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Abstract: Desulfurized manganese residue (DMR) is an industrial solid residue produced by high-
temperature and high-pressure desulfurization calcination of electrolytic manganese residue (EMR).
DMR not only occupies land resources but also easily causes heavy metal pollution in soil, surface
water, and groundwater. Therefore, it is necessary to treat the DMR safely and effectively so that it can
be used as a resource. In this paper, Ordinary Portland cement (P.O 42.5) was used as a curing agent
to treat DMR harmlessly. The effects of cement content and DMR particle size on flexural strength,
compressive strength, and leaching toxicity of a cement-DMR solidified body were studied. The
phase composition and microscopic morphology of the solidified body were analyzed by XRD, SEM,
and EDS, and the mechanism of cement-DMR solidification was discussed. The results show that
the flexural strength and compressive strength of a cement-DMR solidified body can be significantly
improved by increasing the cement content to 80 mesh particle size. When the cement content is 30%,
the DMR particle size has a great influence on the strength of the solidified body. When the DMR
particle size is 4 mesh, the DMR particles will form stress concentration points in the solidified body
and reduce its strength. In the DMR leaching solution, the leaching concentration of Mn is 2.8 mg/L,
and the solidification rate of Mn in the cement-DMR solidified body with 10% cement content can
reach 99.8%. The results of XRD, SEM, and EDS showed that quartz (SiO2) and gypsum dihydrate
(CaSO4·2H2O) were the main phases in the raw slag. Quartz and gypsum dihydrate could form
ettringite (AFt) in the alkaline environment provided by cement. Mn was finally solidified by MnO2,
and Mn could be solidified in C-S-H gel by isomorphic replacement.

Keywords: desulfurization manganese residue; ordinary portland cement; curing; flexural strength;
compressive strength; leaching toxicity; mechanism analysis

1. Introduction

Manganese is an important industrial metal used as an additive in the production of
various steels, alloys, electronic components, and special chemicals [1]. More than 98% of
the world’s electrolytic manganese metal is produced in China [2]. According to statistics,
8~12 tons of EMR will be produced for every ton of manganese metal produced [3–9],
and the accumulated stock of EMR in China has reached hundreds of millions of tons.
At present, most electrolytic manganese enterprises transport EMR to the storage yard
for wet storage, which occupies a lot of land resources, and at the same time, there are
serious environmental pollution and safety risks [10]. Under the action of leaching and
rainwater leaching, manganese and ammonia nitrogen in surface water will exceed the
standard, which will cause great harm to the environment. Besides, EMR also contains a
small amount of Cr, Cu, Ni, Pb, and As. The research shows that the leaching concentrations
of manganese and ammonia nitrogen reach 912.34 mg/L and 1030 mg/L, respectively, far
exceeding the values specified in the reference standard [11–13]. Moreover, heavy metals
in EMR will migrate to rivers, lakes, and groundwater during stacking, which will cause
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serious environmental pollution and endanger human health [14,15]. Therefore, reasonable
and effective treatment of EMR to minimize the harm of manganese slag has become an
urgent problem to be solved in the electrolytic manganese industry.

In order to reduce the harm of EMR, many scholars have done a lot of in-depth
research. Solidification/stabilization technology is one of the main means of harmlessly
treating toxic and harmful solid waste at home and abroad. By adding cementitious
materials to wrap toxic pollutants, pollutants are not easy to leach. Liu et al. [16] used
slaked lime, carbide slag, and red mud to remove ammonia nitrogen in EMR, and the
maximum removal rate of ammonia nitrogen reached 98.2%. Chen et al. [17] solidified
EMR by carbonizing active magnesium oxide, which not only improved the strength of
EMR but also reduced the content of heavy metals in EMR. Zhan et al. [18] calcined the
composite alkali activator and added alkali and EMR together, which improved the curing
efficiency of heavy metals in MSWI fly ash and EMR. Zhang et al. [19] prepared road base
materials with red mud, carbide slag, and blast furnace slag as stabilizers/curing agents
(S/S). The results show that Mn2+ can be cured well when the dose of S/S reaches 20%.
Wang et al. [20] combined cement solidified waste with direct electric solidification. The
results showed that with the increase in voltage, the leaching amount of Mn2+ and NH4

