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Abstract: We report a rapid synthesis method for producing CsSnCl3:Mn2+ perovskites, derived from
SnF2, and investigate the effects of rapid thermal treatment on their photoluminescence properties.
Our study shows that the initial CsSnCl3:Mn2+ samples exhibit a double luminescence peak structure
with PL peaks at approximately 450 nm and 640 nm, respectively. These peaks originate from
defect-related luminescent centers and the 4T1→6A1 transition of Mn2+. However, as a result of
rapid thermal treatment, the blue emission is significantly reduced and the red emission intensity is
increased nearly twofold compared to the pristine sample. Furthermore, the Mn2+-doped samples
demonstrate excellent thermal stability after the rapid thermal treatment. We suggest that this
improvement in photoluminescence results from enhanced excited-state density, energy transfer
between defects and the Mn2+ state, as well as the reduction of nonradiative recombination centers.
Our findings provide valuable insights into the luminescence dynamics of Mn2+-doped CsSnCl3 and
open up new possibilities for controlling and optimizing the emission of rare-earth-doped CsSnCl3.

Keywords: CsSnCl3; Mn2+; photoluminescence; rapid thermal treatment; SnF2-derived

1. Introduction

In recent years, all-inorganic lead halide perovskite (CsPbX3, X=Cl, Br, I) has garnered
significant attention in optoelectronic devices due to its outstanding photoelectric proper-
ties, such as high photoluminescent quantum yield (PLQY), excellent defect tolerance, and
tunable light emission [1–4]. Currently, LED devices based on CsPbX3 have surpassed 20%
external quantum efficiency. Further, the stability issues related to lead-based perovskites
have been effectively improved via packaging, increasing their lifespan from a few hours to
hundreds of hours. However, the high toxicity of lead poses a threat to human health and
the ecological environment, thereby impeding their practical use. Therefore, there is a rising
demand for non-toxic or less toxic elements to replace lead, such as equivalent substitution
(Sn2+, Ge2+) and isovalent substitution (Bi3+, Ag+) to form lead-free perovskite luminescent
materials [5–10]. It is proposed to replace Pb in lead–halide perovskite with divalent Sn and
Ge cations as they both satisfy the prerequisites for coordination and charge balance. Sn2+

has an ion radius comparable to Pb2+ (1.35 Å for Sn2+ and 1.49 Å for Pb2+), resulting in the
avoidance of significant lattice vibration caused by substitution. Additionally, Sn2+ pos-
sesses a similar ns2 electronic configuration to Pb2+, making it possible to form a perovskite
with the formula ASnX3, akin to lead-based counterparts [11–17]. However, the formation
energy of defects in Sn-based perovskites is relatively low (~250 meV), making it easy to
form a defect density of up to 1019 cm–3 in Sn-based perovskites, which results in a PLQY of
as low as 0.14% in these Sn-based perovskites. Additionally, Sn2+ is susceptible to oxidation
into Sn4+ in air, leading to structural instability of perovskites and luminescence quenching.

Materials 2023, 16, 4027. https://doi.org/10.3390/ma16114027 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16114027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-7203-4037
https://doi.org/10.3390/ma16114027
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16114027?type=check_update&version=1


Materials 2023, 16, 4027 2 of 10

Recently, Zhang et al. employed SnF2 instead of easily oxidized SnBr2 as a tin source and
effectively improved the structural stability of Cs4SnBr6 perovskite through introducing
F to inhibit the oxidation of Sn2+ in tin-based perovskite [18]. Despite the progress, the
luminescence stability of cesium tin chloride perovskite is still poor, and the luminescence
efficiency is too low to meet the application requirements. In particular, the synthesis and
photoluminescence properties of SnF2-derived cesium–tin perovskite (CsSnCl3-SnF2) have
not been reported so far.

