a cross-reference. The initiating and terminating end groups were
substantially undetectable in the 1H NMR spectrum because of the extremely intense peak
at 3.6 ppm attributable to the PPEGA segment. However, the 19F NMR spectrum shows a
clear peak attributable to the trifluoromethyl groups at the initiating end. By combining
quantitative information from the 1H and 19F NMR spectra, the DPn value of the PPEGA
segments was calculated to be 108. Hence, this technique, which uses a cross-reference for
1H and 19F NMR spectroscopy, is immensely powerful for quantitative end-group analysis.
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P(BA-co-DMAEA)-b-PPEGA (b) with 4-fluorophenoxy-tert-butyldimethylsilane as a cross-reference
in CDCl3. The peak assignments a, b, c, d, x, and y are presented in Scheme 1. Asterisks indicates the
peaks attributable to the cross-reference. The inset of (a) is the expanded 1H NMR spectra ranged
from 3.8 to 4.3 with the best-fitted curves.

3.2. Preparation and Characterization of Polymer Micelles

Polymer micelles were prepared via dialysis. Briefly, a DMF solution of P(BA-co-
DMAEA)-b-PPEGA was dialyzed against phosphate-buffered saline (PBS) to obtain a clear,
colorless solution. The polymer concentration was adjusted to 2000 mg L−1 with PBS. The
critical micelle concentration (CMC) was evaluated via fluorophotometry using pyrene as
a hydrophobic probe. Figure 3 shows the plots of the fluorescence intensity ratio (I338/I333)
as a function of the logarithm of the polymer concentration. The crossing point of the
two tangent lines gives a CMC value of 53 mg L−1. This value is comparable to that of
P(St-co-DMAEA)-b-PPEGA (40 mg L−1) [29]. The size distributions of the polymer micelles
were evaluated by dynamic light scattering (DLS) measurement, as shown in Figure 4.
The hydrodynamic diameter, Dh, was estimated to be 18 nm. This value was comparable
to that of P(St-co-DMAEA)-b-PPEGA [29]. The pH-responsive nature of the micelles was
examined via DLS using polymer micelles prepared with ABS (pH 5) instead of PBS (pH
7.4). The blue line in Figure 4 shows the apparent size distribution of the polymer micelles
in ABS. This significant change suggests the pH-responsive nature of the polymer micelles.
It should be noted that the inverse Laplace transform of the autocorrelation function of
the sample in ABS (blue line) is not so reliable for unstable aggregates. Similar results was
reported by Bovone et al. in their DLS study on polymer micelles during solvent quality
change [35].
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3.3. In Vitro Photocytotoxicity of Photosensitizer-Loaded Polymer Micelles

Photosensitizer-loaded polymer micelles were prepared via dialysis using a
photosensitizer-containing DMF solution instead of pure DMF. After removing unloaded
photosensitizer precipitates via filtration with a membrane filter (pore size was 0.5 µm), the
photosensitizer concentration was determined photometrically in DMF solution (Table 1).
TFPC, TFPP, PPIX, and ZnPc were used as photosensitizers (Scheme 2). The encapsulation
efficiency (E.E.), which is the fraction of photosensitizer loaded to the photosensitizer in
the feed, varied from 57 to 100%. The loading capacity (L.C.), the weight fraction of the
loaded photosensitizer to all of the polymer micelles, varied from 0.49 to 2.4 wt%. Highly
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symmetric photosensitizers, such as TFPP and ZnPc, showed lower E.E. values, even with a
low concentration of the photosensitizer in the feed, because these photosensitizers quickly
precipitated out during the solvent quality change. In contrast to the D4h symmetry of
TFPP and ZnPc, the structures of TFPC (Cs symmetry) and PPIX (dissymmetry) were
less symmetrical. In general, highly symmetric molecules exhibit lower solubility than
highly dissymmetric molecules [36]. Hence, the less symmetric structures of TFPC and
PPIX were advantageous to prohibit the precipitation out during encapsulation. In addi-
tion, the carboxylic groups of PPIX might be helpful for encapsulation by interacting with
DMAEA units.

Table 1. Preparation of photosensitizer-loaded P(BA-co-DMAEA)-b-PPEGA micelles.

