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Abstract: In sand casting, gas porosity is a common defect that can result in decreased strength,
leakage, rough surfaces, or other problems. Although the forming mechanism is very complicated,
gas release from sand cores is often a significant contributor to the formation of gas porosity defects.
Therefore, studying the gas release behavior of sand cores is crucial to solving this problem. Current
research on the gas release behavior of sand cores mainly focuses on parameters such as gas perme-
ability and gas generation properties, through experimental measurement and numerical simulation
methods. However, accurately reflecting the gas generation situation in the actual casting process is
difficult, and there are certain limitations. To achieve the actual casting condition, a sand core was
designed and enclosed inside a casting. The core print was extended to the sand mold surface, with
two types of core prints: hollow and dense. Pressure and airflow speed sensors were installed on
the exposed surface of the core print to investigate the burn-off of the binder of the 3D-printed furan
resin quartz sand cores. The experimental results showed that the gas generation rate was high in
the initial stage of the burn-off process. The gas pressure quickly reached its peak in the initial stage
and then decreased rapidly. The exhaust speed of the dense type of core print was 1 m/s, lasting
for 500 s. The pressure peak of the hollow-type sand core was 1.09 kPa, and the exhaust speed peak
was 1.89 m/s. The binder can be sufficiently burned off for the location surrounding the casting and
the crack-affected area, so the burnt sand appears white, while the burnt core appears black due to
insufficient burning of the binder because of isolation from the air. The gas generated by the burnt
resin sand in contact with air was 30.7% less than that generated by the burnt resin sand insulated
from the air.

Keywords: furan resin; sand core gassing; pressure of gas emission; 3D printing

1. Introduction

In sand casting, the sand core is enveloped by molten metal. When the sand core
temperature reaches the decomposition temperature of the resin binder, a large amount of
gas is generated from the breakdown of the resin binder. If the gas cannot be discharged
in time through the core print, it will invade the unsolidified casting, resulting in casting
porosity defects. Gas porosity defects are common in cast iron and aluminum alloy castings.
Engine cylinder blocks, cylinder heads, and other castings have many sand cores and
complex inner structures. During production, exhaustion is more difficult, which can easily
cause gas porosity defects. A typical location of a porosity defect in an engine cylinder block
is shown in Figure 1. Porosity defects can cause stress concentration and even fracture, and
can also cause problems such as reduced airtightness and fatigue performance of engine
castings. Due to the numerous influencing factors and the complexity of the gas porosity
formation mechanism, porosity defects have long been a challenging problem.
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volume and pressure. Zhang et al. [4] measured the gas volume of resin sand samples 
with different resin contents during heating to a specified temperature, using a tube fur-
nace heating method. Under heating conditions of 700 °C to 850 °C, the gas generation 
rate of a gram of resin sand was 10–15 mL. This method can accurately obtain the gas 
generation and its rate of resin sand under different temperature conditions, but it signif-
icantly differs from the actual casting process, such as the increase in gas porosity caused 
by core burnout and uneven burnout. Bobrowski et al. [5–7] poured gray cast iron and 
aluminum–silicon alloy melt into the sand mold, with the metal completely enveloping 
the sand core. They studied the temperature and gas volume changes during the burnout 
process of furan resin and alcohol–acid resin sand cores by separately extracting the gas 
produced by the sand core burnout through a duct. The maximum gas emission rate of 
furan resin sand occurred when the metal in the mold was in the liquid and semi-solid 
states, but the gas pressure inside the sand core and the effect of the sand core exhaust 
channel on gas generation were not considered. Walker et al. [8,9] embedded sensors into 
the mold to collect data such as temperature and pressure at multiple locations to verify 
the quality of the castings for numerical simulations. 

