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Abstract: The performance of urea-formaldehyde (UF) resin and its formaldehyde emission is a
natural contradiction. High molar ratio UF resin performance is very good, but its formaldehyde
release is high; low molar ratio UF resin formaldehyde release is reduced, but the resin itself perfor-
mance becomes very bad. In order to solve this traditional problem, an excellent strategy of UF resin
modified by hyperbranched polyurea is proposed. In this work, hyperbranched polyurea (UPA6N) is
first synthesized by a simple method without any solvent. UPA6N is then added into industrial UF
resin in different proportions as additives to manufacture particleboard and test its related properties.
UF resin with a low molar ratio has a crystalline lamellar structure, and UF-UPA6N resin has an
amorphous structure and rough surface. The results show that internal bonding strength increased by
58.5%, modulus of rupture increased by 24.4%, 24 h thickness swelling rate (%) decreased by 54.4%,
and formaldehyde emission decreased by 34.6% compared with the unmodified UF particleboard.
This may be ascribed to the polycondensation between UF and UPA6N, while UF-UPA6N resin forms
more dense three-dimensional network structures. Finally, the application of UF-UPA6N resin adhe-
sives to bond particleboard significantly improves the adhesive strength and water resistance and
reduces formaldehyde emission, suggesting that the adhesive can be used as a green and eco-friendly
adhesive resource for the wood industry.

Keywords: particleboard; hyperbranched modification; water resistance; formaldehyde emission;
cross-linking network

1. Introduction

As the world’s population grows rapidly, the interaction between humans and nature
has increased. This situation has accelerated the demand for forest products, particu-
larly affordable wood composite boards such as particleboards (PBs) [1,2]. Moreover,
particleboard manufacturers are striving to reduce the cost of production. In addition to
wood costs, adhesives used in the production of PBs are the most significant cost factor.
Urea-formaldehyde (UF) resins are the most commonly used resins, widely used for man-
ufacturing PBs and other wood-based products [3,4]. UF resins were first synthesized in
1884 with the advantages of high reactivity, low cost, low cure temperature, high bonding
strength, a colorless glue line, and so forth. Unfortunately, the major disadvantages of
UF adhesives are free formaldehyde emission from them bonded wood-based panels and
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poor durability under high humidity conditions, especially when combined with heat [5,6].
Hence, the modification of UF adhesives is a critical research topic.

The rate and extent of formaldehyde release from PBs are influenced by various pa-
rameters, such as the mole ratio of F/U, catalyst level and composition, resin level, and
moisture content, among which the F/U mole ratio is recognized as the most important
factors [7–10]. It has been demonstrated that excess urea could remove the free formalde-
hyde, whereas the obvious adverse effect is that the branched hydroxymethyl chain on the
polymer is also cleaved, leading to the formation of linear polymers. In order to reduce
the amount of formaldehyde released, UF resin (usually ≤ 1.0) is synthesized by a low
F/U molar ratio method in industrial production, and formaldehyde is still released con-
tinuously when used in wood products [11,12]. Furthermore, Park et al. reported that the
formation of cross-linked structures of UF resins with low-molar ratios was suppressed
due to the hydrogen bonding interaction between linear polymers [13,14]. It is worth
mentioning that this is also the primary reason for the poor property of UF resin, especially
for the high formaldehyde emission and poor water resistance. Therefore, modifying UF
resin to improve properties and reduce formaldehyde emission is still a good option until
an alternative emerges. Many modification methods have been attempted, and the most
successful one is to prepare melamine-UF co-condensed resin (MUF) by adding melamine
to UF resin [15–18]. The amount of melamine added determines its properties. In actual
manufacturing, when the molar ratio of M/UF is greater than 1:1 or even higher. MUF
exhibits mechanical properties similar to MF. At the same time, too high melamine content
will lead to a significant increase in cost and storage stability.