+-N
in cement-EMR slurry decreased, and its leaching concentration met the Chinese standard
(2 mg/L). Zhang et al. [21] used lime and fly ash as stabilizers and cement as a curing
agent to stabilize manganese slag and studied the stabilization effects of Mn and Pb in
manganese slag. When the dosage of quicklime is 2.5%, the dosage of fly ash is 3%, and
the dosage of cement is 12%, the best effect is achieved, and the leaching concentration
of Mn and Pb meets the requirements of a Class III water source in China’s surface water
environmental quality standard. Chen et al. [22] solidified manganese slag samples with
fly ash, quicklime, and cement and compared the solidification effects. The test results
showed that the solidification effects of the three solidification materials on soluble Mn
were remarkable. Zhang et al. [23] used alkaline substances in red mud to treat ammonia
nitrogen and soluble manganese ions in EMR, which could solidify heavy metal ions in
waste residue under suitable treatment conditions. Shu et al. [24] used magnesium oxide
and different phosphorus sources to stabilize and solidify Mn2+ and NH4

+-N in EMR
simultaneously (S/S). When the molar ratio of Mg: P was 3:1 and the dosage of PM was
8 wt%, the S/S efficiency of Mn2+ and NH4

+-N reached 91.58% and 99.98%, respectively.
Lan et al. [25] invented a new method to effectively recover ammonium nitrogen and
solidify Mn and other heavy metals by mechanical grinding in the presence of water and
calcium oxide. Its research shows that the solidification/recovery efficiency of Mn and
ammonia nitrogen can reach more than 98%. Shu et al. [26] used a new basic combustion
raw material (BRM) to stabilize/solidify Mn2+ and NH4

+-N in EMR. The leaching test
results showed that the concentration of heavy metals was within the allowable range of
the standard. Mn and NH3-N are considered the main harmful elements in EMR [27–29].
High temperatures and high pressures can convert NH3-N in EMR into NH3 and N2.
NH3 is recovered to make ammonia water, and N2 is discharged into the air. In addition,
calcination can effectively reduce the leaching hazards of heavy metals such as Mn, Pb,
Cr, and As in EMR. In order to dispose of EMR and reduce its harm to the environment,
EMR was calcined at high temperature and pressure and desulfurized to prepare DMR.
Compared with EMR, DMR does not contain ammonia nitrogen, and heavy metals are not
easy to leach. However, it is unknown whether there is a risk of heavy metal leaching from
the large stockpile of DMR.

Based on this, this paper uses cement curing agents to treat DMR, so that the harmful
heavy metals in manganese slag are solidified. P.O 42.5 cement was selected to solidify
DMR with different particle sizes and dosages. By testing the flexural strength, compressive
strength, and leaching toxicity of the solidified body, the effects of cement dosage and
DMR particle size on mechanical strength and leaching toxicity were analyzed. The
comprehensive micromorphology and elements of the solidified body were analyzed by
XRD, SEM, and EDS, and the mechanism of cement solidification in DMR was discussed.
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The research in this paper can provide a reference for the harmless treatment and resource
utilization of DMR.

2. Materials and Methods
2.1. Materials and Instruments

Desulfurized manganese residue (DMR) is taken from a stockyard of Ningxia Tianyuan
Manganese Industry Group Co., Ltd., Ningxia, China; cement is taken from Horse Racing
Cement Plant (P.O 42.5); sulfuric acid (H2SO4) and nitric acid (HNO3) were purchased from
Ningxia Dazheng Chemical Co., Ltd. (Ningxia, China), both of which were analytically
pure. The water is distilled water.

