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Abstract: This paper presents the results of research aimed at assessing the effectiveness of ten
selected constitutive equations for hyperelastic bodies in numerical modeling of the first compression
load cycle of a polyurethane elastomer with a hardness of 90 Sh A depending on the methodology for
determining the material constants in the constitutive equations. An analysis was carried out for four
variants for determining the constants in the constitutive equations. In three variants, the material
constants were determined on the basis of a single material test, i.e., the most popular and available
in engineering practice, the uniaxial tensile test (variant I), the biaxial tensile test (variant II) and the
tensile test in a plane strain (variant III). In variant IV, the constants in the constitutive equations
were determined on the basis of all three above material tests. The accuracy of the obtained results
was verified experimentally. It has been shown that, in the case of variant I, the modeling results
depend to the greatest extent on the type of constitutive equation used. Therefore, in this case it is very
important to choose the right equation. Taking into account all the investigated constitutive equations,
the second variant for determining the material constants turned out to be the most advantageous.
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1. Introduction

An elastomer is a polymer that exhibits a nonlinear, elastic behavior under load. The
term elastomer is often used to refer to materials that exhibit rubber-like behavior. However,
elastomers are a wide group of materials.

Elastomers are unique to polymers and exhibit extraordinary reversible extension
with low hysteresis and minimal permanent set. They are the ideal polymers relieved of
molecular interactions, crystallinity and chain rigidity constraints. The common elastomers
have a characteristic low modulus, although with poor abrasion and chemical resistance.
Elastic strain may be due to chemical bond stretching, bond angle deformation or crystal
structure deformation. In an elastomer under strain, bonds are not elongated and bond
angles not deformed. Stretch of an elastomer depends upon rotations about bonds, that is,
changes to dihedral angles. An unstrained elastomer will exist in a random coil structure.
As strain is increased, the molecules will uncoil to the limiting linear structure. Therefore,
to be an elastomer, a substance essentially must consist of macromolecules. Large strain
requires very long molecules so that uncoiling can be considerable. Formation of an un-
strained random coil means that the elastomer must be non-crystalline since any regular
crystal structures will be unable to contribute to the elastomeric properties [1,2].

In general, the behavior of rubber-like materials can be described as a function of strain
energy density. Therefore, many attempts have been made to theoretically recreate the
stress–strain curves obtained from experiments on the deformation of elastomeric materials.
However, since the deformation capacity of these types of materials is high, and their
behavior varies significantly from one type to another, it is difficult to determine a strain
energy density function that adequately represents the stress–strain relationship from the
experiments. Hence the need for research in this area.
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Elastomers are widely used, including in the machinery and transport industry. They
are also used in the textile, chemical, pharmaceutical and food industries. They are used
as structural elements, elastomeric bearings, tires, medical devices and vibration isolators.
In practice, elastomers are used in almost every area of our lives. Therefore, there is a
great interest in the most accurate prediction of the behavior of these materials subjected to
different stress states in specific applications already at the FEM design stage [3].

To describe the behavior of elastomers, a number of known material models are used,
which, as a rule, should meet the criteria of accurate mapping of the entire deformation,
insensitivity to changes in the stress state and changes in the deformation mode, the
number of parameters (constants) should not be large and the equation should be easy
to implement.

In order to correctly describe the behavior of an elastomeric material using a suitable
model, it must be taken into account that the material is typically subjected to a complex
state of stress. This determines the stress conditions in which tests should be carried out to
determine the constants in the constitutive equations [4,5]. In other words, the load pattern
(state of stress and strain) in the material test should be as close as possible to the load
pattern in real conditions of the analyzed structures or processes.

Attempts to compare the operation of selected material models (Mooney–Rivlin, Yeoh) are
shown in [6], where only the compression test was used to determine the material constants.

It was proved that the Yeoh three-parameter model showed a better fit with the test
data than the one-parameter formula. The two-parameter Mooney–Rivlin model showed a
good fit with the experimental data, therefore it was indicated as promising for applications
with other types of elastomers, including rubber. Comparing both of the above models, the
Yeoh model turned out to be more accurate. On the other hand, the high accuracy of the
Mooney–Rivlin model was demonstrated in the work on non-pneumatic safety tires [7].

However, considering the estimated error, the Yeoh three-parameter material model
using the absolute error calculation for the curve fitting process shows the best accuracy.
Four models were compared in [8]: Ogden, Neo-Hookean, Yeoh and Mooney–Rivlin.

The constants were determined in the uniaxial tensile test. The fit of the Ogden and
Yeoh models for small and large deformations with the data obtained from the uniaxial
tensile test turned out to be better compared to the Neo-Hookean and Mooney–Rivlin
models, which showed low accuracy. In the works [8,9] using three tests: uniaxial tensile,
pure shear test and the equibiaxial extension test, it was shown that the Arruda–Boyce
model for large deformations provides accurate data over the entire strain range for all stress
states. The Monney–Rivlin model is not applicable to large deformations. The Gent model
also shows good accuracy of results in pure shear, uniaxial tensile, uniaxial compression
and flat compression tests.