In recent years, the hyperbranched structures have not only covered the “classical”
products based on the ABx approach but also extended to various highly branched struc-
tures, including those prepared by the A2 + By monomer combination, those prepared by
self-condensing vinyl polymerization, ring-opening multibranching polymerization or self-
condensing ring-opening polymerization, or proton transfer polymerization [19]. To take
it one step further, the UF and MUF resins can be modified with linear or hyperbranched
polymers [20]. In particular, poly(amidoamine) modifications with distinct terminal groups
(including -OH, -NH2, -CHO, e.g.) are extensively studied in reported works [21–23]. Com-
pared to linear polymers, highly branched polymers have unique topological structures
and physical properties, such as better solubility, high toughness, low viscosity, and many
end groups, which have attracted much attention. Regulating the three-dimensional (3D)
structure of highly branched polymers (HBPs), i.e., molecular weight, dispersity, number
of branching points, branching density, and chain-end functionalities, would significantly
improve and modify the polymer properties and contribute to the design and synthesis of
new polymer materials [24,25]. These superiorities make branched polymers promising
in many applications, such as lubricants, coatings, antimicrobial agents, adhesives, and
adsorbents [26–28]. Inspired by UF resin modification research, as a thermosetting wood
adhesive, the hyperbranched cross-linking structure should be one of the most important
factors in its adhesive property on account of the cross-linked density of the cured adhesive
network can obviously be improved by high functionality and high branching degree,
and the selective conversion of the live polymer end enables the introduction of amine
functional groups at the chain end, which provides the possibility for the preparation
of modified urea–formaldehyde resin based on HBPs [19,29]. From this, this work aims
to explore the improvement and advancement of the UF adhesive by an ureido highly
branched polymer reported by our group recently, which is named UPA6N [30].

Hence, this study attempts to improve the performance of the low molar ratio UF
adhesive using the UPA6N ureido polymer. We used solvent-free and catalyst-free methods
to synthesize UPA6N by deaminating polycondensation reaction of urea and polyamine
(PA6N) and added industrial gas UF and UPA6N in different proportions as additives to
obtain various UF-UPA6N resin binders. This study focuses on the modification mechanism
and macroscopic mechanical properties of UPA6N resin on urea–formaldehyde resin with
a low molar ratio and scale-up its performance testing through the wood-based panel
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continuous flat press production line in Yunnan XinZeXing wood-based panel Co., Ltd. In
addition, the crystallinity, thermal behavior, chemical composition, and mechanical perfor-
mance of the synthesized samples are determined by Infrared spectroscopy (FTIR-Thermo
Scientific Nicolet iS50, Waltham, MA, USA), X-ray diffraction (XRD-Instrument: TTRIII-
18KW Xray diffractometer, Rigaku, JP), Atomic force microscopy (AFM-BKG, Rhabdos Co.
Ltd., Seoul, Korea), Differential scanning calorimetry (DSC-Perkin-Elmer DSC 7, Germany),
and Transmission electron microscopy (TEM-JEOL JEM-F200, Germany) and so forth.

2. Experimental Sections
2.1. Chemicals and Materials

The triethylenetetramine, ethylenediamine, methyl acrylate, CH3OH, and urea were
purchased from Titan Scientific Co., Ltd. (Shanghai, China). UF resin was provided by
Yunnan XinZeXing wood-based panel Co., Ltd. (Kunming, China). It should be noted that
the formula of the UF resin with molar ratio (F/U) of 1.03 was used in this study.

2.2. Synthesis of UPA6N Ureido Polymer

The UPA6N was synthesized according to previously reported methods [30,31]. Briefly,
PA6N was synthesized by using triethylenetetramine and methyl acrylate via Michael
addition reaction, and the products then reacted with ethylenediamine through nucle-
ophilic substitution to obtain PA6N. The UPA6N was then prepared by the deamination
polycondensation between PA6N and urea, as provided in Figure 1.

Materials 2023, 16, x FOR PEER REVIEW 3 of 14 
 

 

with a low molar ratio and scale-up its performance testing through the wood-based panel 
continuous flat press production line in Yunnan XinZeXing wood-based panel Co., Ltd. 
In addition, the crystallinity, thermal behavior, chemical composition, and mechanical 
performance of the synthesized samples are determined by Infrared spectroscopy (FTIR-
Thermo Scientific Nicolet iS50, Waltham, MA, USA), X-ray diffraction (XRD-Instrument: 
TTRIII-18KW Xray diffractometer, Rigaku, JP), Atomic force microscopy (AFM-BKG, 
Rhabdos Co. Ltd., Seoul, Korea), Differential scanning calorimetry (DSC-Perkin-Elmer 
DSC 7, Germany), and Transmission electron microscopy (TEM-JEOL JEM-F200, Ger-
many) and so forth. 