An X-ray fluorescence spectrometer (XRF) (Netherlands PANalytical Axios Co., Ltd.,
Almolo, The Netherlands) was used to analyze the main chemical components of DMR and
cement, and the results are shown in Table 1. An X-ray diffractometer (XRD) was used to
analyze DMR and the main minerals of cement. The results are shown in Figures 1 and 2.

Table 1. DMR and Main Chemical Compositions of Cement (%).

Composition SiO2 CaO Al2O3 MnO Fe2O3 MgO SO3 Na2O K2O Others

DMR 40.22 31.14 7.98 6.63 6.41 1.89 1.36 1.31 1.25 1.81
P.O 42.5 22.35 59.22 6.49 - 2.73 4.01 2.22 - - 1.78
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As can be seen from Table 1 and Figure 1, DMR is not a simple mineral but consists of
quartz, gypsum, orthorhombic wollastonite, and other minerals. The content of gypsum
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(SO4
2−) is high, and ettringite (Aft) can be formed in an alkaline environment [30]. The

hydration reaction of tricalcium silicate and dicalcium silicate in cement components is
as shown in Formulas (1) and (2), which can produce xCaO·SiO2·yH2O(C-S-H), and the
Ca(OH)2 can provide a good alkaline environment for cement-DMR solidified bodies. In
addition, the diffraction peaks of SiO2, Ca6(SiO4)(Si3O10), and CaSO4·2H2O are sharp,
which indicates that they have high crystallinity and large crystalline grains, and the
content of silicate compounds in DMR is high, so they belong to industrial waste residues
with high silicate content.

3CaO · SiO2 + nH2O =xCaO · SiO2 · yH2O + (3− x)Ca(OH)2 (1)

2CaO · SiO2 + nH2O =xCaO · SiO2 · yH2O + (2− x)Ca(OH)2 (2)

As can be seen from Figure 2, the hydration products of cement for 28d are mainly
ettringite, calcium hydroxide, hydrated calcium silicate, and a small amount of calcium
carbonate. At 39.37◦, the diffraction peak of calcium carbonate is sharp, and then the
intensity gradually decreases, which is due to the absorption of carbon dioxide in the air
by calcium hydroxide to generate calcium carbonate. With the reaction, the amount of
calcium hydroxide gradually decreases, and the amount of calcium carbonate also decreases
gradually.

2.2. Pretreatment of DMR

The bulk DMR (Figure 3a) was dried at 105 ◦C for 48 h. After cooling, crushing, grind-
ing, and sieving, five DMR with different particle sizes—80 mesh, 28 mesh, 14 mesh, 8 mesh,
and 4 mesh—were obtained, respectively. The treatment effect is shown in Figure 3b–f.
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2.3. Preparation of Cement Solidified DMR Solidified Body

The larger the specific surface area is, the more active sites can be provided for the
hydration reaction, and the reaction is more sufficient. Therefore, 80 mesh DMR with a
larger specific surface area is selected to study the influence of different cement content on
the cement-DMR solidified body; Fang et al. [31] obtained 80 mesh EMR under 30% cement
content, and the strength of the solidified body exceeded 10 MPa to meet the requirements
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of comprehensive utilization. Therefore, the influence of DMR with different particle sizes
on the cement-DMR solidified body was studied under 30% cement content. The specific
test scheme is as follows:

(1) The influence of different cement content: the ratio of cement to 80 mesh DMR is 10%,
15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, and the water cement ratio is 0.44;

(2) Put the cement and DMR into a mixer and mix them at low speed for 1 min, then add
water to the mixture slowly and stir for 3 min, and then inject them into a test mold
of 40 mm × 40 mm × 160 mm after mixing evenly. Vibrate the cement mortar on
the shaking table for 120 times until it is compact, and smooth it with a scraper after
vibrating. After curing at 22 ◦C and 96% humidity for 24 h, demoulding was carried
out, and curing was continued to the specified curing ages of 3d, 7d, 14d, and 28d
under the above conditions, and the cement-DMR solidified specimens to be tested
were obtained.