Depending on the number and type of tests selected for determining the material
constants, the equations present a different effectiveness and accuracy. Therefore, it is
worth paying attention to the correct selection of the number and type of tests, which will
allow them to be adapted to specific applications.

The aim of this study was to evaluate the effectiveness of ten selected constitutive
equations for hyperelastic bodies in the numerical modeling of the first compression load
cycle for a polyurethane elastomer with a hardness of 90 Sh A depending on the methodol-
ogy used for determining the material constants in the constitutive equations. Four variants
for determining the material constants in the constitutive equations were used.

In variant I, the material constants in the individual constitutive equations were
determined solely on the basis of the uniaxial tensile test. In variant II, the material constants
were determined only on the basis of the biaxial tensile test, while in variant III, they were
determined based on a plane strain tensile test. However, in variant IV, the material
constants were determined on the basis of three material tests, i.e., uniaxial and biaxial
tensile tests and a plane strain tensile test.
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2. Selected Constitutive Models

In engineering practice, only parameters such as the Shore A hardness and linear elastic
modulus are often known for individual elastomers. In a limited range of deformation,
the behavior of the elastomer may be close to linear, hence the popularity of classic simple
models such as Neo-Hookean or Mooney–Rivlin model. However, a wider range of
deformations and the influence of other parameters require the use of more advanced
models. Therefore, constitutive models ranging from the simplest to the more complex
and demanding, depending on needs and computational capabilities, were selected for
the research.

2.1. Neo-Hookean Model

The Neo-Hookean model is a hyperelastic material model that can be used to predict
the stress–strain behavior of materials, and the model is similar to Hooke’s law. The
neo-Hookean model is one of the simple models describing the behavior of a material
in the initial stage of deformation, and the deformation energy density function (for an
incompressible material) is as follows:

Wdev = C10(I1 − 3) (1)

where Wdev is the deviatoric third-order deformation form strain energy function, C10 is a
material constant and I1 is the first invariant of the left Cauchy–Green deformation tensor.

The Neo-Hookean model is based on the statistical thermodynamics of cross-linked
polymer chains. Cross-linked polymers work in a manner consistent with the Neo-Hookean
model in terms of linear deformations. However, at some point the polymer chains will
be stretched to the maximum point that covalent cross-links will allow, and this will
dramatically increase the material’s modulus of elasticity. It is well known that the model
of a Neo-Hookean material does not accurately predict the behavior of an elastomer at
high strain.

2.2. Mooney–Rivlin Model (Two-Parameter)

The Mooney–Rivlin model, which was introduced by Melvin Mooney and Ronald
Rivlin, is a hyperelastic material model in which the strain energy density function “W”
is a linear combination of two invariants of the left Cauchy–Green deformation tensor.
Basic assumptions:

• The elastomer is incompressible and isotropic (in an unstrained state).
• The strain energy function must depend on even powers of λi (λi—principal stretch ratio).

The strain energy density function for a Mooney–Rivlin (two-parameter) material is
as follows:

Wdev = C10(I1 − 3) + C01(I2 − 3) (2)

2.3. Mooney–Rivlin Model (Three-Parameter)

The strain energy density function for a Mooney–Rivlin (three-parameter) material is
as follows:

Wdev = C10(I1 − 3) + C01(I2 − 3) + C11

(
I2
1 − 9

)
(3)

where C10, C01 and C11 are experimentally determined material constants, and I1 and I2 are
the first and the second invariants of the deviatoric component of the left Cauchy–Green
deformation tensor.

I1 = λ2
1 + λ

2
2 + λ

2
3 (4)

I2 = λ2
1λ

2
2 + λ

2
2λ

2
3 + λ

2
3λ

2
1 (5)

I3 = λ2
1λ

2
2λ

2
3 (6)
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Incompressibility implies that I3 = 1.
Material constants of the Mooney–Rivlin model are related to the initial shear modulus

G and G can be expressed as follows:

G = 2(C10 + C01) (7)

Despite the known limitations in the description of individual stress states, it is known
that the Mooney–Rivlin model can be used for various structural elements with local
deformation values up to about 200% [10–13].

2.4. Signiorini Model

The Signiorini, Yeoh and James Green Simpson [14–17] models were proposed as
variants of the Mooney–Rivlin model. The strain energy density function (assuming that
the material is incompressible) is as follows [13]:

Wdev = C10(I1 − 3) + C01(I2 − 3) + C20(I1 − 3)2 (8)

2.5. Yeoh Model

The Yeoh form of the strain energy density function can be presented as follows [13–15]:

Wdev = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 (9)

2.6. James, Green and Simpson Model

The James, Green and Simpson form [13,16,17] is as follows:

Wdev = C10(I1 − 3) + C01(I2 − 3) + C11(I1 − 3)
(I2 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 (10)

2.7. Ogden Model

The Ogden model is a hyperelastic material model that can be used to predict a
nonlinear stress–strain relationship for materials such as rubber or other types of elastomer.
The Ogden model was introduced by Ogden in 1972, and the strain energy density function
is as follows [13,18,19]:

Wdev = ∑N
k=1

µk
αk

(λ
αk
1 + λ

αk
2 + λ

αk
3 − 3) (11)

where λαk
i is the deviatoric stretch ratio, µk and αk are empirically determined material con-

stants (material constants obtained from curve fitting of experimental data. This function is
available in Mentat). If the volumetric modulus is not given, the material is considered to be
practically incompressible. This model differs from the Mooney model in several respects.
The Mooney material model refers to the invariants of the right or left Cauchy–Green strain
tensor and implicitly assumes that the material is incompressible. The Ogden formula
refers to the Cauchy–Green deformation value, and the presence of a volumetric modulus
implies a certain compressibility. The Ogden model is a frequently used model to analyze
rubber components such as O-rings and seals. Moreover, it has the advantage that the test
data can be used directly.