2. Experimental Sections 
2.1. Chemicals and Materials 

The triethylenetetramine, ethylenediamine, methyl acrylate, CH3OH, and urea were 
purchased from Titan Scientific Co., Ltd. (Shanghai, China). UF resin was provided by 
Yunnan XinZeXing wood-based panel Co., Ltd. (Kunming, China). It should be noted that 
the formula of the UF resin with molar ratio (F/U) of 1.03 was used in this study. 

2.2. Synthesis of UPA6N Ureido Polymer 
The UPA6N was synthesized according to previously reported methods [30,31]. 

Briefly, PA6N was synthesized by using triethylenetetramine and methyl acrylate via Mi-
chael addition reaction, and the products then reacted with ethylenediamine through nu-
cleophilic substitution to obtain PA6N. The UPA6N was then prepared by the deamination 
polycondensation between PA6N and urea, as provided in Figure 1. 

 
Figure 1. The synthesis route of UPA6N via deamination polycondensation. 

2.3. Preparation of UPA6N Modified UF Resins 
UF resin (F/U molar ratio 1.03) used in this study was provided by Yunnan XinZeX-

ing wood-based panel Co., Ltd. Then, 10 kg UPA6N (50 wt% solid content) aqueous solu-
tion was added into 1000 kg UF resin, named UF-UPA6N (0.5%). UF-UPA6N (0.25%), UF-
UPA6N (1.0%), and UF-UPA6N (1.5%) were also prepared by adding 5 kg, 20 kg, and 30 kg 
UPA6N into 1000 kg UF resin, respectively, as provided in Figure 2. 

Figure 1. The synthesis route of UPA6N via deamination polycondensation.

2.3. Preparation of UPA6N Modified UF Resins

UF resin (F/U molar ratio 1.03) used in this study was provided by Yunnan XinZeXing
wood-based panel Co., Ltd. Then, 10 kg UPA6N (50 wt% solid content) aqueous solution
was added into 1000 kg UF resin, named UF-UPA6N (0.5%). UF-UPA6N (0.25%), UF-UPA6N
(1.0%), and UF-UPA6N (1.5%) were also prepared by adding 5 kg, 20 kg, and 30 kg UPA6N
into 1000 kg UF resin, respectively, as provided in Figure 2.

2.4. Characterization Methods

The obtained samples were tested by Fourier transform infrared (FTIR-Thermo Scien-
tific Nicolet iS50, Waltham, MA, USA); X-ray photoelectron spectroscopy (XPS- XPS, ES-
CALAB 250Xi, Thermo Fisher, USA); Differential scanning calorimetry (DSC-Perkin-Elmer
DSC 7, Germany) and Thermogravimetric analysis (TGA Instruments Q50, Germany);
Transmission Electron Microscopy (TEM-JEOL JEM-F200, Germany); Atomic force mi-
croscopy (AFM-BKG, Rhabdos Co. Ltd., Seoul, Korea). UF resin and UF-UPA6N resin were
prepared with (0.5%) and without (0%) UPA6N, respectively, before observation and dried
in an oven at 120 ◦C for 2 h. For the DSC tests, samples were weighed into an aluminum
DSC pan and placed into the sample holder without a lid, where the samples were held
isothermally at 20 ◦C under a 20 mL min−1 flow of nitrogen. In addition, for TGA analysis,
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all samples were held isothermally at 30 ◦C for 5 min and then heated from 30 to 800 ◦C at
10 ◦C min−1.

Materials 2023, 16, x FOR PEER REVIEW 4 of 14 
 

 

  
Figure 2. The proposed structural modification strategy of UF-UPA6N. 