Researchers have also studied the gas porosity defects of castings using numerical 
simulation methods. Zhang et al. [10] used a conservative phase field-lattice Boltzmann 
model to analyze the pore defect characteristics of Mg-Al alloys and the variation of bub-
bles in microchannels with obstacles. Liu et al. [11] simulated the filling and solidification 
processes of aluminum alloy cylinder heads, found that the porosity defect was caused by 
the internal sand core being heated to decompose the gas and the gas could not be dis-
charged smoothly, and optimized the structural design to avoid defects. Guofa et al. and 
Yang et al. [12,13] used numerical simulation analysis to study the casting defects in A356 
aluminum alloy wheel hubs during low-pressure casting. They found that internal defects 
such as shrinkage cavities, shrinkage porosity, and impurity can affect the mechanical 
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Considerable experimental research has been conducted on the gas generation of
resin cores produced using different processes at different temperatures during the high-
temperature decomposition of resin. Bargaoui et al. [1–3] studied changes in the quality
of resin sand with temperature, and the influence of oxidants on the crushability of resin
sand using thermogravimetric analysis. However, this method can only analyze the quality
changes of resin sand during the decomposition process, and does not consider the gas
volume and pressure. Zhang et al. [4] measured the gas volume of resin sand samples with
different resin contents during heating to a specified temperature, using a tube furnace
heating method. Under heating conditions of 700 ◦C to 850 ◦C, the gas generation rate of a
gram of resin sand was 10–15 mL. This method can accurately obtain the gas generation
and its rate of resin sand under different temperature conditions, but it significantly differs
from the actual casting process, such as the increase in gas porosity caused by core burnout
and uneven burnout. Bobrowski et al. [5–7] poured gray cast iron and aluminum–silicon
alloy melt into the sand mold, with the metal completely enveloping the sand core. They
studied the temperature and gas volume changes during the burnout process of furan resin
and alcohol–acid resin sand cores by separately extracting the gas produced by the sand
core burnout through a duct. The maximum gas emission rate of furan resin sand occurred
when the metal in the mold was in the liquid and semi-solid states, but the gas pressure
inside the sand core and the effect of the sand core exhaust channel on gas generation were
not considered. Walker et al. [8,9] embedded sensors into the mold to collect data such
as temperature and pressure at multiple locations to verify the quality of the castings for
numerical simulations.

Researchers have also studied the gas porosity defects of castings using numerical
simulation methods. Zhang et al. [10] used a conservative phase field-lattice Boltzmann
model to analyze the pore defect characteristics of Mg-Al alloys and the variation of bubbles
in microchannels with obstacles. Liu et al. [11] simulated the filling and solidification
processes of aluminum alloy cylinder heads, found that the porosity defect was caused
by the internal sand core being heated to decompose the gas and the gas could not be
discharged smoothly, and optimized the structural design to avoid defects. Guofa et al. and
Yang et al. [12,13] used numerical simulation analysis to study the casting defects in A356
aluminum alloy wheel hubs during low-pressure casting. They found that internal defects
such as shrinkage cavities, shrinkage porosity, and impurity can affect the mechanical
properties of the casting. By optimizing process parameters and improving mold design,
these defects can be reduced, leading to improved mechanical properties of the casting.

To reveal the actual casting conditions, this study measured the gas pressure and
exhaust speed of the sand core during the casting process to investigate the gas evolution
law. 3D printing technology was used to produce sand cores with specific structures using
furan resin sand [14,15]. The gas in the sand core was designed to be discharged from
a single channel. The results contribute to our understanding of the mechanism of gas
porosity in castings, and can provide guidance for numerical simulations to predict porosity
defects, optimize the casting production process, and reduce porosity defects in castings.
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2. Experiment
2.1. Model Design

Three experiments were designed to investigate the gas pressure and exhaust speed
resulting from the heating and burning of sand cores. The test casting was a 140 mm × 140 mm
× 140 mm cube with a 120 mm × 120 mm × 120 mm cubic cavity and a venting hole
on the top, as shown in Figure 2. The sand core forms the inner cavity of the casting
and is designed with a core print on one side protruding to the surface of the sand mold.
During the casting process, the liquid metal can fully wrap around the sand core, and the
gas generated by the sand core can escape only from the core print to the environment. This
design makes it convenient to measure gas pressure and speed. The size of the sand mold is
270 mm × 340 mm × 270 mm, the size of the sand core is 120 mm × 120 mm × 120 mm, and
the core print is 60 mm × 60 mm × 100 mm. The wall thickness of the casting is 10 mm,
except for the top 20 mm. To guide the gas to the core print end, an air passage with a
diameter of 4 mm was designed in the sand core. Two types of core prints were designed.
The first is a blind core print with a circular gap with a diameter of 30 mm; it is 2.5 mm
thin and 110 mm deep, and 10 mm of it can penetrate the sand core. It has a tube for gas
gathering and a platform for installing the gas speed sensor and pressure sensor. The other
is a hollow core print with a central opening with a diameter of 30 mm; it is 110 mm deep,
and 10 mm penetrates the sand core. Two sizes of venting holes were designed: one is
25 mm × 25 mm × 50 mm, and the other is 50 mm × 50 mm × 50 mm, resulting in different
melt volumes. Their combinations are listed in Table 1.
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Figure 2. 3D model and cross-sections of the casting and sand cores (mm): (a) Scheme 1 (with blind
core print); (b) Scheme 2 (with through-hole core print); (c) Scheme 3 (with through-hole core print).