2.8. Arruda–Boyce Model

In the Arruda–Boyce strain energy model, the underlying molecular structure of the
elastomer is represented by an eight-chain model to simulate the non-Gaussian behavior of
individual chains in the network. The two parameters nkθ, and N (n is the chain density, k
is the Boltzmann constant, θ is the temperature and N is the number of statistical links of
length one in the chain between chemical cross-links) representing the initial modules and
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limiting chain extensibility are related to the molecular chain orientation, thus representing
the physics of the network deformation.

In most models describing elastomer deformation, the strain energy function con-
structed by fitting the experimental data obtained from one strain state cannot be effectively
used to describe another, altered, strain state. The Arruda–Boyce model improves on this
inconvenience and is unique in this regard, as standard tensile test data provide sufficient
accuracy for many other strain states.

The model is constructed by using an eight-chain network [13,20].
Consider a cube of dimension α0 with an unstretched network including eight chains

of length r0 =
√

Nl, where the fully extended chain has an approximate length of Nl. A
chain vector from the center of the cube to a corner can be expressed as:

C1 =
α0

2
λ1i +

α0

2
λ2 j +

α0

2
λ3k (12)

Using geometrical considerations, the chain vector length can be written as:

rchain =
1√
3

√
Nl
(
λ2

1 + λ
2
2 + λ

2
3

)1/2
(13)

and:
λchain =

rchain
r0

=
1√
3
(I1)

1/2 (14)

Using statistical mechanics considerations, the work of deformation is proportional to
the entropy change on stretching the chains from the unstretched state and may be written
in terms of the chain length as:

W = nkθN
(

rchain
Nl

β + ln
β

sinhβ

)
− θĈ (15)

where n is the chain density and Ĉ is a constant. β is an inverse Langevin function that
correctly accounts for the limiting chain extensibility and is defined as:

β = L−1
( rchain

Nl

)
(16)

With the above equations, the Arruda–Boyce model can be written:

Wdev = nkθ( 1
2 (I1 − 3) + 1

20N
(

I2
1 − 9

)
+ 11

1050N2

(
I3
1 − 27

)
+ 19

7000N3

(
I4
1 − 81

)
+ 519

673750N4

(
I5
1 − 243

)
)

(17)

2.9. Gent Model

Using the notion of limiting chain extensibility, Gent [13,21] proposed the following
constitutive relation:

Wdev = −E
6
(Im − 3) log (1− I1 − 3

Im − 3
) (18)

The constant EIm is independent of the molecular length and, hence, of the degree
of cross-linking. The model is attractive due to its simplicity, but yet captures the main
behavior of a network of extensible molecules over the entire range of possible strains.

2.10. Marlow Model

The Marlow model is directly based on experimental data. It assumes that the strain
energy function can be given as a function of the first invariant only. The form of this
function is not defined explicitly, but its derivatives with respect to the first invariant,
which are needed to compute stress and stiffness, are evaluated directly from test data.
This means that no curve fitting is required to obtain material parameters of a strain energy
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function and that the supplied test data can be reproduced exactly by the material model.
The test data can be obtained from either a uniaxial tensile test, a biaxial tension test or a
pure shear (planar tension) test. Although the model reproduces the test data exactly, other
modes of deformation may only be reproduced in an approximate sense.

The Marlow model can be used to simulate incompressible or slightly compressible
behavior. If compressibility is to be included, some information about a volumetric strain
energy function must be entered [13,14].

The initial shear modulus is estimated from the test data. The strain energy function is
assumed to be the sum of a deviatoric W(I1) and a volumetric part U(J):

W = W(I1) + U(J) (19)

3. Methods

The achievement of the research goal required the development of an original research
plan, which is schematically presented in Figure 1. The research plan included a part related
to experimental research as well as a part related to modeling with the use of nonlinear FEM.
The experimental part of the research concerned the material tests necessary to determine
the constants in the constitutive equations and the verifying compression test. In order to
determine the material constants via four variants, the following tests were carried out:
uniaxial tensile test, biaxial tensile test and plane strain tensile test [13,22,23].
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The material tests and the conditions for their implementation are described below.
In order to verify the results of FEM modeling, experimental compression tests of the
elastomeric cylinder were carried out. The force–displacement characteristic of the tool
was determined, which was the basis for the verification of the FEM results with the
experimental results. An important stage of the research was the development of the stress–
strain curve for the first load cycle of the sample on the basis of individual material tests.
Then, on the basis of these runs, the material constants in the constitutive equations that
were selected for the research were calculated. The knowledge of the material constants for
individual elastomer models was the basis for starting the research related to FEM modeling.
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A numerical model was built for each test as in the experiment, and then FEM calculations
for compression of the elastomeric cylinder were performed using individual constitutive
models for the first load cycle of the elastomeric specimen. Detailed information on the
experiment and numerical modeling is included in the further part of the work.