2.4. Characterization Methods 
The obtained samples were tested by Fourier transform infrared (FTIR-Thermo Sci-

entific Nicolet iS50, Waltham, MA, USA); X-ray photoelectron spectroscopy (XPS- XPS, 
ESCALAB 250Xi, Thermo Fisher, USA); Differential scanning calorimetry (DSC-Perkin-
Elmer DSC 7, Germany) and Thermogravimetric analysis (TGA Instruments Q50, Ger-
many); Transmission Electron Microscopy (TEM-JEOL JEM-F200, Germany); Atomic force 
microscopy (AFM-BKG, Rhabdos Co. Ltd., Seoul, Korea). UF resin and UF-UPA6N resin 
were prepared with (0.5%) and without (0%) UPA6N, respectively, before observation and 
dried in an oven at 120 °C for 2 h. For the DSC tests, samples were weighed into an alu-
minum DSC pan and placed into the sample holder without a lid, where the samples were 
held isothermally at 20 °C under a 20 mL min−1 flow of nitrogen. In addition, for TGA 
analysis, all samples were held isothermally at 30 °C for 5 min and then heated from 30 to 
800 °C at 10 °C min−1. 

2.5. Preparation of Particleboard 
Particleboard is made of eucalyptus wood shavings, of which the moisture content is 

10–12%. The particleboard is prepared with the fiber of length 0.8–3.0 mm as the upper 
and lower surface layers and the large pieces of shavings with the specifications of (20–
100) mm × (10–50) mm × (0.2–2.0) mm as the core layer. The original UF, UF-UPA6N 
(0.25%), UF-UPA6N (0.5%), UF-UPA6N (1.0%), and UF-UPA6N (1.5%) resin adhesives were 
used for particleboard production on the wood-based panel continuous flat press produc-
tion line in Yunnan XinZeXing wood-based panel Co., Ltd. The prepared particleboard 
was cooled down to room temperature for 24 h to relieve internal stress. Then, each parti-
cleboard was cut into specimens with an area of 60 cm × 60 cm for the following tests. The 
hot pressing parameters of UF resin and UF-UPA6N resin adhesives are described in Table 
1. 

Table 1. Hot pressing parameters of UF resin and UF-UPA6N resin adhesives. 

Sample UF (kg) UPA6N (kg) Hot Pressing Time  (s) Hot Pressing Temperature (°C) 
UF 1000 0.0 180 200 

UPA6N (0.25%) 1000 2.5 180 200 
UPA6N (0.50%) 1000 5.0 180 200 
UPA6N (1.00%) 1000 10.0 180 200 
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2.5. Preparation of Particleboard

Particleboard is made of eucalyptus wood shavings, of which the moisture content
is 10–12%. The particleboard is prepared with the fiber of length 0.8–3.0 mm as the upper
and lower surface layers and the large pieces of shavings with the specifications of (20–100)
mm × (10–50) mm × (0.2–2.0) mm as the core layer. The original UF, UF-UPA6N (0.25%),
UF-UPA6N (0.5%), UF-UPA6N (1.0%), and UF-UPA6N (1.5%) resin adhesives were used for
particleboard production on the wood-based panel continuous flat press production line in
Yunnan XinZeXing wood-based panel Co., Ltd. The prepared particleboard was cooled
down to room temperature for 24 h to relieve internal stress. Then, each particleboard was
cut into specimens with an area of 60 cm × 60 cm for the following tests. The hot pressing
parameters of UF resin and UF-UPA6N resin adhesives are described in Table 1.

Table 1. Hot pressing parameters of UF resin and UF-UPA6N resin adhesives.

Sample UF (kg) UPA6N (kg) Hot Pressing
Time (s)

Hot Pressing
Temperature

(◦C)

UF 1000 0.0 180 200
UPA6N (0.25%) 1000 2.5 180 200
UPA6N (0.50%) 1000 5.0 180 200
UPA6N (1.00%) 1000 10.0 180 200
UPA6N (1.50%) 1000 15.0 180 200

2.6. Particleboard Performance Testing

The internal bonding strength (IB), surface bonding strength (SS), thickness swelling
rate (TSR), modulus of elasticity (MOE), modulus of rupture (MOR), and formaldehyde
emission (FE) of all the particleboard samples were tested for evaluation the modification
effect of UF by UPA6N. We tested the particleboard performance according to the Chinese
GB/T 4897-2015 standard. Each test piece was repeated 6 times, and the average value was
taken as the final data.
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3. Results and Discussion
3.1. Structure Analysis of UF Resin and UF-UPA6N Resin