Table 1. Designed schemes of casting and sand core models.

Scheme Core Print Structure Venting Hole/mm

1 Blind hole 25 × 25 × 50
2 Through-hole 25 × 25 × 50
3 Through-hole 50 × 50 × 50

2.2. Sand Molds and Cores Manufacturing

The sand molds and sand cores used in the experiment were manufactured using an
ExOne S-Max 3D printer. The printing materials were furan resin quartz sand, with a resin
addition of 1.5%, and a curing agent addition of 30% of the resin. After printing, the loose
sand was removed, and a layer of coating was applied to the surface of the printed sand
cores. The sand mold was divided into upper and lower parts for printing, and clay paste
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was applied to seal the parting surface during assembly. The printed sand mold and sand
cores can be seen in Figure 3.
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2.3. Experimental Design

On-site casting experiments and numerical simulations were performed for the three schemes.
Two castings of each scheme were poured. During the experiment, a metal sleeve (a tube
2.5 mm thick) was inserted into the gap of the blind core print and the through-hole of
the through-hole core print, as shown in Figure 4. The metal tube completely covered the
air lead channel, allowing the gas mainly to escape along the core print. The temperature
near the end of the core print was relatively high, and the metal tube helped to cool the
exhaust gas, thereby avoiding damage to the gas pressure sensor and anemometer due to
the high temperature. A gas pressure sensor (Keyence GP-M001) was screwed to the end of
the metal tube and sealed with tape to measure the gas emission pressure. All connection
points were sealed. For the hollow core print, a thermosensitive anemometer (SMART
AR866A) was inserted at the end of the metal tube to measure the exhaust speed with
the sensor blade parallel to the direction of gas flow. Thermocouples were inserted at the
top surface of the casting and inside the sand core along the air channel to measure the
temperatures of the casting and core. For Scheme 3, gas pressure sensors were installed
on the front and side of the metal tube, as shown in Figure 4c. The casting was poured
with gray cast iron HT250, and its specific composition is listed in Table 2. The pouring
temperature was 1360 ◦C, and the pouring process lasted for 7 s. In addition, FT GasPore
software developed by Tsinghua University was used for the corresponding numerical
simulation and further analysis, with version 1.0.0.

The parameters measured in the experiment include casting temperature, sand core
temperature, gas emission pressure, and gas emission speed. High-temperature S-type
thermocouples were used to measure the casting temperature, while K-type thermocouples
were used to measure the sand core temperature. The sampling frequency for temperature,
pressure, and speed was 1 Hz, and data collection was performed using a GRAPHTEC
GL7000 data logger. The measurement items are shown in Table 3, with Tcast representing
the casting temperature, Tcore representing the sand core temperature, and v representing
the gas emission speed at the sand core print. Pfront represents the gas emission pressure on
the front of the metal tube at the sand core print, while Pside represents the gas emission
pressure on the side wall.

Table 2. Chemical composition of the gray cast iron HT250 (wt%).

Element C Si Mn P S Fe

Content 3.12 1.56 0.9 0.1 0.12 Balance
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Table 3. Experimental test plans.