4. Experimental Work

Due to the specificity of the elastomer depending on the method of loading, it is rec-
ommended [3,24–28] that the material constants in the constitutive equations of elastomers
should be determined based on three material tests, i.e., uniaxial tensile test, biaxial tensile
test and plane strain tensile test or pure shear test.

The uniaxial tensile test is the most well-known and popular material test in engi-
neering practice. Due to the method of loading, it can be performed on a typical testing
machine. In the case of the biaxial tensile test, an image of the behavior of an elastomeric
sample in a plane stress state can be obtained [28–31]. It should be noted that, for incom-
pressible materials, the deformation in the biaxial tensile test is the same as in the uniaxial
compression test without friction. For this reason, this test determines well the behavior
of rubber-like materials when subjected to compression. However, due to the inability to
eliminate the frictional forces, this test cannot be replaced with a simpler uniaxial com-
pression test. On the other hand, the tensile test is recommended [32] when determining
solid rubber-like materials instead of the pure shear test, which in practice is more dif-
ficult to carry out correctly, especially for large deformations. This approach is justified
because, in the middle part of an incompressible elastomeric material when tensile in a
plane deformation state (no deformation along the width of the sample), the deformation
pattern is the same as during the pure shear test. Due to the fact that the elastomer is almost
incompressible, in the sample there is a pure shear state at an angle of 45 degrees to the
tensile direction [32–34]. Therefore, in engineering practice, when determining material
constants, the most commonly used is the plane strain tensile test as an alternative to the
pure shear test. It is recommended that the sample for this test should be at least ten times
wider than its length [28,35]. The fulfillment of this condition is necessary to obtain the
required plane strain in the central part of the sample during uniaxial tensile stress, i.e.,
without deformations in the width of the sample.

4.1. Uniaxial Tensile Test

The uniaxial tensile tests were carried out on the ZWICK/ROELL Z030 testing ma-
chine, which was equipped with a fully automatic multi-strain gauge with a variable
measurement base and the testXpert II software. A view of the stand and the sample during
the tensile test is shown in Figure 2. The shape and dimensions of the test specimens are
shown in Figures 3 and 4.

Uniaxial tensile tests were carried out in the range of deformation ε = 0–60%. In the
case of a uniaxial tensile test, the deformation can be calculated as:

ε =
∆l
l0

=
lmax − l0

l0
(20)

where: ∆l—elongation in uniaxial tensile test, lmax—maximum length, l0—initial length,
ε—engineering strain.

Each of the three samples was subjected to a full cycle of loading and unloading with
constant elongation of the sample ∆l = 30 mm (l0 = 50 mm, thickness g0 = 4 mm). During
each tensile test, the force course and the elongation of the sample in the measuring area
were recorded using the testXpert II software. The curve shown in Figure 5 was selected
for further analysis.
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4.2. Biaxial Tensile Test

The biaxial tensile tests were carried out on a test stand consisting of a dynamic testing
machine MTS 319.25, equipped with a special fixture enabling the performance of biaxial
tensile tests on a uniaxial machine and the Aramis 3D system with a v2017 camera used to
measure displacement [35]. Cross-shaped samples with the shape and dimensions shown
in Figures 6 and 7 were used for the tests.
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The use of the ARAMIS system requires the preparation of samples by painting their
surfaces. Thanks to this, the sample surface is scanned by the optical system and on this
basis its image is created along with the displacement values.
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As in the case of uniaxial stretching, the biaxial tensile tests were carried out within
the range of engineering strain ε = 0–60%. During the test, the axial force was measured on
the testing machine, the displacement of the testing machine beam and the deformation in
one of the tensile directions. In the case of biaxial stretching, the value of the engineering
strain can be calculated as:

ε = 2ε1 = 2ε2 = 2
(

∆l
l0

)
= 2

(
lmax − l0

l0

)
(21)

where: ε1, ε2—deformation in directions 1 and 2, ∆l—elongation, lmax—maximum length,
l0—initial length.

Each of the three samples was subjected to a full cycle of loading and unloading
with the constant elongation of the sample ∆l = 4.8 mm (measurement base l0 = 16 mm,
thickness g0 = 4 mm). In the case of biaxial tensile test, the value of the equivalent stress
was calculated as:

σ =
F · tgα

2 · b0 · g0
(22)

where: F—force value measured on a testing machine, b0—the initial width of the sample
arm, g0—initial sample thickness, α-the angle of inclination of the oblique arm.