2.4. Flexural Strength and Compressive Strength

According to GB/T 17671-2021 [32], the flexural strength and compressive strength of
cement-DMR solidified body specimens for 3d, 7d, 14d and 28d were tested by an electronic
pressure testing machine controlled by a microcomputer (Hangzhou Xin Hi-Tech Co., Ltd.,
Hangzhou, China). The loading rate of flexural strength is 50 N/s, the loading rate of
compressive strength is 2400 N/s, and the average value is taken for each group of three
samples.

2.5. Characterization of Solidified Body

The main components of the cured body after the hydration reaction were analyzed
by an X-ray diffractometer (Germany BRUKER AXS Co., Ltd., Karlsruhe, Germany), and
the cured body was milled through a 200 mesh sieve hole for scanning, the scanning range
was 5~70◦, and the scanning rate was 2 (◦)/min; Scanning electron microscope-energy
dispersive spectroscopy (SEM-EDS, Germany Carl Zeiss Co., Ltd., Oberkochen, Germany)
was used to analyze the microscopic morphology and main elements of the cured body.

2.6. Leaching Toxicity Test

Leaching toxicity test according to HJ 557-2010 [33]. The leached toxic specimens were
cured to the specified age, and after being crushed, they were sampled and dried at 105 ◦C
and passed through a 3 mm sieve. A total of 10 g of sample was weighed and placed in
a 250 mL flask, and 100 g of extractant (mixed sulfuric acid and nitric acid) was added.
The cap of the flask was tightly sealed and placed in a speed-regulating, multi-purpose
oscillator. The flask was shaken at (25 ± 2) ◦C at a frequency of (110 ± 10 oscillations/min)
for 8 h, and then the flask was removed. After standing for 16 h, the concentration of heavy
metal elements was measured by triple quadrupole ICP-MS (Japan Agilent Technologies
Co., Ltd., Tokyo, Japan), and the ammonia nitrogen content was measured by a UV-VIS
spectrophotometer (Shanghai Aoyi Instrument Co., Ltd., Shanghai, China).

3. Results and Discussion
3.1. Flexural Strength and Compressive Strength

Figure 4 shows the test results for flexural strength and compressive strength of a
cement-DMR solidified body under different cement content and different age conditions
with an 80 mesh DMR ratio.