Figure 3a shows FTIR spectra of low molar ratio UF resin, UPA6N, and UF-UPA6N
(0.5%) resin. As many reports have explained, the chemical and physical properties of
UF resin modified with the high-branched structure are quite different from those of low
molar ratio UF resin [32,33]. Generally, UF resins with a higher molar ratio have higher
free formaldehyde than lower molar ratio UF resins, but the higher molar ratio resins have
stronger reactivity and more cross-linking structures than UF resins with a lower molar
ratio. Therefore, it is often necessary to modify the structure of UF resin to improve its
crosslinking structure. For FTIR spectra of UPA6N, characteristic FTIR peaks of the urea
linkage, including ν(C-H) of CH2, ν(C=O) at about 1667 cm−1 (amide I mode), and δ(N-H)
at about 1535 cm−1 (amide II mode), are observed in the branched polymer. On the other
hand, asymmetric bands of C-O-C and O-C-N oscillations of aliphatic ether are found
near 1133 cm−1 in UF resin and are stronger than UF-UPA6N (0.5%) resin because most of
the ether bonds in UF resin are linear [34,35]. In addition, the FTIR spectra of UF-UPA6N
(0.5%) resin shows a broad peak at 3112–3484 cm−1, which is ascribed to the ν(O-H) of the
component. Relative to the FTIR spectrum of UF resin, the (C-N) peak of primary amide
(-CO-NH2) in the UF-UPA6N (0.5%) resin increases significantly at about 1400 cm−1, which
is caused by the polycondensation reaction between urea group in UPA6N resin and the
amino group in low molar UF resin. This also confirms that the polycondensation reaction
does actually occur between the UPA6N polymer and UF resin.
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In order to understand the effect of the modifications on UPA6N-modified UF resins,
the crystal structures of the UF resin and UF-UPA6N resin are measured by XRD. In the
case of UF-UPA6N (0.5%), Figure 3b shows the XRD patterns of UF resin and UF-UPA6N
(0.5%) resin. From the test results, it is obvious that UF resin has a diffraction pattern of
crystallization; these characteristic peaks are observed at 2θ = 22.0◦, 24.5◦ and 30.5◦, 37.8◦.
After UPA6N resin is added, the XRD patterns of UF-UPA6N (0.5%) change significantly into
an amorphous structure. The accumulation of linear molecules results in highly ordered
structures or agglomerations of the low molar ratio UF resin, which are arranged in a
manner similar to colloidal particles and peptides. On the other hand, the essential cause
of resin crystallization is hydrogen ions (H+) generated by an acidic curing agent added
before UF resin curing, which extends the length of linear oligomer through a condensation
reaction, thus promoting the crystal growth of low molar ratio UF resin [36]. Finally, more
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N-H and C-O hydrogen bonds are formed, which leads to the formation of an ordered
filling structure in the UF resin. In contrast, the structure of UF resin modified by UPA6N
is amorphous, indicating that the high branching degree of UPA6N hinders the ordered
arrangement of hydrogen bonds in low molar ratio UF resin. More importantly, Park et al.
studied the crystallinity of UF resin with high and low molar ratios by using XRD patterns
and reached the same conclusion as in this work [6,12].