An example of a sample during the biaxial tensile test and the Aramis device are
shown in Figure 8.
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4.3. Plane Strain Tensile Test

Tensile tests in a flat deformation state were carried out on a ZWICK/ROELL Z030
testing machine, equipped with an optical extensometer and testXpert II software. A view
of the machine and the sample during the test are shown in Figure 9. Specimens with
the following dimensions were used: width a = 250 mm, height b = 125 mm, thickness
g0 = 4 mm.
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Figure 9. Plane strain tensile test: 1—testing machine, 2—optical extensometer, 3—clamping jaws,
4—sample.

The samples were mounted in special holders, the sample’s gripping part was 50 mm
long. The initial distance between the jaws was 25 mm.

As in the previous tests, the plane strain tensile tests were carried out in the range of
engineering strain ε = 0 ÷ 60%. During the test, the force and elongation of the sample
were measured. In the case of the plane strain tensile test, taking into account the condition
of a constant volume of the deformed material, the engineering strain can be calculated as:

ε =

√
12
3
· ε1 =

√
12
3
·
(

∆l
l0

)
(23)

where: ε1—strain component in the tensile direction, ∆l—elongation, l0—initial length.
Each of the three samples was subjected to a full cycle of loading and unloading with

the constant elongation of the sample ∆l = 5.2 mm (measurement base l0 = 10 mm, thickness
g0 = 4mm).

4.4. Stress–Strain Curve

A characteristic feature of elastomers is that their deformation is not directly propor-
tional to the applied load, in other words, these materials exhibit non-linear properties.
Additionally, in the case of elastomers, the stress–strain characteristic depends on the type
of applied load [26]. Figure 10 shows the curve σ = f(ε) determined experimentally on
the basis of the performed tests, where: σ—engineering stress, ε—engineering strain. The
course of the individual curves confirms that the stress–strain characteristic of the tested
elastomer, and thus its response to the applied load, depends on the load scheme. The
highest stress occurs during the biaxial tensile test, and the lowest during the uniaxial
tensile test. Moreover, the difference between the stress values in individual material tests
increases as the deformation increases.
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5. Determination of the Constants in the Constitutive Equations

The knowledge of the coordinates of individual points of the experimentally deter-
mined stress–strain curve is the basis for determining the values of the coefficients (material
constants) in the individual constitutive equations. In this work, MSC Marc/Mentat 2020
was used to determine the constants in the constitutive equations selected for the study.
After entering the coordinates of the points of the stress–strain curve determined by the
experimental tests, the software adjusts the regression curves of selected constitutive mod-
els with the experimentally determined curves. This adjustment can be made on the basis
of data from one or more tests. Based on the fit of the curves from the individual tests,
the software calculates the numerical values of the material constants for the individual
constitutive equations. In this paper, the differential evolution algorithm was used to
determine the coefficients in the constitutive equations. This algorithm was proposed in
1995 and is used for optimization in continuous spaces [36].

The values of the material constants were determined for six phenomenological models
(see Table 1), the Ogden model with two function components (see Table 2) and two micro-
mechanical models (see Table 3). In each of these models, the material constants were
calculated for variants I–IV. In variants I–III, the material constants in the investigated
constitutive equations were determined on the basis of the results of only one material
test, i.e., uniaxial tensile test (variant I), biaxial tensile test (variant II) or plain strain tensile
test (variant III). However, in variant IV, the material constants were determined on the
basis of the results of all three material tests. In addition, the research also included the
Marlow model, the application of which requires the direct introduction of the appropriate
stress–strain characteristics of the tested elastomer to the FEM software. Therefore, this
model is not included in any of Tables 1–3.

Table 1. Material constants determined for variants I–IV for models in the first sample load cycle up
to 60% deformation.

No Model
Variant

I–IV
Material Constants Coeficient of

Determination

C10 C01 C11 C20 C30 R2

1
NEO-

HOOKEAN

I 2.872 - - - - 0.987

II 2.912 - - - - 0.996

III 2.65 0.993

IV 2.838 - - - - 0.992
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Table 1. Cont.