Scheme Core Print Structure
Measurement Items

No. 1 No. 2

1 Blind hole Tcast v /
2 Through-hole Tcast Tcore v Pfront
3 Through-hole Tcore v Pfront Psider

3. Results
3.1. Casting and Sand Core Temperature

Figure 5 shows the temperature change curves of the casting and sand cores, with time
0 representing the start of pouring. Due to unavoidable heat loss during iron transportation
and pouring, the temperature peak of the casting is around 1240 ◦C after pouring, before it
gradually decreases. The temperature change trends of all castings are similar. The temper-
ature inside the sand core slowly increases. After 700 s, the sand core in Scheme 2 reached
150 ◦C, while the sand core in Scheme 3 reached 400 ◦C. The position of the thermocouple
in Scheme 3 is not the same as in Scheme 2 due to an error during thermocouple insertion.
The temperature measurement position of Scheme 3 is closer to the outer surface of the
sand core, resulting in a higher temperature compared to Scheme 2. This can be proven
using numerically simulated cooling curves.
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3.2. Gas Pressure

Figure 6 compares the gas pressure at the core print of the sand cores cast with different
amounts of molten iron. The gas pressure rapidly increased and reached its peak when
the pouring was just completed. The peak values for Schemes 2 and 3 are 0.41 kPa and
1.09 kPa, respectively. As can be seen by comparing the temperature curves in Figure 7, gas
generation in the sand cores mainly occurs in the initial stage. During this stage, a large
amount of gas is generated due to the high-temperature decomposition of the binder on the
surface of the sand cores, in direct contact with the molten metal. After the filling process is
completed, the gas release gradually stabilizes. Following the peak, the pressure drops at a
relatively fast rate for a certain period due to the increased porosity of the sand particles
resulting from the decomposition of the binder at high temperatures, which allows gas to
enter the gap and causes the pressure to drop.
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Figure 7. Exhaust speed change curves.

Increasing the amount of molten iron for the same type of sand core structure increases
the degree of burning of the sand cores, leading to an increase in the peak gas pressure
inside the sand cores. Under the same test conditions, the gas pressure measured at different
locations differs significantly. The experiment measured the gas pressure on the front and
side surfaces of the metal tube in Scheme 3, and the peak pressure on the side was only
0.42 kPa. This is because the gas is dynamically discharged from the interior, and there is a
certain inertia during the flow, which will cause a certain impact force on the sensor located
at the front of the core print, resulting in a higher gas pressure on the front than on the side.
This case is different from a closed space in a static condition, wherein the pressure is the
same at any location and direction.

3.3. Exhaust Speed

Figure 7 compares the air speed at the core print of three types of sand cores. At 12 s,
the gas speed sharply increased, indicating that a large amount of gas was generated inside
the core at the beginning of the pouring, which is consistent with the trend of gas pressure
changes. Then, the exhaust speed gradually decreased. Both Scheme 2 and Scheme 3 have
a hollow sand core structure, and their air speed changes are the same. After the filling was
completed, the exhaust speed quickly reaches peaks of 1.82 m/s and 1.89 m/s, respectively,
and then gradually decreases. In contrast, for Scheme 1 with a dense core print structure,
its peak air speed is lower than the other two groups, with a value of 1.10 m/s due to the
obstruction of the sand. However, the exhaust speed was sustained at about 1 m/s for
approximately 500 s. This indicates that the reasonable arrangement of exhaust channels
in actual casting processes is conducive to the rapid discharge of gas generated inside the
core. The circular tube section area is 3.14 cm2 and the effective section area of the outlet is
2.14 cm2. The total gas generation of the three groups is obtained using Equation (1). The
sand-to-mental ratios, pressure peaks, speed peaks, and measured total gas generation of
the three groups are shown in Table 4, where the sand-to-mental ratio refers to the ratio of
the weight of the sand core to that of the casting (excluding the core print). In addition, here,
the gas is heated and at a high temperature when released, and the volume will expand
by about three to four times compared to room temperature. Scheme 3 has the smallest
sand-to-metal ratio and therefore the largest total gas generation volume.

V = S
∫

vdt (1)

where V is total gas, S is area of exhaust outlet, and v is speed.
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Table 4. Test process measurement.

