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Abstract: Strengthening the CoCrFeNi high entropy alloy with a face-center cubic structure has
become a research prospect in the last decade. Alloying with double elements, Nb and Mo, is an
effective method. In this paper, to further enhance the strength of the Nb and Mo contained high
entropy alloy, CoCrFeNiNb0.2Mo0.2 was annealing treated at different temperatures for 24 h. As a
result, a new kind of Cr2Nb type nano-scale precipitate with a hexagonal close-packed structure was
formed, which is semi-coherent with the matrix. Moreover, by adjusting the annealing temperature,
the precipitate was tailored with a considerable quantity and fine size. The best overall mechanical
properties were achieved in the alloy annealed at 700 ◦C. The yield strength, ultimate tensile strength,
and elongation are 727 MPa, 1.05 GPa, and 8.38%, respectively. The fracture mode of the annealed
alloy is a mixture of cleavage and necking-featured ductile fracture. The approach employed in this
study offers a theoretical foundation for enhancing the mechanical properties of face-centered cubic
high entropy alloys via annealing treatment.

Keywords: high entropy alloy; annealing; nano-scale precipitate; mechanical properties

1. Introduction

Studies on high-entropy alloys (HEAs) have been prosperous for several decades
since they were proposed in 2004 [1,2]. Among them, CoCrFeNi HEA with a face-centered
cubic (FCC) structure is widely concerned due to its unique characteristic, such as thermal
stability [3–6], corrosion-resistant [7–9], and high ductility [10,11]. However, the relatively
low strength at room temperature limits their application prospects. To address this issue, a
variety of strengthening mechanisms have been adopted, including grain refinement [12,13]
and precipitation strengthening [14–30].

In particular, the precipitate strengthening HEAs have attracted great attention due to
superior mechanical properties and interesting deformation behaviors. In order to enhance
the strength of FCC HEAs, various efforts have been undertaken to introduce precipitate-
forming elements. At present, most research is concerned with single-strengthening al-
loying element FCC HEAs. Alloying CoCrFeNi HEA with Al [14–17] can prompt the
emergence of a body-centered cubic (BCC) phase within the pre-existing FCC matrix. The
FCC crystal structure would undergo a transformation to BCC upon increasing the Al
content. This transition could potentially enhance the strength of the HEA. However, it may
also cause a decrease in ductility. When CoCrFeNi is alloyed with Ti [28,30], the resulting
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material undergoes a phase evolution. Specifically, as the molar content of Ti increases
from 0 to 0.5, there is a transformation in the phase formation from FCC to FCC + σ + R and
eventually to FCC + Laves + σ + R. The addition of Ti to FCC HEAs resulted in an increase
in compressive strength from 871 MPa to 1502 MPa. However, this improvement came
at the expense of a decrease in fracture strain from 75% to 20%. Moreover, it is observed
that refractory alloying elements, such as Nb, Mo, V, Ta, and W, make HEAs more suitable
for high-temperature applications but rob away their tensile strength while increasing
compressive strength [31]. This may be due to the precipitates in these HEAs tends to be
relatively bulky, which would limit the precipitate strengthening effect. Thus, for a wider
range of applications, achieving a balance of properties between compressive and tensile
strength is one of the challenges for researchers. In recent studies conducted by He [29,32],
Xu [33], and Fu [34] et al., the strength of FCC HEAs has been significantly enhanced
through a novel approach of combined alloying with Al and Ti. This method promotes the
formation of L12, hierarchical intragranular γ*, and γ′ phases within the matrix, similar
to the strengthening mechanisms employed in superalloys. These results demonstrate a
remarkable balance between strength and plasticity, indicating their potential for use in
various high-performance applications. The incorporation of double elements has proven
to be a promising strategy for improving the mechanical properties of FCC HEAs.