On the other hand, impurity doping is considered an effective method to improve
the luminescence properties and stability of tin-based perovskites. For instance, Dawson
et al. successfully improved the stability of tin-based perovskites through replacing Sn2+

sites with Mn2+ [19]. Similarly, Hou et al. discovered that Mn2+ doping could improve
the electron energy level structure and stability of tin halide perovskites and also greatly
enhance the luminescence efficiency of CsSnCl3:Mn2+ to around 2% [20]. However, the
low-temperature chemical synthesis of Mn-doped tin-based perovskites complicates the full
activation of the Mn2+ luminescent centers. Due to tin-based halide perovskite materials’
poor thermal stability, conventional thermal annealing may not effectively activate the Mn
ion luminescent centers in this kind of material. Rapid thermal treatment (RTT), a transient
process that is characterized by rapid heating and cooling, provides an alternative way
to thermally activate the Mn ion luminescent centers of tin-based perovskites. Here, we
describe a rapid synthesis method for SnF2-derived CsSnCl3:Mn2+ and investigate the effect
of RTT on the photoluminescent (PL) properties of CsSnCl3:Mn2+ perovskites. Pristine
CsSnCl3:Mn2+ displays a double luminescence peak structure, which includes PL peaks
at around 450 nm and 640 nm, respectively. These peaks originate from defect-related
luminescent centers and the 4T1→6A1 transition of Mn2+, respectively. We found that RTT
significantly reduced the blue emission and increased the red emission intensity nearly
twofold compared to the pristine sample. Furthermore, the Mn2+-doped samples exhibited
excellent thermal stability after RTT processing. We discuss the improved PL based on our
analysis of PL excitation spectra, XRD patterns, and PL decay traces.

2. Materials and Methods

Mn2+-doped CsSnCl3 were synthesized using a water-assisted wet ball-milling method.
The reactant precursors included cesium chloride (4 mmol, CsCl, Aladdin, 99.9%), stan-
nous fluoride (1 mmol, SnF2, Macklin, 99.9%), ammonium bromide (1 mmol, NH4Cl,
Aladdin, 99.99%), and manganous chloride (MnCl2, Macklin, 99%). To obtain Mn2+-doped
CsSnCl3 with different levels, the molar ratios of CsCl, SnF2, and NH4Cl were maintained
at 1:1:2 mmol, whereas the molar ratio of MnCl2 was kept at 1 mmol. Firstly, the precursors
were loaded into a jar and mixed with 60 µL of deionized water. A ball milling process
was then performed for 30 min at a speed of 600 rpm. The resulting product was subse-
quently dried in a vacuum-drying oven for 120 min at room temperature and annealed
at 200 ◦C using a simple rapid thermal treatment (RTT) process. The RTT process was
carried out on a rapid thermal processor, heating the sample to the annealing tempera-
ture at a rate of 10 ◦C s−1. After remaining at the annealing temperature of 200 ◦C for
60–300 s, the system was rapidly cooled down to room temperature. Upon cooling to room
temperature, the Mn2+-doped CsSnCl3 powder was obtained via ball milling for 30 min
at a speed of 600 rpm. Figure 1 illustrates the Mn2+-doped CsSnCl3 synthesis process
using water-assisted ball-milling at room temperature, followed by the RTT process. The
crystal structures of Mn2+-doped CsSnCl3 were characterized using X-ray diffraction (XRD)
(Bruker D8 Advance, Karlsruhe, Germany) at 35 kV and 35 mA. The compositions of
the Mn2+-doped CsSnCl3 were analyzed through energy dispersive spectroscopy (EDS)
(Bruker EDS QUANTAX, Karlsruhe, Germany). The structure of the Mn2+-doped CsSnCl3
sample (S-Mn2+-doping) was characterized via scanning electron microscopy (SEM, Hitachi
SU5000, Tokyo, Japan). PL measurements, including temperature-dependent PL spectra,
PL excitation (PLE) spectra, and time-resolved PL spectra, were carried out using a PL
spectrometer (FLS1000, Edinburgh Instrument, Livingstone, UK).
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Figure 1. Schematic showing the method for (a) synthesizing Mn2+-doped CsSnCl3 and (b) RTT process.