No Model
Variant

I–IV
Material Constants Coeficient of

Determination

C10 C01 C11 C20 C30 R2

2 MOONEY (2)

I 7.521 × 10−13 4.097 - - - 0.993

II 2.912 2.147 × 10−8 - - - 0.996

III 1.938 0.712 0.993

IV 2.717 0.080 - - - 0.992

3 MOONEY (3)

I 1.047 × 10−8 4.096 1.586 × 10−9 - - 0.993

II 2.912 2.803 × 10−8 1.462 × 10−9 - - 0.996

III 0.340 2.310 1.686 × 10−8 0.993

IV 2.717 0.080 3.860 × 10−8 - - 0.992

4 SIGNIORINI

I 1.314 × 10−6 4.097 - 7.065 × 10−8 - 0.993

II 2.912 6.276 × 10−8 - 3.643 × 10−8 - 0.996

III 0.585 2.065 - 5.271 × 10−9 - 0.993

IV 2.718 0.079 - 2.456 × 10−8 - 0.992

5 YEOH

I 2.872 - - 1.419 × 10−9 2.767 × 10−9 0.987

II 2.912 - - 5.538 × 10−10 2.893 × 10−10 0.996

III 2.65 - - 2.002 × 10−8 1.048 × 10−7 0.993

IV 2.825 - - 1.148 × 10−8 0.003 0.992

6
JAMES–
GREEN–

SIMPSON

I 1.304 × 10−7 4.096 2.339 × 10−7 1.565 × 10−7 2.006 × 10−8 0.993

II 2.912 4.574 × 10−8 5.843 × 10−8 1.378 × 10−8 2.359 × 10−7 0.996

III 1.500 1.150 1.292 × 10−8 1.378 × 10−8 1.317 × 10−8 0.993

IV 2.717 0.080 2.302 × 10−12 1.624 × 10−12 2.085 × 10−7 0.992

Table 2. Material constants determined for variants I–IV for the Ogden model in the first cycle of
loading the sample up to 60% deformation.

No Model
Variant

I–IV
The Number of Components

of the Function N
Material Constants Coeficient of

Determination

µn αn R2

7 OGDEN

I

2

−5.809 −2.896
0.993

4.762 × 10−5 0.054

II
−1.104 × 10−5 −0.142

0.996
6.033 1.931

III
289.102 0.040

0.995
0.055 0.044

IV

−1.440 × 10−4 −4.11 × 10−2

0.992

8.416 1.376

8.416 1.376

8.416 1.376

8.416 1.376
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Table 3. Material constants determined for variants I–IV for micro-mechanical models in the first
sample load cycle up to 60% deformation.

No Model Variant
I–IV Material Constants Coeficient of Determination

8 ARRUDA–BOYCE

NKΘ N R2

I 5.638 37.966 0.987

II 5.727 52.440 0.996

III 5.204 39.525 0.993

IV 5.589 52.4399 0.992

9 GENT

E I_M

I 16.688 18.998 0.986

II 16.433 26.220 0.995

III 15.344 19.762 0.992

IV 16.284 26.220 0.991

6. Experimental and Numerical Compression Test

In order to assess the effectiveness of the investigated constitutive equations, an
experimental test of compression of the elastomeric cylinder was carried out. The cylin-
drical compression test of the samples from the tested elastomer with an initial diameter
d0 = 20.5 mm and height of h0 = 32 mm was carried out on the ZWICK/ROELL Z030
testing machine. In order to eliminate the influence of sliding friction in the upsetting test,
sandpaper was used between the faces of the sample and the plates of the testing machine.
As a result, constant friction conditions were obtained. Each of the three tested samples
was subjected to a single loading and unloading while maintaining constant deformation
εh = 40% and the deformation was calculated as:

εh =
hmax

h0
· 100% (24)

where: hmax—maximum displacement, h0—initial sample height.
The deformation εh was determined on the basis of the numerical modeling results in

such a way that the deformation in the central area of the compressed sample had a value
of about ε ≈ 0.6, and thus close to the deformation in the tests for determining the material
constants (Figure 11).

Materials 2023, 16, x FOR PEER REVIEW 14 of 24 
 

 

Table 3. Material constants determined for variants I–IV for micro-mechanical models in the first 
sample load cycle up to 60% deformation. 

No Model 
Variant 

I–IV Material Constants 
Coeficient of 

Determination 

8 ARRUDA–BOYCE 

 NKΘ N R2 
I 5.638 37.966 0.987 
II 5.727 52.440 0.996 
III 5.204 39.525 0.993 
IV 5.589 52.4399 0.992 

9 GENT 

 E I_M  
I 16.688 18.998 0.986 
II 16.433 26.220 0.995 
III 15.344 19.762 0.992 
IV 16.284 26.220 0.991 

6. Experimental and Numerical Compression Test 
In order to assess the effectiveness of the investigated constitutive equations, an ex-

perimental test of compression of the elastomeric cylinder was carried out. The cylindrical 
compression test of the samples from the tested elastomer with an initial diameter d0 = 
20.5 mm and height of h0 = 32 mm was carried out on the ZWICK/ROELL Z030 testing 
machine. In order to eliminate the influence of sliding friction in the upsetting test, sand-
paper was used between the faces of the sample and the plates of the testing machine. As 
a result, constant friction conditions were obtained. Each of the three tested samples was 
subjected to a single loading and unloading while maintaining constant deformation εh = 
40% and the deformation was calculated as: 

%100
0

max ⋅=
h

h
hε  (24) 

where: hmax—maximum displacement, h0—initial sample height.  
The deformation εh was determined on the basis of the numerical modeling results 

in such a way that the deformation in the central area of the compressed sample had a 
value of about ε ≈ 0.6, and thus close to the deformation in the tests for determining the 
material constants (Figure 11). 

 
Figure 11. View of an exemplary sample in the initial (a) and final (b) compression stage. 

During the tests, the compressive force and displacement were recorded. The thus 
obtained courses of the compression force of the elastomeric sample as a function of dis-
placement (P = f(h)) and the compression force of the elastomeric sample as a function of 
deformation (P = f(εh)) were used to verify the results of the numerical modeling.  
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During the tests, the compressive force and displacement were recorded. The thus
obtained courses of the compression force of the elastomeric sample as a function of
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displacement (P = f(h)) and the compression force of the elastomeric sample as a function
of deformation (P = f(εh)) were used to verify the results of the numerical modeling.