Following this line, we introduced Nb and Mo as alloying elements to CoCrFeNi,
resulting in high-performance HEAs. The addition of Mo and Nb led to the formation of a
Fe2Nb-type Laves phase rich in these elements, which precipitated in the FCC matrix. This
microstructure resulted in exceptional strength and plasticity properties for the alloy [35].
However, the size of precipitates in the as-cast alloy is still relatively large. The introduction
of fine precipitates into the alloy has the capability to further increase the strength of
the HEAs. In addition to reasonable composition design, heat treatment is one of the
effective methods to induce fine precipitates. For example, Shun et al. [36] enhanced the
CoCrFeNiMo0.85 alloy through heat treatment at different temperatures. After annealing, a
minor (Mo, Cr)-rich µ phase was induced into the alloy. Feng et al. [24] strengthened the
CoCrFeNiNb0.25 using the annealing treatment. After annealing, an Nb-rich lath-shaped
phase with FCC structure was formed in the matrix. In our investigation of Nb and Mo
alloyed HEAs, during synthesis, the matrix forms a supersaturated solid solution due to
rapid cooling. Therefore, we are curious to see if annealing can lead to the formation of fine
precipitates and ultimately enhance the strength of the HEAs.

Inspired by this idea, our previously proposed CoCrFeNiNb0.2Mo0.2 HEA [35] was
annealed at different temperatures to induce fine precipitate. The microstructure of as-
annealed HEAs was characterized in detail, the relevance between microstructure and
mechanical properties was discussed, and the fracture mechanism was analyzed.

2. Materials and Methods

The ingots of CoCrFeNiNb0.2Mo0.2 HEA were synthesized in a WK-II type non-
consumable vacuum arc-melting furnace by the mixture of pure elements, which purity
is larger than 99.9 wt%. The smelting current is 500A. The alloy was melted by arc in
an atmosphere of high-purity argon, which had been treated with titanium to remove
impurities. The melting process was conducted in a copper crucible with water cooling.
Each ingot was remelted five times to ensure homogeneity. The quantity of each ingot is
~100 g. The samples were cut from the ingots by wire cutting parallel to the horizontal
plane and annealed at temperatures ranging from 600 to 800 ◦C (denoted AN600, AN700,
and AN800) for 24 h. The crystal structure was identified using X-ray diffraction (XRD)
(X’Pert PRO, PANalytical B.V., Almelo, The Netherlands) equipped with Cu Kα at 40 kV
and 40 mA. The X-ray diffractometer collects data at a constant interval of 5◦ of 2θ while
scanning a range from 20◦ to 100◦, during which the intensity of X-ray diffraction peaks is
recorded. The samples for XRD were first ground to smooth with silicon carbide papers,
then polished with diamond polishing paste to get a mirror-like surface. The microstructure
and chemical compositions were characterized by a scanning electron microscope (SEM)
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(Apreo C, Thermo Fisher Scientific Inc., St. Bend, OR, USA) equipped with an energy-
dispersive X-ray spectrometer (EDS). To prepare the samples for SEM characterization,
a multi-step process was followed. First, the samples were ground with silicon carbide
papers to remove any roughness. Then, the diamond polishing paste was used to polish the
samples. Finally, the polished surface was etched using an aqua-regia solution for 10 s. The
formation of phases and interface between the matrix and precipitate were examined using
a transmission electron microscope (TEM) (FEI Tecnai G2 F30, FEI Company, Hillsboro, OR,
USA) operating at 300 kV. The TEM samples were prepared by grinding to a thickness of
less than 50 µm, then ion-milling at a 5 kV ion gun energy and 4◦ milling angle. Addition-
ally, tensile tests at room temperature were performed using a universal tensile machine
(MTS E44.304, MTS Systems Co., Eden Prairie, MN, USA). The tensile rate was 1 mm/min.
The gauge section of dog-bone-shaped specimens used for the tensile test was 6 mm in
length, 2 mm in width, and 1 mm in thickness. The number of samples for the tensile test
was three per annealing temperature. The dimension and volume fraction of each phase
were measured and calculated by Photoshop 2018 and Image-Pro Plus 6.0 software.