3. Results and Discussion

Figure 2a displays the SEM image obtained from the Mn2+-doped CsSnCl3 powders
prior to the RTT process. The EDS elemental mapping of the Mn2+-doped CsSnCl3 reveals
a well-distributed presence of Cs, Pb, Cl, Mn, and F elements. Figure 2b indicates that the
CsSnCl3 powder retains a uniform distribution of Cs, Sn, Cl, Mn, and F elements even after
the RTT process.
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Figure 2. SEM image and EDS elemental maps of Cs, Sn, Mn, Cl, and F for a typical Mn2+-doped
CsSnCl3 powder (a) before RTT process and (b) after RTT process for 300 s, respectively.

Figure 3a depicts the PL spectrum obtained from the Mn2+-doped CsSnCl3 powders
prior to the RTT process. Pristine CsSnCl3:Mn2+ shows a double luminescence peak
structure with PL peaks at ~450 nm and ~640 nm, respectively. As portrayed in the inset
of Figure 3a, the 580 nm PL band from CsSnCl3 powders without Mn2+ doping is due to
the radiative recombination of self-localized excitons [21]. The addition of Mn2+ doping
into CsSnCl3 results in a significant 60 nm redshift in the PL, which is ascribed from the
4T1→6A1 transition of Mn2+ [22]. To comprehend the origin of the blue emission, the
temperature-dependent PL spectra of the pristine CsSnCl3:Mn2+ were measured from
78 to 298 K. As illustrated in Figure 3b, the blue emission displayed an increase in PL
intensity and a reduction in the full width at half maximum (FWHM) with decreasing
temperature, which is due to thermal quenching. Nevertheless, its peak barely changes with
temperature, suggesting a typical defect-related luminescence behavior and implying that
the blue emission arises from the defect-related luminescence centers. In contrast, the red
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emission intensity displays almost no recognizable changes with temperature, and only the
PL peak redshifts slightly to 670 nm with decreasing temperature, indicating a competitive
relationship between the blue and red emission in the pristine CsSnCl3:Mn2+. To clarify
the PL characteristics, PL decay curves were measured under an excitation wavelength of
375 nm (375 nm, 70 ps excitation pulses LASER), portrayed in Figure 3c,d. The PL decay
curve for blue emission was well-fitted with a biexponential decay function, while the PL
decay curve for red emission was well-fitted with a triexponential decay function [23]:

I(t) = I0 + A1exp
(
−t
τ1

)
+ A2exp

(
−t
τ2

)
+ A3exp

(
−t
τ3

)
(1)

where I0 represents the background level; τ1, τ2, and τ3 represent the lifetime of each
exponential decay component, and A1, A2, and A3 denote the corresponding amplitudes,
respectively. Therefore, the intensity-weighted average PL lifetimes are determined using(