Scheme Core Print Structure Sand-to-Metal Ratio Peak Pressure/kPa Peak Speed/m·s−1 Total Gas/mL

1 Blind hole 0.284 / 1.10 98,265
2 Through-hole 0.284 0.41 1.82 89,700
3 Through-hole 0.266 1.09 1.89 108,776

4. Discussion
4.1. Heating up of Core and Binder Burning

The gas release of the core during heating was measured using the Beijing Jia Tian
Modeling Material Testing Workstation. Curves of 1 g furan resin-coated quartz sand
heated for 120 s at different temperatures are shown in Figure 8. It is notable that the
total gas evolution increases with temperature and time. During the binder decomposition
process in the initial 0–40 s at the same temperature, the gas release rate is higher, and
stabilizes after heating for 100–120 s. By fitting the curves using MATLAB, the gas release
surface of the furan resin sand concerning temperature and time is obtained, as shown
in Figure 9. Using this fitting result and Formula (2), the total gas evolution curve of the
sand core during the casting process is calculated, as shown in Figure 10. Scheme 3 has the
largest sand-to-metal ratio, so the total gas generation volume is the largest. Scheme 2 and
Scheme 1 have the same sand-to-metal ratio, but there is a difference in gas volume due to
the difference in core head structure; however, this difference is small and negligible.

V =
N

∑
n=1

T

∑
T0

∆t

∑
t

f (T, t) (2)

where V is the total gas release, N is the number of mesh elements used in the numerical
simulation, T is temperature, and t is time, meaning f (T, t) refers to the gas release function.
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The simulated burn-off rates of the sand cores after pouring for 150 s are shown in
Figure 11. The burn-off rates of the three schemes are mainly concentrated on the surface in
contact with the casting, and the burn-off rate of the surface reaches 60%, while the internal
burn-off degree is relatively low. The depth of the burn-off at the top of the sand core is
greater in Scheme 3 due to the larger venting pin size. Figure 12 shows the temperature
and burn-off rate variation curves at points A, B, and C on the central cross-section of the
three sand cores (Point A is located on the surface, and the distance between the points is
10 mm). It can be seen that the burn-off rate of all three schemes rapidly reached 45% after
30 s of casting, and stabilized at 60% after 60 s, which is much higher than the burn-off rate
of Points B and C. The temperature at Point A was much higher than that of Points B and
C. Only a thin layer close to the surface of the core is heated up and burned, and the main
part of the core is still at a low temperature, with zero binders burning off. From Figure 11,
it can be seen that the main gas release is from the surface of the core in contact with the
casting, so the gas pressure and the exhaust speed peak rapidly within 0–60 s after pouring.
Therefore, the gas pore probably occurs in this period.



Materials 2023, 16, 4152 10 of 15

Materials 2023, 16, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 10. Simulated gas release curve of the sand core. 

The simulated burn-off rates of the sand cores after pouring for 150 s are shown in 
Figure 11. The burn-off rates of the three schemes are mainly concentrated on the surface 
in contact with the casting, and the burn-off rate of the surface reaches 60%, while the 
internal burn-off degree is relatively low. The depth of the burn-off at the top of the sand 
core is greater in Scheme 3 due to the larger venting pin size. Figure 12 shows the temper-
ature and burn-off rate variation curves at points A, B, and C on the central cross-section 
of the three sand cores (Point A is located on the surface, and the distance between the 
points is 10 mm). It can be seen that the burn-off rate of all three schemes rapidly reached 
45% after 30 s of casting, and stabilized at 60% after 60 s, which is much higher than the 
burn-off rate of Points B and C. The temperature at Point A was much higher than that of 
Points B and C. Only a thin layer close to the surface of the core is heated up and burned, 
and the main part of the core is still at a low temperature, with zero binders burning off. 
From Figure 11, it can be seen that the main gas release is from the surface of the core in 
contact with the casting, so the gas pressure and the exhaust speed peak rapidly within 
0–60 s after pouring. Therefore, the gas pore probably occurs in this period. 

 
Figure 11. Cross-sectional view of sand core burn-off after 2.5 min of pouring. Figure 11. Cross-sectional view of sand core burn-off after 2.5 min of pouring.

Materials 2023, 16, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 12. Temperature (T) and burn-off rate (η) curves at points A, B, and C of the sand core. 

Figure 13 shows the temperature and burnout distribution on the Z-directional center 
section of the sand core. The maximum burn-off thickness of the sand core was 20 mm 
after 1 min and 40 mm after 4 min. The temperature of the sand core varied rapidly in the 
Z-direction, with high surface temperatures and low central temperatures. The heating 
and burnout of the sand core’s core region were slow. 