3. Results and Analysis
3.1. Crystal Structure

The XRD patterns of the researched HEAs are presented in Figure 1a. In AN600, only
peaks of Laves phase and FCC matrix can be detected, which is the same with the as-cast
alloy. In AN700, an extra peak was detected, while more extra peaks were detected in
AN800. Through comparison, these extra peaks may correspond to the hexagonal close-
packed (HCP) structured Cr2Nb phase. The lattice parameters of the HCP phase obtain
from XRD are a = 4.97 Å and c = 8.05 Å. Furthermore, in comparison to the as-cast HEA,
the peaks associated with the FCC matrix display a noticeable shift towards higher 2θ
angles upon annealing, signifying a reduction in the lattice parameters of the matrix. This
phenomenon is particularly evident for the (111) and (200) peaks, as illustrated in Figure 1b.
After annealing, the lattice constant of the matrix would decrease due to the precipitation
of Nb and Mo with a large atomic radius, which may be the reason for the peak shift.
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3.2. Microstructures

In order to further identify the newly precipitated phase corresponding to the extra
peaks of XRD patterns, the backscatter SEM (BSE-SEM) images of the microstructures of
the as-annealed HEAs are displayed in Figure 2. The low magnification morphologies
are shown in Figure 2a,c,e. The detailed high magnifications are shown in Figure 2b,d,f.
The low magnification images reveal that the microstructures of the HEAs are primarily
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comprised of two phases, FCC matrix and Laves phase. As shown in Figure 2b, except
for FCC matrix and Laves phase, no other new phase can be observed in AN600. A
large amount of lamellar structures of the Laves phase were preserved, indicating that the
Laves phase has good thermal stability at 600 ◦C. In AN700, a considerable amount of fine
precipitates can be observed besides FCC matrix and Laves phase, as shown in Figure 2d
(marked by a blue circle). The precipitate corresponds to the HCP phase detected by XRD.
Moreover, for the Laves phase, the lamellar structure became coarser and less numerous.
As shown in Figure 2f, more HCP phase was precipitated, and the amount of the lamellar
structure was further reduced. The statistics of volume fractions of each phase formed in
the matrix are shown in Figure 3. The as-annealed HEAs have varying volume fractions of
Laves phase, with values of 24.9%, 18.6%, and 14.9%, respectively. In addition, the volume
fractions of the HCP phase also differ among the HEAs, with percentages of 0%, 10.7%,
and 15.5%, respectively.
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The EDS mapping of Laves phase in AN800 are shown in Figure 4. The results
reveal a homogeneous distribution of Co, Cr, Fe, and Ni within the matrix. Moreover,
the Laves phase displays a noticeable depletion in Cr, Fe, and Ni while exhibiting an
enrichment in Nb and Mo. In order to identify the chemical compositions of the HCP
precipitate, EDS line scanning of AN700 was conducted, as shown in Figure 5. The results
reveal that the HCP precipitate is enriched in Nb and Mo as shown by the peaks marked
by arrows. Table 1 presents the results of the EDS point analysis conducted on AN700
in order to characterize the chemical constituents of the various phases present in the
investigated HEAs. The analysis reveals that the recently formed fine precipitate exhibits
a significant enrichment in Nb and Mo. The ratio of Co, Cr, Fe, and Ni elements to Nb
and Mo elements is close to 2:1. Combined with the XRD results, the fine precipitate is
a Cr2Nb-type HCP phase. Furthermore, when the annealing temperature increased, the
quantity of the precipitate increased. The precipitation of solute elements, Nb and Mo,
will result in the decrease in lattice parameters of the FCC matrix, which explains why, in
XRD patterns, the peaks corresponding to the FCC matrix phase shift to a higher 2θ when
the annealing temperature increased. Additionally, Ostwald ripening is the underlying
mechanism driving the coarsening of the lamellar-structured Laves phase [37]. That is,
smaller precipitates make the system have higher interfacial energy. In order to reduce the
total interfacial energy, the fine precipitates with high density tend to be coarsened into
large ones with a smaller total interface and low-density distribution.
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Table 1. EDS results (at.%) of AN700 HEA.