A1 ∗ τ2
1 + A2 ∗ τ2

2 + A3 ∗ τ2
3
)
/(A1 ∗ τ1 + A2 ∗ τ2 + A3 ∗ τ3) [24]. As demonstrated in Fig-

ure 3c, the blue emission exhibits a fast decay dynamic with a lifetime of 4.93 ns, while
the red emission displays a slow decay behavior with a lifetime of 0.16 ms, which is five
orders of magnitude longer than that of the blue emission. These findings adequately
explain the competitive relationship between the defect-related luminescence centers and
the Mn2+ state in the pristine CsSnCl3:Mn2+. Upon light excitation, the excitons lifted from
the ground state to the excited state relax rapidly to the defect-related luminescence centers
due to the fast decay dynamic, thereby significantly intensifying the blue emission.
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Figure 3. (a) PL spectrum from the Mn2+-doped CsSnCl3 powders without RTT process. Inset shows
PL spectrum from the CsSnCl3 powders. (b) Temperature-dependent PL spectra of the pristine
CsSnCl3:Mn2+ measured in the range of 78 to 298 K. Time-resolved PL decay trace of (c) blue PL
recorded at 450 nm and (d) red PL recorded at 640 nm in the pristine CsSnCl3:Mn2+.
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The PL and PLE spectra of CsSnCl3:Mn2+ powders with and without the RTT process
are depicted in Figure 4. Interestingly, it was observed that the RTT process led to a remark-
able enhancement in red emission while significantly reducing the blue emission. Moreover,
the intensity of the red emission increased with an increase in RTT time. Specifically, after
the RTT process, the excitation peaks of CsSnCl3:Mn2+ at 355, 418, and 469 nm, corre-
sponding to the 6A1(6S)→4T2(4D), 4T2(4G), and 4T1(4G) transitions of the Mn2+ ion [25],
respectively, were observed, as shown in Figure 4. This strongly indicates that the RTT
process effectively activates Mn2+ in CsSnCl3, leading to a significant enhancement in
excited-state density, as revealed in Figure 4. Therefore, the enhancement in excited-state
density is suggested to be responsible for the improved red emission. Interestingly, from
Figure 4, it was found that the blue emission wavelength overlapped with the transition
from 6A1(6S)→4T2(4G) and 4T1(4G) of the Mn2+ ion. This indicates that the reduction in
blue emission may have resulted from the energy transfer from the defect-related lumi-
nescent state to the 6A1(6S)→4T2(4G) and 4T1(4G) transitions of the Mn2+ ion, which in
turn contributes to the improvement in red PL intensity. Thus, the significant enhancement
in red emission can be attributed to the enhanced excited-state density as well as energy
transfer between the defect-related luminescent state and the Mn2+ state.
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Figure 5 presents the PL decay curves of the CsSnCl3:Mn2+ powders with and without
the RTT process. It was found that the average lifetime rapidly increased from 0.16 ms
to 4.73 ms after the RTT process. Furthermore, with an increase in the RTT processing
time from 60 s to 300 s, the average lifetime gradually increased from 4.73 ms to 6.81 ms,
indicating a reduction in nonradiative recombination centers. This was confirmed via
the XRD patterns of the CsSnCl3:Mn2+ powders with and without the RTT process, as
shown in Figure 6. For the CsSnCl3:Mn2+ powders without the RTT process, the diffraction
peaks at 22.10◦, 23.95◦, 30.269◦, and 31.142◦ corresponded to (400), (020), (411), and (002)
crystal planes of cubic CsSnCl3 (PDF# 71-2023), respectively. In addition, there were
still small amounts of characteristic peaks of CsCl. However, after the RTT process, the
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diffraction peaks corresponding to (400), (020), (411), and (002) crystal planes of cubic
CsSnCl3 became stronger and sharper with an increase in the RTT time from 60 s to
300 s. This strongly indicates an improved crystallinity of the CsSnCl3:Mn2+ powders
after the RTT process, which coincided well with the increasing lifetime with an increase
in the RTT time. Evidently, the RTT not only effectively activated the Mn2+ but also
improved the crystallinity of the CsSnCl3:Mn2+ powders, thus reducing the nonradiative
recombination centers and contributing to the enhancement in red emission. Raman spectra
in Figure 7 show an array of symmetric (125–175 cm−1) and asymmetric (185–260 cm−1)
stretching peaks for the SnCl3− group, and a peak at ~275 cm−1, attributable to symmetric
Mn–Cl stretching.
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To gain a deeper understanding of the PL characteristics, the temperature-dependent
PL spectra of the CsSnCl3:Mn2+ powders with 300 s of RTT processing were measured,
and the results are shown in Figure 8. It was observed that with a decrease in temperature,
there was a significant increase in the red PL intensity along with a slight increase in the
blue PL intensity. This is in contrast to the behavior observed in the CsSnCl3:Mn2+ powders
without the RTT process, as shown in Figure 3b. This increase can be attributed to the
energy transfer from the defect-related luminescent state to the 6A1(6S)→4T2(4G) and
4T1(4G) transitions of the Mn2+ ion. The temperature dependence of the integrated red PL
intensity IPL(T) can be fitted using the Arrhenius equation given below [22]:

IPL(T) =
IPL(T0)

1 + β exp−Eb/kBT
(2)

where IPL(T0) is the integrated PL intensity at 10 K, β is a constant related to the density of
radiative recombination centers, kB is Boltzmann’s constant, and Eb is the exciton binding
energy. Using this equation, the exciton binding energy Eb was empirically derived to be
31.6 meV, as shown in the inset of Figure 8. This further confirms that the red emission is
from the Mn2+ state rather than from self-trapped excitons.
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To evaluate the thermal stability of the CsSnCl3:Mn2+ powders, the temperature-
dependent integrated PL intensities were monitored during thermal recycling. As shown
in Figure 9, both samples experienced thermal quenching of PL as temperatures were
increased from 25 to 165 ◦C. However, for pure CsSnCl3 powders, a reduction of over 90%
in PL intensity was observed after the heating and cooling cycles. In contrast, CsSnCl3:Mn2+

powders with RTT processing showed a slight enhancement in PL intensity after the heating
and cooling cycles. Clearly, the CsSnCl3:Mn2+ powders with RTT processing displayed
superior thermal and structural stability.

Materials 2023, 16, x FOR PEER REVIEW 9 of 11 
 

 

 
Figure 8. Temperature-dependent PL spectra of the CsSnCl3:Mn2+ powders with RTT processing for 
300 s measured in the range of 78 to 298 K. Inset shows the integrated red PL intensities at different 
temperatures (orange solid symbols) and the fitting of the experimental data (red curve). 

To evaluate the thermal stability of the CsSnCl3:Mn2+ powders, the tempera-
ture-dependent integrated PL intensities were monitored during thermal recycling. As 
shown in Figure 9, both samples experienced thermal quenching of PL as temperatures 
were increased from 25 to 165 °C. However, for pure CsSnCl3 powders, a reduction of 
over 90% in PL intensity was observed after the heating and cooling cycles. In contrast, 
CsSnCl3:Mn2+ powders with RTT processing showed a slight enhancement in PL intensity 
after the heating and cooling cycles. Clearly, the CsSnCl3:Mn2+ powders with RTT pro-
cessing displayed superior thermal and structural stability. 

                      
Figure 9. Heating and cooling cycling measurements at various temperatures: (a) pure CsSnCl3 ; 
(b) CsSnCl3:Mn2+ powers with RTT processing for 300 s.          

4. Conclusions 
We demonstrated a rapid synthesis method for SnF2-derived CsSnCl3:Mn2+ perov-

skite and investigated the effect of RTT on its PL properties. We observed that pristine 
CsSnCl3:Mn2+ exhibited a double luminescence peak structure, attributed to de-

Figure 9. Heating and cooling cycling measurements at various temperatures: (a) pure CsSnCl3;
(b) CsSnCl3:Mn2+ powers with RTT processing for 300 s.

4. Conclusions

We demonstrated a rapid synthesis method for SnF2-derived CsSnCl3:Mn2+ per-
ovskite and investigated the effect of RTT on its PL properties. We observed that pristine
CsSnCl3:Mn2+ exhibited a double luminescence peak structure, attributed to defect-related
luminescent centers and the 4T1→6A1 transition of Mn2+. RTT was found to significantly
reduce the blue emission and enhance the red emission intensity almost twofold compared
to the pristine sample. This improvement in PL was suggested to arise from increased
excited-state density, energy transfer between the defect-related state and the Mn2+ state, as
well as a reduction of nonradiative recombination centers. Furthermore, we demonstrated
that the Mn2+-doped samples after RTT exhibit excellent thermal stability. Our findings
clearly demonstrate that RTT not only can avoid thermal decomposition of tin-based
halide perovskite materials during the heating process but also improve the crystallinity
of CsSnCl3:Mn2+ powders, and more importantly provides an alternative method for
thermal activation of the Mn ion luminescence center of tin-based perovskite, which has
implications for the future development of optoelectronic devices.
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