 
Figure 13. Variation curves of sand core temperature and burnout in the Z-direction of the central 
section at 1 min and 4 min. 

4.2. Binder Burning Mechanism 
Figure 14 shows the burned sand mold and core. The sand around the venting chan-

nel turned loose and white, the core and broken mold stayed close to the contact surface, 
and the casting kept the original shape and appeared black with clear burning traces. This 
indicates that the sand in contact with the casting may have undergone the same heating 
history, but the binder burning is different. 

Figure 12. Temperature (T) and burn-off rate (η) curves at points A, B, and C of the sand core.

Figure 13 shows the temperature and burnout distribution on the Z-directional center
section of the sand core. The maximum burn-off thickness of the sand core was 20 mm
after 1 min and 40 mm after 4 min. The temperature of the sand core varied rapidly in the
Z-direction, with high surface temperatures and low central temperatures. The heating and
burnout of the sand core’s core region were slow.
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4.2. Binder Burning Mechanism

Figure 14 shows the burned sand mold and core. The sand around the venting channel
turned loose and white, the core and broken mold stayed close to the contact surface, and
the casting kept the original shape and appeared black with clear burning traces. This
indicates that the sand in contact with the casting may have undergone the same heating
history, but the binder burning is different.
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Figure 14. Resin sand burnout situation.

The furan resin-bonded quartz sand has a density of 1.6 g/cm3. Furan resin is an
organic synthetic resin with a stable furan ring structure, which results in a higher residual
carbon content after carbonization due to its high oxygen content. When treated at 900 ◦C
in a closed space, the residual carbon content is 54.9%. The chemical changes that occur
during the high-temperature pyrolysis of furan resin are shown in Figure 15, and the
generated gases include H2O, CO2, CO, H2, and CH4 [16–19]. During the experiment,
the sand core was wrapped in molten iron, making it impossible to contact the external
air. Only a small amount of air remained in the pores of the sand core, as the core has
a porosity of roughly 40%. The oxygen is only around one-fifth of the entrapped air, so
the oxygen is around 8% of the core volume. It can be inferred from Table 5 that the
amount of residual air was approximately 0.08 mL in a 1 cm3 sand cube, which is negligible
compared to the gas release volume. Therefore, a portion of the sand core pyrolysis residue
inside the casting remains as amorphous carbon and cannot be fully burned, resulting in
blackening after combustion. As the sand mold around the venting channel cracked during
the casting process, air penetrated the mold along the crack, as shown in Figure 16. The
gases and amorphous carbon produced due to the pyrolysis of furan resin can undergo
enough oxidation–reduction reactions with O2 to generate CO2 and H2O, resulting in the
full burning of residual carbon after combustion. Finally, there is neither binder nor residual
carbon, and the sand turns loose and white.
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Table 5. Oxygen content and pyrolysis gas volume of 1 cm3 sand core.