The numerical model of compression of an elastomer cylinder was created on the
basis of the physical (experimental) model, i.e., with the same geometrical dimensions
and boundary conditions, including contact conditions. A flat model was selected and
analyzed with the assumption of the presence of an axially symmetric state of stress. In
this case, the use of a two-dimensional model creates more opportunities as to the scope
of the research carried out, e.g., due to the lower demand for computing power. The
geometric model of the deformable cylinder has been simplified to its longitudinal half-
section with the assumption that, in each longitudinal half-section of the deformed cylinder,
the state of stress and deformation during its upset will be the same. In other words,
the shape of the cylinder will change during the upset, but will remain an axisymmetric
figure. The numerical model of compression of an elastomeric cylinder was created at
MSC Marc/Mentat with a visible finite element mesh shown in Figure 12a. It consists of a
longitudinal half-section of a deformable cylinder and non-deformable tools, i.e., a fixed
bottom plate and a movable top plate. A “glue” type of contact was adopted between the
elastomeric cylinder and the tool surfaces, which eliminated inaccuracies and errors related
to the influence of sliding friction. A glue condition suppresses all relative motions between
bodies through tyings or boundary conditions, applying them to all displacement degrees
of freedom of the nodes in contact. For elements with nodes that also have rotational
degrees of freedom, the rotations may be additionally constrained to provide a moment
carrying glue capability. For the case that a connection is made to the face of a solid element,
the rotations of the touching node are connected to the translations of the nodes of the
contacted patch by a constraint relation based upon the large rotation RBE3 theory.
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Figure 12. Numerical model of the cylinder compression process: (a) initial model, (b) model during
loading, (c) exemplary Huber–Mises stress distribution (model 10, variant II, εh = 40%).

Type 82 elements were used. Element type 82 is a four-node, isoparametric arbitrary
quadrilateral written for axisymmetric incompressible applications. As this element uses
bilinear interpolation functions, the strains tend to be constant throughout the element [27].
The displacement formulation has been modified using the Herrmann variational principle.
The pressure field is constant in this element. This element is preferred over higher-order
elements when used in a contact analysis. The stiffness of this element is formed using
four-point Gaussian integration. It can be used for either small strain behavior or large
strain behavior. This element can be used in conjunction with other elements such as type
10 when other material behavior, such as plasticity, must be represented.
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The initial size of the finite elements was approx. 0.25 mm. Due to the fact that,
during the upset without slip, large deformations occur, and thus large non-linearities of
a geometric nature, local remeshing was applied in areas where the deformation of the
elements was the highest. The equivalent deformation was adopted as the criterion for
densifying the mesh. If the value of the equivalent deformation in an element located in a
given area exceeded 0.25, then the mesh in the area of this element was compacted. The
size of the elements after compacting the mesh was approx. 0.16 mm. An example of a
model during compression with a locally compacted mesh is shown in Figure 12b. On the
other hand, Figure 12c presents an example distribution of the Huber–Mises equivalent
stresses for the strain εh = 40% using the 10th model and the variant II of determining
material constants. Due to the contact conditions and deformation of the material, the
stress distribution on the sample cross-section is non-uniform. The numerical model
prepared this way was used to carry out numerical tests. Calculations for the compression
process were carried out using individual constitutive models and the four variants for
determining the constants in these models presented in Tables 1–3. Moreover, calculations
were performed using the Marlow model, which was defined in MSC Marc by introducing
the experimentally determined stress–strain curve.

As a result of the numerical simulations for individual models and variants, the
compression force as a function of displacement P = f(h) and the compression force as
a function of deformation P = f(εh) were obtained. The calculated P = f(εh) curves for
individual models and variants for determining the constants in the constitutive equations
were compared with the experimental curves and are presented in Figures 13–22.
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7. Evaluation of the Compression Test Modeling Effectiveness

It should be emphasized that it is practically impossible to satisfactorily and unequivo-
cally assess the effectiveness of numerical modeling with the use of individual constitutive
equations only on the basis of a visual comparison of the curves (Figures 13–22). An efficient
assessment of the effectiveness of numerical modeling using the investigated constitutive
equations and four variants for determining the material constants in these equations is
possible when one parameter is analyzed, which is a characteristic reference point in all
analyzed cases. For this reason, in order to assess the effectiveness of the modeling of the
elastomer compression test, the convergence indicator ψ was introduced, which allows us
to determine the convergence of the calculated FEM force course with the experimentally
determined force course. The numerical values of the indicator ψ for individual variants
were calculated on the basis of the work done by both the calculated and experimental
forces as:

ψ =
WFEM −WEXP

WEXP
· 100% (25)
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where: WFEM =
hmax∫

0
FFEMdh [N mm]—work done by the calculated compressive force,

FFEM, WEXP =
hmax∫

0
FEXPdh [N mm]—work done by the compressive force in the experi-

ment FEXP.
In practice, the calculated numerical values of the ψ indicator may fall into three

ranges. If:

1. ψ = 0—force–displacement curves (calculated and experimental) coincide, which means
the complete convergence of the results of FEM calculations with the experiment;

2. ψ > 0—there is a discrepancy between the force–displacement curves, and the value of
the calculated force is greater than the value of the experimental force;

3. ψ < 0—there is a discrepancy in the course of the force–displacement curve, and the
calculated force values are smaller than the force values in the experiment.