As can be seen from Figure 4, with the increase in cement content and curing time,
the flexural and compressive strengths of the solidified body increase. When the cement
content is 10~15%, the flexural strength and compressive strength increase slowly, but
when the cement content reaches 15%, the compressive strength increases rapidly. The
flexural strength and compressive strength are the highest at each age when the cement
content is 50% The flexural strengths of 3d, 7d, 14d, and 28d are 10.5 MPa, 12.9 MPa,
14.3 MPa, and 15.6 MPa, respectively. which is 17.5, 12.9, 11.9, and 10.4 times that of
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3d, 7d, 14d, and 28d, respectively, when the cement content is 10%. The compressive
strength is 23.2 MPa, 32.1 MPa, 41.6 MPa, and 49.6 MPa, respectively, which is 12.2, 14.6,
13.4, and 11.8 times of the 3d, 7d, 14d, and 28d strengths when the cement content is 10%.
The results show that more hydrated calcium silicate gel (C-S-H) can be formed in the
cement-DMR solidified body with higher cement content [34], and more ettringite (AFt)
can be formed in the alkaline environment of cement hydration due to a large amount
of gypsum dihydrate (CaSO4·2H2O) in the DMR solidified body. In addition, DMR is
obtained by desulfurization and deamination calcination of EMR at high temperature and
pressure. It is mainly a solid calcined slag with low-temperature inert phases such as
cristobalite, calcium sulfate, and silicates such as calcium and aluminum as main phases
and has high activity [35]. In addition, DMR itself has weak volcanism and promotes the
hydration reaction of cement [36]. To sum up, it is precisely because of the enhancement
of the hydration reaction, the increase of hydration products, and the formation of more
C-S-H and AFt that the flexural strength and compressive strength of the solidified body at
each age are significantly improved under 50% cement content.
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Figure 5 shows the test results for flexural strength and compressive strength of a
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As can be seen from Figure 5, the particle size of DMR has a great influence on the
strength of the cured body. The flexural strength and compressive strength of the cured
body with DMR particle size of 28 mesh are the highest, and the flexural strength of the
cured body with DMR particle size of 80 mesh is increased by 10.9%, 13.6%, 7.5%, and
7.1% for 3d, 7d, 14d, and 28d, respectively. The compressive strength increased by 3.6%,
8.7%, 4.0%, and 6.8%, respectively. The flexural strength and compressive strength of the
80 mesh DMR solidified body at 28d were 9.8 MPa and 32.2 MPa, respectively, and the
flexural strength and compressive strength of the 28 mesh DMR solidified body at 28 mesh
size were 10.5 MPa and 34.4 MPa, respectively. It can be seen that with the slight increase
of particle size, DMR with slightly larger particles acted as a part of the aggregate in the
hardened body, so the strength increased slightly. However, with the increase in particle
size, the flexural strength and compressive strength of the DMR solidified body decreased.
The flexural strength and compressive strength of the DMR solidified body at 28d with 30%
cement content and 4 mesh particle size were 6.3 MPa and 20.1 MPa, respectively, which
decreased by 40.0% and 41.6%, respectively, compared with 28 mesh. The analysis shows
that when the particle size is large, the DMR in the middle of the agglomerated particles
cannot be fully mixed with cement uniformly, forming a failure stress concentration point
similar to honeycomb, and the uneven stress distribution during flexural and compressive
resistance leads to stress concentration, which reduces the strength of the solidified body.
In addition, DMR has certain pozzolanic properties, and the finer the particle size, the more
obvious the effect, which can promote the strength of a cement-DMR-solidified body. At
the same time, when DMR is ground to a certain extent, its surface area is larger. When the
fine DMR powder acts as a physical filling, it can be more effectively dispersed into the
pores of the cured body, which improves the pore structure of the cured body, makes its
structure denser, and shows greater macroscopic strength.

3.2. Toxicity Leaching Test of Cement Solidified Desulfurization Manganese Residue

The content of heavy metals in DMR was determined by triple quadrupole ICP-MS,
and the content of ammonia nitrogen was measured by a UV-VIS spectrophotometer. The
test results are shown in Table 2. The concentrations of Mn and NH4-N in the leaching
solution of DMR are 2.8 mg/L and 0 mg/L, respectively, which are 1.4 times and 0 times
the Class I emission standard in GB8978-1996 [37]. Only the leaching concentration of Mn
slightly exceeds the standard, and other heavy metals such as Pb, Ni, Cu, and Zn are far
lower than the requirements of GB8978-1996. Therefore, Mn is the pollutant that needs
attention in DMR, and the concentration of Mn in the solidified body is mainly determined.
The reason why ammonia nitrogen is not detected is that ammonia nitrogen is decomposed
into ammonia and nitrogen at high temperatures and pressures. Ammonia is collected
for manufacturing ammonia water, while nitrogen is discharged into the air. It can be
seen that ammonia nitrogen in EMR can be effectively removed by high-temperature and
high-pressure calcination.

Table 2. Test results of leaching toxicity of DMR.

Test Elements Leaching Mass
Concentration/(mg·L−1) GB8978-1996/(mg·L−1)

Mn 2.8 2.0
Pb 0.003 1.0
Ni 0.015 1.0
Cu 0.004 1.0
Zn 0.013 5.0
Se 0.009 0.2
As 0.175 0.5
P 0.026 0.3