Phase Co Cr Fe Ni Nb Mo

Nominal 22.73 22.73 22.73 22.73 4.54 4.54
Matrix 22.72 24.73 23.71 24.96 1.48 2.38
Laves 22.07 18.80 16.78 13.44 17.33 11.57
HCP 17.94 20.62 16.26 8.23 6.27 30.68

In order to further investigate the microstructure of the HCP precipitate, the researched
HEAs were observed by TEM. The bright field TEM images of AN600, AN700, and AN800
are shown in Figure 6a–c. The corresponding selected area electron diffraction (SAED)
patterns are shown in Figure 6d–f. In AN600, as shown in Figure 6a, except for a micron-
scale phase, there was no other second phase precipitated. The micron-scale phase is
identified to be Laves phase from the SAED pattern (Figure 6d) in AN600 taken along

the [11
−
2 0] zone axis, which is consistent with the results of XRD and SEM. As shown in

Figure 6b, a nano-scale precipitate was formed in the matrix, and the average dimension of
the precipitate is 95 nm. The nano-scale precipitate is indexed as a Cr2Nb type phase with

an HCP structure from the SAED pattern obtained along [11
−
2 0] zone axis, as shown in

Figure 6e. The lattice parameters of the new HCP phase are a = 0.4610 nm and c = 0.7497 nm.
As shown in Figure 6c, the size of the precipitate increased. The average dimension of
the precipitate is 310 nm. The corresponding SAED pattern (Figure 6f) taken along [0001]
reveals that the precipitate is also the Cr2Nb type phase. As the annealing temperature
increases, both the size and the volume fraction increase, which is because that higher
temperature would provide sufficient impetus for precipitation.

Materials 2023, 16, x FOR PEER REVIEW 6 of 11 
 

 

Table 1. EDS results (at.%) of AN700 HEA. 

Phase Co Cr Fe Ni  Nb  Mo 
Nominal 22.73 22.73 22.73 22.73 4.54 4.54 
Matrix 22.72 24.73 23.71 24.96 1.48 2.38 
Laves 22.07 18.80 16.78 13.44 17.33 11.57 
HCP 17.94 20.62 16.26 8.23 6.27 30.68 

In order to further investigate the microstructure of the HCP precipitate, the re-
searched HEAs were observed by TEM. The bright field TEM images of AN600, AN700, 
and AN800 are shown in Figure 6a–c. The corresponding selected area electron diffrac-
tion (SAED) patterns are shown in Figure 6d–f. In AN600, as shown in Figure 6a, except 
for a micron-scale phase, there was no other second phase precipitated. The micron-scale 
phase is identified to be Laves phase from the SAED pattern (Figure 6d) in AN600 taken 
along the [1120] zone axis, which is consistent with the results of XRD and SEM. As 
shown in Figure 6b, a nano-scale precipitate was formed in the matrix, and the average 
dimension of the precipitate is 95 nm. The nano-scale precipitate is indexed as a Cr2Nb 
type phase with an HCP structure from the SAED pattern obtained along [1120] zone 
axis, as shown in Figure 6e. The lattice parameters of the new HCP phase are a = 0.4610 
nm and c = 0.7497 nm. As shown in Figure 6c, the size of the precipitate increased. The 
average dimension of the precipitate is 310 nm. The corresponding SAED pattern (Figure 
6f) taken along [0001] reveals that the precipitate is also the Cr2Nb type phase. As the 
annealing temperature increases, both the size and the volume fraction increase, which 
is because that higher temperature would provide sufficient impetus for precipitation. 

 
Figure 6. The bright field TEM images of (a) AN600, (b)AN700, (c)AN800; SAED patterns corre-
sponding to (d) Laves phase in AN600, (e) precipitate in AN700, and (f) precipitate in AN800. 