The smaller the absolute value of the ψ indicator, the greater the numerical model
convergence with the experiment.

Figures 23–26 show the calculated values of the ψ indicator for the investigated
constitutive equations and individual variants for determining the material constants in
these equations. Analyzing variant I, in which the material constants were determined
only on the basis of the uniaxial tensile test, it can be seen that the convergence of the
numerical modeling results and the experimental results largely depends on the model used
(Figure 23). In this case, five of the tested models showed a very large overestimation of the
results. In the case of models 2, 3, 4 and 6, ψ = 80.9%, while for model 7 it was the highest
and amounted to approximately ψ = 116%. For the remaining models, an underestimation
of the results was observed. Model 10 was the best in variant I, which showed the greatest
convergence of the results with the experiment, with a slight underestimation (ψ = −5.5%).
The analysis of the ψ indicator in variant II, in which the material constants were determined
only on the basis of the biaxial tensile test, showed that the convergence of the results
with the experiment to a small extent depends on the model used, while all the tested
models showed underestimation of the results (Figure 24). In the case of six models (1−6),
the same numerical value of the indicator ψ (ψ = −9.2%) was observed. In the case of
model 7, this value was very similar and amounted to ψ = −9.0%. Model 8, for which
ψ = −9.5%, showed a slightly greater discrepancy in the results. The largest discrepancy in
this comparison (ψ = −12.9%) was demonstrated by model 9, and the smallest by model
10, for which ψ = −4.4%. On the other hand, on the basis of the analysis of the ψ value in
variant III, in which the material constants were determined only on the basis of the plane
strain tensile test, it can be concluded that the obtained convergence of the results with
the experiment also depends on the model used. In this variant (Figure 25), two models
showed overestimation of the results, i.e., model 3 (ψ = 12.6%) and model 4 (ψ = 9.5%). The
greatest underestimation was shown by model 9 (ψ = −18.1%) and model 1 and model
5 (ψ = −17.4%). Model 2 (ψ = −8.0%) was much better. One can get the impression that
the models 6 (ψ = −2.4%), 7 and 8, for which the coefficient ψ was 0.1% fared best in this
comparison. It should be noted, however, that in the case of the latter models, such a low ψ
indicator results from the specific course of the calculated force–deformation curve, which
to some extent lies below the experimental curve (is underestimated), and to some extent
lies above the experimental characteristics (is overestimated). Such curves are visible in
Figures 18–20, where the calculated forces (green line) intersect with the experimental forces
(black line). It should be emphasized that, in such cases, the low value of ψ does not mean
that the calculated curve and the experimental curve are almost completely convergent, but
it is a result of the fact that these forces perform almost the same work. For this reason, in a
few cases in which the calculated and experimental curves intersect (in such a way that there
are similarly sized underestimated and overestimated areas), the indicator ψ expressed by
Equation (25) is not reliable. Similarly to variant II (Figure 24), an analysis of ψ in variant
IV, in which the constants in the constitutive equations were determined on the basis of



Materials 2023, 16, 4121 21 of 24

three tests, showed that the convergence of the results with the experiment to a small extent
depends on the model used, while all the tested models showed an underestimation of the
results (Figure 26). Model 10 is not included in this comparison because its application is not
possible on the basis of the results of several material tests at the same time, but only on the
basis of the results of one selected material test. Among the nine tested models in variant
IV, the highest convergence with the experiment was achieved by model 8 (ψ = −7.9%).
Model 9 (ψ = −7.9%) turned out to be the least accurate in this comparison. The remaining
seven models 1–6 and 8 fell within the range of ψ = (−11.7 to −11.5)%.
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8. Conclusions

The aim of the work was to evaluate the effectiveness of ten selected constitutive
equations for hyperelastic bodies in the numerical modeling of elastomer compression. Four
variants for determining the material constants in the constitutive equations were used.

In conclusion, the research showed that determining the material constants of an
elastomer for modeling its behavior under compressive load can be best achieved through
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the biaxial tensile test (variant II). This approach yielded modeling results that were inde-
pendent of the constitutive equation or had minimal dependence, with a high convergence
with the experimental data. The average convergence is around 10%. The most accurate
model was found to be model number 10 (Marlow). Variant IV, which is more complex and
involves the use of three tests to determine the material constants, was found to be less
effective than variant II.

However, using variant I, which solely relied on the uniaxial tensile test, proved to
be a more practical solution in engineering practice. The effectiveness of this approach
depended on the constitutive equation used, and only a few models achieved a high
convergence with the experimental data. Model 10 (Marlow) was again the best model in
this variant, with a convergence of −5.5%.

Overall, the research findings provide valuable insights into the accurate modeling of
elastomer behavior, with practical implications for engineering applications.
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