Cd 0.0001 0.1
Cr 0.0009 1.5

NH4-N N.D 1 15
1 is not detected.
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Figures 6 and 7 are Mn leaching concentration of cement-DMR solidified body at 28d.
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As can be seen from Figures 6 and 7, the content of leaching toxicity decreases with the
increase in cement content and increases with the increase in particle size. The concentration
of Mn is 5.43 × 10−3 mg/L and 0.01 × 10−3 mg/L when the cement content is 10%
and 50%, and the solidification rate of Mn by cement is over 99.8%. The concentrations
of Mn in 80 mesh and 4 mesh solidified bodies for 28d were 1.32 × 10−3 mg/L and
4.59 × 10−3 mg/L, respectively. With the increase in DMR particle size, the curing effect of
Mn decreases slightly, but all of them can meet the Class I emission standard in GB8978-1996.
There are three main reasons for the low leaching concentration of Mn in cement-DMR-
solidified bodies. One is the high alkalinity and strong acid retarding ability of DMR itself;
second, the cement hydration reaction provides a better alkaline environment and physical
encapsulation; third, the hydration products produced by cement solidification of DMR
have a strong acid retarding ability, and a large amount of acid is needed to leach Mn from
DMR [36].

To sum up, cement can effectively solidify soluble Mn in DMR, and increasing the
content of cement can further remove Mn; DMR particles with larger particle sizes are not
as good as DMR particles with smaller particle sizes. The reason for the analysis is that
the specific surface area of DMR particles with a larger particle size is smaller. In contrast,
DMR particles with a smaller particle size and larger specific surface area can participate
in hydration reaction more fully, have a better curing effect, and lower leaching toxicity.
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Combined with XRD spectrum analysis of DMR, it can be seen (Figure 1) that the main
components of DMR are low temperature cristobalite and gypsum, and the heavy metal
Mn may have been wrapped by the combined crystals of quartz, calcium sulfate and other
minerals melted at high temperature, and melted with other metal elements to transform
into silicate crystals, finally forming stable silicate compounds. The leaching toxicity of
DMR obtained by high temperature and high-pressure desulfurization calcination treatment
has been significantly reduced, and the Mn in DMR can be further stabilized by cement
solidification.

3.3. Study on Hydration Products and Micro-Morphology Analysis of Cement Solidified
Desulfurization Manganese Residue Solidified Body
3.3.1. XRD Analysis

Figure 8 is the XRD pattern of DMR with 80 mesh particle size solidified body at 28d
under different cement content.
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As can be seen from Figure 8, with the increase in cement content, the intensity of the
diffraction peaks of the gypsum dihydrate phase (CaSO4·2H2O) and quartz phase (SiO2)
decreases obviously. Analysis shows that in an alkaline environment, quartz and gypsum
dihydrate can be activated to promote the formation of hydration products, and OH- leads
to the fracture of chemical bonds between Al-O and Si-O. At the same time, DMR provides a
high sulfate environment, combining Ca2+ and SO4

2− to form Aft [38]. The main reactions
are shown in Formulas (3)–(6), and the reactions shown in Formulas (3)–(6) consume
OH−, which promotes the forward hydration reaction of Portland cement as shown in
Formulas (1) and (2). With the increase in cement content, the alkaline environment of the
whole system is stronger, and the content of hydration products C-S-H and Aft increases,
which has a positive effect on strength formation.

It can be seen from Figure 8 that the diffraction peaks of AFt and C-S-H are at 9.1◦.
with the increase of cement content, and the peak is constantly sharp, which explains that
it has higher early strength under high cement content. A small amount of soluble Mn
in DMR combined with the OH− ion in an alkaline environment, and soluble Mn finally
formed stable and insoluble MnO2 [19].

SiO2+OH−+H2O→ [H3SiO4]
− (3)

Al2O3+2OH− → 2AlO−2 + H2O (4)
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AlO−2 + OH− + H2O→ [H3AlO4 ]
−
2 + [Al(OH)6]

−
3 (5)

[Al(OH)6]
−
3 + Ca+ + SO2−

4 + H2O→ Ca6Al2(SO4)3(OH)12 · xH2O(Aft) (6)