3.2. AFM Images of UF Resin and UPA6N-UF Resin

Figure 4 shows AFM images of UF resin and UF-UPA6N (0.5%) resin films. As expected,
the images of UF resin and UF-UPA6N (0.5%) resin are significantly different. For example,
Figure 4a,b exhibits the UF resin film with a scanning size of 1 × 1 µm. It can be seen from
the figure that the microscopic morphology of UF resin film with a low molar ratio presents
a layered crystalline structure similar to fish scales because the UF resin is dominated
by linear molecules and less branched molecules. During the curing process, the small
linear molecule of UF resin has less steric hindrance than the branched structure, making it
easier to form a large number of hydrogen bonds between molecular chains, resulting in
more crystalline lamellar structures, which is consistent with many reported results [12,23].
The white protrusions in the UF film area may be due to the evaporation of water and
formaldehyde during curing. In contrast, the microstructure of UF-UPA6N (0.5%) resin
film is rough, showing many bulging and depressed holes (Figure 4c,d). These lumps
and holes are due to the three-dimensional network structure formed during the curing
process of UF-UPA6N (0.5%) resin film. As mentioned above, UF-UPA6N resin is mainly
composed of branched molecules. Therefore, lumps and depressions are formed in some
places, resulting in uneven surfaces. In addition, the degree of crystallinity and distribution
of dried urea-formaldehyde resin tested by XRD also show similar differences.
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Figure 5 shows the height profile of AFM images of UF resin film with a low molar
ratio and UF-UPA6N (0.5%) resin film obtained by the solid red and blue lines above
Figure 5a,c. As can be seen from Figure 5b, there are many small peaks on the red line,
about 2–7 nm high, which constitute the layered structure of the crystal, while the three
large peaks on the blue line are about 20 nm high (Figure 5d). This is because more dense
three-dimensional cross-linking networks are formed in the space of UF-UPA6N resin, and
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the molecular composition is mainly branch chain, so the plane height of UF-UPA6N resin
film is much higher than that of UF resin film with low molar ratio. These results further
confirm that UPA6N-modified UF resin with a low molar ratio changes its internal structure
greatly, thereby effectively improving the mechanical strength and water resistance of UF
resin.
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3.3. TEM Images of UF Resin and UF-UPA6N Resin

The cured morphologies of the UF resin and UF-UPA6N (0.5%) resin are observed
by TEM (Figure 6). In this study, UF resin is uniformly coated on a glass plate, and
its crystalline morphology is observed after heating and curing. Figure 6a–c show the
microstructure of UF resin cured at a low molar ratio. Figure 6d–f show the microstructure
of UF-UPA6N (0.5%) resin curing. In addition, at 200 K magnification (Figure 6a), spherical
black spots are detected. As mentioned in previous studies, these spherical points are
thought to represent spherical/spherical particles in the crystal domain. Figure 6c shows
a higher-resolution TEM image with the corresponding chemical structure. Surprisingly,
typical layered structures representing individual polymer chains are found at certain
locations (e.g., green circles section). The results show that the curing structure of low
molar ratio urea-formaldehyde resin is polycrystalline. These lamellar structures most likely
form a black spherical dot seen in the previous figure (Figure 6a). Consistent with AFM
results, hydrogen bonds are formed between the oxygen and nitrogen hydrogen groups in
the linear oligomer of UF resin, resulting in ordered lamellae. As illustrated in Figure 6c,
the high-resolution TEM (HRTEM) image of UF resin displays excellent lattice fringes, and
the crystal lattice spacing is about 0.475 nm. On the other hand, no ordered crystal structure
appears in the enlarged image of UF-UPA6N (0.5%) resin (Figure 6d), indicating that it is
mainly composed of irregular amorphous structures (e.g., red circles section). Overall, these
results indicate that UF resins with low molar ratios have rich lamellar crystal domains,
which represent linear polymer chains interconnected by hydrogen bonds. However, no
regular crystal structure is observed in the UF resin modified by UPA6N, which is replaced
by an irregular branch chain structure, suggesting successful modification of UF resin by
UPA6N polymer.
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3.4. Thermodynamic Analysis of UF Resin and UF-UPA6N Resin

The curing kinetics of UF resin and UF-UPA6N resin adhesives at a fixed heating rate
are evaluated by DSC. As seen from Figure 7a, DSC curves present the curing behavior,
and the curing temperature of UF, UF-UPA6N (0.25%), UF-UPA6N (0.5%), UF-UPA6N (1.0%)
and UF-UPA6N (1.5%) are 118 ◦C, 114 ◦C, 107 ◦C, 132 ◦C and 138 ◦C, respectively. In
brief, the curing temperature of hyperbranched UPA6N-modified UF resin is relatively low,
which can reduce the energy consumption of the production procedure. Therefore, the
hot-pressing temperature for subsequent mechanical experiments is set at 200 ◦C to adjust
for the discrepancy in various adhesives. In addition, the thermal stability of adhesive is a
key factor in the particleboard production process, and it is very important to assess the
performance of the particleboards. TG-DTG test is a typical approach for evaluating the
stability and thermal decomposition behavior of polymers. Figure 7b shows the TG-DTG
curves for UF resin and UPA6N-UF resin. All samples are disintegrated at approximately
150–350 ◦C; their weight loss for UF-UPA6N resin increases gradually compared with UF
resin. Tmax is the temperature at which the weight loss rate reaches its maximum value,
and there can be seen that the Tmax of UF-UPA6N resin distinctly increases compared with
that of the neat UF resin, which is caused by dense cross-linking structures formed by new
covalent bonds between UF and UPA6N. These data show that the thermal stability of main
components is enhanced with the hyperbranched structural modification of UF resin by
UPA6N polymer.