Name Unit Value

Sand cm3 1
Porosity / 40%
Density g/cm3 1.6

Entrapped air mL 0.4
Entrapped O2 in mL 0.08

Pyrolysis gas mL 25.6
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Due to the limited research available on the complex process of thermal decomposition
of furan resin, phenolic resin is used as a reference to analyze the effect of oxygen on the
gas produced from the sand core’s decomposition. Under high-temperature anaerobic
conditions, the thermal decomposition products of the phenolic resin include volatiles
such as H2O, CO2, CO, CH4, C2H6, H2, phenol, methyl derivatives, and some condensed
hydrocarbons, as well as non-volatile amorphous carbon. After being subjected to 1000 ◦C
heat treatment, the residual carbon yield is 60.5% [21]. The simplified types and percentages
of phenolic resin thermal decomposition products are shown in Table 6, among which CH4,
H2, and CO are the main gases that can react with O2 [22]. According to the oxidation–
reduction reaction equation in Table 6, the total gas volume after the reaction decreases
by 0.307 mol (including the air involved in the reaction). During the combustion reaction
of non-volatile amorphous carbon, C + O2 = CO2, the gas volume remains unchanged
before and after the reaction. There is very little entrapped oxygen inside the sand core, so
the amount of gas reduction before and after the reaction is determined by the amount of
oxygen, as shown in Table 7. The gas is reduced by only 0.03% after the reaction, which is
negligible. When measuring the gas generation volume in the test, the average temperature
of the gas in the flow through the anemometer is about 900 ◦C. The volume will expand
about 3.9 times, and the volume at room temperature is shown in Table 8. It is still higher
than the simulated gas volume at room temperature, as the simulation results are about
70% of the measured results. This is mainly because the gas generation volume per gram
of sand used in the simulation calculation is measured under the condition of sufficient
oxygen, and the sand core, due to the casting encapsulation, is in an oxygen-deficient
environment (which is why this error occurs). From Figure 10, we can observe that the total
volume of gas generation in Scheme 1 and Scheme 2 is almost the same, while in Table 4,
the measured volume of gas generation in Scheme 1 is higher than that in Scheme 2. This is
because the core print of Scheme 2 is a through-hole structure, and part of the sand core
is in contact with the oxygen in the air, which generates less gas than the blind hole-type
core print structure in Scheme 1 under the same sand-to-metal ratio. Additionally, in the
numerical simulation, the gas release model is based on traditionally measured results, as
shown in Figure 9. Therefore, the simulated results did not include the effect of the reaction
of gas products with the oxygen in the air.
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Table 6. Types and percentages of pyrolysis gases produced by phenolic resin.

Gas Type Gas Content/mol [22] Redox Reaction Equation Volume Change/mol

H2O 0.258 / 0
CH4 0.11 CH4 + 2O2 = 2H2O + CO2 0
CO 0.063 2CO + O2 = 2CO2 −0.0315
H2 0.551 2H2 + O2 = 2H2O −0.2755

CO2 0.018 / 0
Sum 1 −0.307

Table 7. Types and percentages of pyrolysis gases produced by phenolic resin in entrapped conditions.

Gas Type Gas Content/mol Entrapped O2/mol Redox Reaction Equation Volume Change/mol

H2O 0.258 / 0
CH4 0.11 / 0
CO 0.063 0.003 2CO + O2 = 2CO2 −0.003
H2 0.551 / 0

CO2 0.018 / 0
Sum 1 0.003 −0.003

Table 8. Simulated gas volume and tested gas volume.

Scheme
Simulated Gas Volume/mL

(Room Temperature)
Tested Gas Volume/mL

900 ◦C Room Temperature (25 ◦C)

1 17,735 98,265 24,966
2 17,994 89,700 22,789
3 19,562 108,776 27,636

In conclusion, with the same degree of burning, the gas produced by the sand core
is 30.7% less than that produced by the sand core in the casting due to contact with air,
and the color after burning is white. Therefore, experiments testing sand gassing should
consider isolating the air for more accuracy.

5. Conclusions

Gas release and exhaust tests were conducted on sand cores with two different types
of core prints: blind and hollow. The tests measured the temperature, gas pressure, and
exhaust speed of both the casting and sand cores. The following conclusions were drawn
with a casting–core ratio of around 2.8:

1. The rate of gas generation in the furan resin sand core was high during the first 60 s
after pouring, reaching a gas pressure peak of 1.09 kPa.

2. The gas release of sand cores lasted for 10 min. The sand core with a blind core print
structure had a peak speed of 1.10 m/s, and maintained a constant exhaust speed of
1 m/s for 500 s. The exhaust speed of the sand core with a hollow structure quickly
reached a peak of 1.89 m/s and then slowly decreased.

3. There is the possibility of gas pores occurring during the initial stage of casting due to
an eruption of gas release.

4. Since the sand core was wrapped in molten metal, the air gaps inside the core were
unable to fully support the combustion of the products of the pyrolysis of the binder.
After the binder was burnt, residual carbon accumulated, resulting in blackened
internal resin sand. However, on the surface or area with cracks, the burnt surface
resin sand turns white. The gas volume generated by the burnt resin sand under
anaerobic conditions is 30.7% higher than that in contact with air. Therefore, there is
more gas released in the core than the amount found using a calculation based on a
gas evolution test of core sand, which is carried out in conditions with enough air.
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Traditional gas evolution testing of mold or core sand should be modified to the state
of the sand sample so that it may be insulated from the air.
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