3.3.2. SEM-EDS Analysis

Figure 9 shows the SEM micrographs of the 28d solidified body with an 80 mesh
particle size DMR ratio of 10% and 50% cement content.
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As can be seen from Figure 9, ettringite (Aft) crystal is needle-rod shape, C-S-H gel
is fibrous shape [39,40], silicon dioxide crystal (SiO2) is a spherical particle, and gypsum
crystal (CaSO4·2H2O) is rod shape in the cured body, among which AFt crystal is the main
source of strength in the cured body. On the other hand, from Figure 9a,b, it can be seen
that under low cement content, the solidified body is mainly rod-like gypsum crystal and
spherical silica crystal, with less C-S-H gel, and the solidified body has obvious pores,
which explains why the compressive strength of the solidified body at 10% cement content
for 28d is low. With the increase in cement content, the C-S-H gel and Ca(OH)2 content
of the hydration reaction increased, which promoted the formation of AFt. As can be
seen from Figure 9c,d, the flocculent C-S-H gels are closely aggregated and connected to
each other [41], showing needle-bar ettringite crystals, which are closely overlapped to
form a dense network structure and jointly improve the mechanical strength [18], which
is consistent with the results of flexural strength and compressive strength shown in
Section 2.1.

Figure 10 is the element analysis of the SEM-EDS spectrum of 28d solidified body
under raw slag, 80 mesh particle size DMR mixed with 10% and 50% cement.
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It can be seen from Figure 10 that the main elements in DMR raw slag are Ca, Si,
Fe, Al, K, Mg, and Mn. Combined with SEM, it can be seen that the crystal phase in
the raw slag is distinct, and it shows that the main phases at the sample point are SiO2
and CaSO4·2H2O. At the same time, the distribution of Ca and S proves the existence
of CaSO4·2H2O. Combined with the SEM images of Figure 10b,c and the distribution of
elements, C-S-H gel is formed with Ca, Si, and O as the main elements, and there is metal
Mn in the cured C-S-H gel, which is due to the isomorphic transformation during the
formation of layered C-S-H gel, and Mn can undergo displacement reactions with Ca, Al,
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Si, and Fe plasma in its lattice [42], thus immobilizing the lattice into the crystal structure
and existing in a more stable form. This also explains that the leaching toxicity of Mn is
significantly reduced after DMR is cured by cement.

4. Conclusions

In this paper, P.O 42.5 cement was used to solidify DMR. Through the tests of flexural
strength, compressive strength, and leaching toxicity, the effects of cement content and DMR
particle size on the mechanical strength and leaching toxicity of the cement-DMR solidified
body were analyzed. At the same time, the DMR mechanism of cement solidification was
analyzed by means of XRD, SEM, and EDS. The following conclusions are drawn:

(1) DMR, prepared by high-temperature and high-pressure desulfurization and deamina-
tion calcination, has a solidified body mixed with cement that has good flexural and
compressive strength. Under 80 mesh particle size, the increase in cement content can
significantly improve the flexural strength and compressive strength of the solidified
body at different ages. Under the condition of 30% cement content, DMR with differ-
ent particle sizes has a great influence on the strength of the solidified body, and the
solidified body formed by 30% cement with four mesh particle sizes will form stress
concentration points, thus reducing the strength of the solidified body.

(2) Cement can effectively solidify the soluble Mn in DMR. With the increase in cement
content, the Mn in DMR can be further removed. The solidification rate of Mn in
a cement-DMRsolidified body with 10% cement content is 99.8%. The increase in
particle size has little negative impact on the solidification of Mn, but it can still meet
the Class I emission standard in GB8978-1996.

(3) C-S-H gel is formed by the cement hydration reaction, and DMR and cement can
provide enough Al elements. Under the alkaline environment provided by the cement
hydration reaction, the main substances of DMR, dihydrate gypsum (CaSO4·2H2O)
and quartz (SiO2), react to form ettringite (AFt), and C-S-H gel and AFt cooperate to
form a dense network structure, which improves the strength of the solidified body. In
the alkaline environment formed by cement hydration, a small amount of soluble Mn
in DMR finally forms MnO2, and some manganese is solidified in C-S-H gel through
isomorphic transformation.
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