For investigating the temperature effect on modulus, the dynamic mechanical analysis
(DMA) is tested by simulating the process of hot pressing and curing of particleboard
samples, and storage modulus (E′) and tan δ curves of samples are monitored. The
elasticity or rigidity of the material can be evaluated by storage modulus [36,37]. The peak
temperature of tan δ reflects the glass transition temperature of materials to some extent.
Figure 7c exhibits E′ curves of UF resin and UF-UPA6N resin adhesives. Relative to UF
resin adhesive, E′ values of UF-UPA6N resins adhesives increase with rising the additional
amount of UPA6N (from 0 to 1.0%), indicating high storage modulus. However, there is
a gradual downward trend in UF-UPA6N resins adhesives (from 0.25 to 1.5%), indicating
that the rigidity or elasticity of UF-UPA6N resins is reduced gradually with the increase
of the terminal functional group of polyamines (Figure 7c,d). Moreover, values of tan δ
versus temperature are displayed in Figure 7e,f. Take UF-UPA6N (0.5%) as an example; the
E′ value hardly changes when the temperature is lower than 94 ◦C. Then, the temperature
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continued to rise, and the E′ value slowly increased and reached the maximum value (3480
MPa) at 113 ◦C. Next continued to heat up, and the modulus dropped gradually. In a
similar way, UF, UF-UPA6N (0.25%), UF-UPA6N (1.0%), and UF-UPA6N (1.5%) increase
the maximum modulus at 116 ◦C, 109 ◦C, 121 ◦C and 123 ◦C, respectively. In total, tan
δ of UF-UPA6N resin adhesives reduced significantly compared with that of UF resin
adhesives, which is attributed to the dense cross-linking structure of UF-UPA6N restricting
the movement of chains and reducing the flexibility of materials. By comparison with
various mass fractions of UF-UPA6N, the UF-UPA6N (0.5%) has a low starting curing
temperature and modest fastest curing temperature (Figure 7f). As a result, from the
comprehensive analysis of energy dissipation and performance, the UF-UPA6N (0.5%) is an
ideal choice for particleboard production.
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3.5. Physical and the Mechanical Performance Analysis of Particleboard for the UF Resin and
UF-UPA6N Resin Adhesives