Photosensitizer cPS (µM) a E.E. (%) b L.C. (%) c cPS/cpolymer
d

TFPC 46 87 2.4 1.3
TFPP 10 57 0.49 0.28
PPIX 46 100 1.3 1.3
ZnPc 20 68 0.58 0.55

a The concentration of photosensitizer determined by UV-vis spectrophotometry. b The encapsulation efficiency,
calculated as follows: (weight of the loaded photosensitizer in polymer micelles)/(weight of the photosensitizer
in the feed) × 100. c The loading capacity, calculated as follows: (weight of the loaded photosensitizer in polymer
micelles)/(weight of polymer micelles) × 100. d The molar ratio of photosensitizer to polymer.
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The photocytotoxicity of the photosensitizer-loaded polymer micelles was examined
in RGK-1 cells. Empty polymer micelles showed no cytotoxicity at a polymer concentration
of 1000 mg L−1 (Figure 5; micelles only). Figure 5 shows the dark and photocytotoxic
effects of the TFPC-loaded polymer micelles and bare TFPC on RGK-1 cells. No cytotoxicity
was observed without photoirradiation. Bare TFPC (without encapsulation in polymer
micelles) showed no cytotoxicity with photoirradiation (λ > 500 nm; light dose, 20 J cm−2).
In contrast, TFPC-loaded polymer micelles exhibited significant photocytotoxicity under
the same TFPC concentration and photoirradiation conditions. Hence, P(BA-co-DAMEA)-b-
PPEGA micelles act not only to solubilize hydrophobic photosensitizers but also to enhance
photodynamic action. In order to elevate the PDT efficacy, the photosensitizers must have
(1) efficient internalization into the cell, (2) no concentration quenching, and (3) localization
in the vicinity of the target intracellular organelle or biomacromolecules. The encapsulation
in polymer micelles is thought to enhance cellular internalization via the endocytotic path-
way and to prevent the precipitation of photosensitizers and local concentration quenching.
Figure 6 shows the photocytotoxicity of various photosensitizer-loaded polymer micelles
in RGK-1 cells. In the case of TFPP, no significant photocytotoxicity was observed be-
cause of its high aggregation tendency and poor absorbing ability at wavelengths over
500 nm. PPIX-loaded polymer micelles exhibited detectable photocytotoxicity at the con-
centration of 5 µM with photoirradiation of 20 J cm−2. ZnPc-loaded polymer micelles
showed higher photocytotoxicity than PPIX-loaded micelles, plausibly because of their
higher absorption ability in extended wavelength regions. The PDT efficacy of ZnPc-
loaded P(BA-co-DMAEA)-b-PPEGA micelles (approximately 60% survival ratio, 0.5 µM
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with 20 J cm−2 photoirradiation) was lower than that of P(St-co-DMAEA)-b-PPEGA (almost
executed at 0.05 µM with 20 J cm−2 photoirradiation) [29]. These results suggest that
the pH-responsive unit DMAEA, which acts as a PDT efficacy enhancing element, is not
the only key factor in photosensitizer carriers. The pH-insensitive units, such as BA and
St, also affect the PDT action through other factors, such as photosensitizer-solubilizing
ability and significant incompatibility with the hydrophilic PPEGA segment to stabilize the
core−corona microstructure.
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Figure 6. Dark and photocytotoxicity of the photosensitizer(PS)-loaded P(BA-co-DMAEA)-b-PPEGA
micelle and bare TFPC in RGK-1 cells as a function of the light dose. The photoirradiation was
provided by a 100 W halogen lamp equipped with a Y-50 cutoff filter (λ > 500 nm). The values are the
mean ± standard deviation of six replicate experiments.
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4. Conclusions

A pH-responsive amphiphilic block copolymer, P(BA-co-DMAEA)-b-PPEGA, was
successfully synthesized via successive RAFT polymerizations and fully characterized
using 1H and 19F NMR spectroscopy and SEC. P(BA-co-DMAEA)-b-PPEGA afforded poly-
mer micelles a hydrodynamic diameter of 18 nm via solvent change during dialysis. The
pH-responsive nature of the polymer micelles was confirmed using DLS measurements in
PBS and ABS. The TFPC-loaded polymer micelles exhibited higher photocytotoxicity than
bare TFPC, verifying the effectiveness of the polymer micelles as photosensitizer carriers.
The loading ability of the resulting polymer micelles depended on the nature of the pho-
tosensitizer. The ZnPc-loaded polymer micelles showed lower PDT efficacy than similar
polymer micelles containing St units. Furthermore, in addition to pH-responsive units,
pH-nonresponsive hydrophobic units must be suitably designed for PDT photosensitizers.
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