In order to investigate the performance of the modified resin formulation, various
mass fractions of UF-UPA6N (from 0 to 1.5% UPA6N content) particleboards are produced
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on the wood-based panel continuous flat press production line in Yunnan XinZeXing
wood-based panel Co., Ltd. Figure 8a shows the adhesives production process and the
prepared particleboard. The physical and the mechanical test results of particleboards are
illustrated in Figure 8b–g, including the internal bonding strength (IB), surface bonding
strength (SS), modulus of rupture (MOR), modulus of elasticity (MOE), 24 h thickness
swelling rate (24 h TSR), and formaldehyde emission (FE). As seen in Figure 8b, the IB
values of UF, UF-UPA6N (0.25%), UF-UPA6N (0.5%), UF-UPA6N (1.0%), and UF-UPA6N
(1.5%) are 0.41, 0.52, 0.66, 0.61 and 0.55 MPa, respectively. With increasing the amount of
UPA6N (from 0 to 1.5%), the IB value of UF-UPA6N (0.5%) adhesive increases to the highest
0.66 MPa, which is 58.5% higher than that of the pure UF adhesives. For the SS, MOR, and
MOE, the highest values of UF-UPA6N (0.5%) are 1.65, 16.5 and 2917 MPa, which is 17.9%,
24.4, 15.5% higher than that of the pure UF adhesives (Figure 8c–e). Moreover, the 24 h TSR
value of UF-UPA6N (0.5%) is the lowest, 8.3%, which is 54.4% lower than that of the neat
UF adhesives (Figure 8f).
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Figure 8. The performance analysis of particleboard for the UF resin and UF-UPA6N resin adhesives.
(a) The adhesives production process and the prepared particleboard; (b) internal bonding strength
(IB); (c) surface bonding strength (SS); (d) modulus of rupture (MOR); (e) modulus of elasticity (MOE);
(f) 24 h thickness swelling rate (24 h TSR); (g) formaldehyde emission (FE).
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For the formaldehyde emission tests, the particleboard bonded with the pristine UF
resin resulted in 3.5 mg/100g formaldehyde emission. Figure 8g shows that the addition
of UPA6N resin into the UF resin obviously reduced the formaldehyde emission from the
particleboard. The lowest FE value of UF-UPA6N (1.0%) is 2.4 mg/100g, which is 45.8%
lower than that of the pristine UF adhesives. The UF-UPA6N resins, with the addition
of 1.0% UPA6N resins, have more opportunities to reduce formaldehyde emissions. In
brief, the UPA6N modified low molar ratio UF resin used as particleboard adhesive exhibits
remarkable advancement, especially for the improvement of bonding strength, water resis-
tance, and formaldehyde emission. The mechanism of modification of UF resin by UPA6N
may be that the polycondensation reaction between UF resin and UPA6N polymer produces
a hyperbranched cross-linked structure, as described in Figure 9. On the other hand, the
hyperbranched structure of UF-UP6N adhesives can increase the molecular spacing of the
resin, making it easier to swell, thereby improving flexibility and processability [38–40].
Meanwhile, excess UF-UP6N can remove the free formaldehyde [41]. This work might pro-
vide an excellent strategy for the modification of UF adhesives using branched structures
as particleboard adhesives and is expected to achieve industrialization.
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adhesives.

In this study, PA6N was added to low molar ratio UF resin as a modifier at 0.25%,
0.5%, 1.0%, and 1.5% by mass, respectively. The results showed that the best effect of
resin modification was achieved when the addition of PA6N was 0.5%, after which the
performance of particleboard decreased with the increase of PA6N addition. This is because
UF resin is cured under weakly acidic conditions, while PA6N resin shows strong alkalinity.
When the addition of PA6N resin is small, its effect on the pH of the UF resin itself is not
very obvious, and the exposed amine group in PA6N resin can react with free formaldehyde
or urea in the UF resin, thus positively promoting the cross-linking curing of the UF resin.
As the amount of PA6N resin added increases, its effect on the pH of the UF resin system is
greater, and it can even adjust the pH of the UF resin system from weak acidity too strong
alkalinity, resulting in the inability of the UF resin to carry out the condensation reaction,
thus leading to the performance of the UF resin to drop sharply. The major difference
between this study and previous studies is that the mechanism of hyperbranched structure
modification of low molar ratio UF resins by PA6N is investigated for the first time at the
microstructural level.
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4. Conclusions

In conclusion, this work focused on the structural modification mechanism of urea-
based hyperbranched polymer UPA6N on low molar ratio UF resin and its mechanical
properties as a wood adhesive for the preparation of particleboard. The results showed
that there were significant differences between UF resin and UF-UPA6N resin in terms
of chemical structure, crystallinity, and surface morphology. The UF resin had abundant
lamellar crystalline structures, while the UF-UPA6N resin consisted mainly of irregular
amorphous structures. In addition, the physical and mechanical properties of UF-UPA6N
resin as particleboard adhesive were significantly improved compared with UF resin, with
a 58.5% increase in internal bond strength, 24.4% increase in modulus of rupture, 54.4%
decrease in 24 h thickness expansion (%), and 34.6% decrease in formaldehyde emission. In
short, from a comprehensive analysis of energy dissipation and performance, UF-UPA6N
(0.5%) is an ideal choice for the preparation of particleboard. These results indicate that
UF-UPA6N resin has great potential to improve the performance of UF resins to obtain high
bond strength and low formaldehyde emission. The results demonstrate that the UPA6N
modified low molar ratio UF resin (UF-UPA6N resin) used as particleboard adhesives
represent remarkable advancement, especially the water resistance has been improved,
while the formaldehyde emission has been reduced.
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