As shown in Figure 7a, the interface between the HCP precipitate and matrix is 
presented in the high-resolution transmission electron microscope (HRTEM) image. 
Figure 7b,c show the inverse fast Fourier transform (IFFT) images of the FFT inset in 
Figure 7a corresponding to the HCP precipitate and FCC matrix. These images corre-

Figure 6. The bright field TEM images of (a) AN600, (b)AN700, (c)AN800; SAED patterns corre-
sponding to (d) Laves phase in AN600, (e) precipitate in AN700, and (f) precipitate in AN800.



Materials 2023, 16, 3987 7 of 11

As shown in Figure 7a, the interface between the HCP precipitate and matrix is pre-
sented in the high-resolution transmission electron microscope (HRTEM) image. Figure 7b,c
show the inverse fast Fourier transform (IFFT) images of the FFT inset in Figure 7a corre-
sponding to the HCP precipitate and FCC matrix. These images correspond to the HCP

precipitate and matrix, respectively. The distances between crystal planes (
−
2
−
1 1) and (1

−
1 1)

of the FCC matrix are 1.88 Å and 1.87 Å, respectively, while those for (0
−
1 11) and (1

−
1 01)

planes of HCP precipitate are 2.01 Å and 1.99 Å. As presented in Figure 7d, the interface
between the matrix and HCP precipitate is semi-coherent. Combined with its fine size and
considerable volume fraction, the precipitate has an excellent strengthening effect.
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3.3. Mechanical Properties and Relevance to Microstructure

Tensile tests at room temperature were conducted to investigate the strengthening
effect of the precipitate formed after annealing. The engineering stress–strain tensile curves
for the as-cast and annealed HEAs are shown in Figure 8, and the results are listed in
Table 2. The results show that the strength of the researched HEA could be enhanced
by annealing treatment due to the precipitation of a considerable amount of nano-scale
HCP phase, which is semi-coherent with the matrix. The best overall tensile properties
were achieved in AN700, with a YS of 727 MPa, UTS of 1.05 GPa, and elongation of
8.38%. A comparison of the UTS and elongation of the current HEA with those of other
CoCrFeNi-based HEAs [25–29,38–40] is presented in Figure 9. The AN700 HEA in this
work is located at the upper-right above the conventional HEAs, indicating that its tensile
properties outperform most current FCC-based HEAs. Compared to the as-cast HEA,
the UTS of AN700 increased by nearly 40%, while the elongation decreased by only less
than 2%. The excellent strengthening effect is due to the dispersion of the nano-scale
HCP precipitate, which is semi-coherent with the matrix. The tensile properties of AN600
changed little because the annealing temperature is not high enough to provide sufficient
impetus for precipitation leading to the microstructure varying little. In AN800, the volume
fraction of the precipitate is the largest. However, the size of the precipitate increased a
lot, and the lamellar structure of Laves phase became coarser due to the Ostwald ripening
mechanism, which would lead to the reduction in the plasticity. As a result, the tensile
specimen fractured just past the yield point due to the alloy embrittlement.
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Table 2. Tensile properties of as-cast and as-annealed HEAs.

Alloys YS(MPa) UTS(MPa) Elongation (%)

As-cast 510 ± 5 763 ± 7 10.0 ± 0.31
AN600 572 ± 4 814 ± 7 9.91 ± 0.27
AN700 727 ± 6 1050 ± 10 8.38 ± 0.20
AN800 756 ± 10 954 ± 10 6.56 ± 0.17
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3.4. Fracture Morphologies

To gain a deeper understanding of the fracture mechanism and the interplay between
microstructure and mechanical properties, SEM was utilized to examine the fracture mor-
phologies of the HEAs, as illustrated in Figure 10. The fracture behavior of the AN600,
AN700, and AN800 HEAs exhibited two distinct modes for the Laves phase and FCC matrix
phase, as illustrated in Figure 10a–c. The Laves phase exhibited a cleavage fracture mode,
which is a brittle fracture mechanism characterized by the formation of a flat and smooth
surface. In contrast, the FCC matrix phase demonstrated ductile fracture morphology, char-
acterized by the occurrence of necking and the formation of sharp fracture lines, without
the formation of characteristic dimples typically observed in ductile materials. The phase
boundaries between the FCC and Laves phases were found to be the site of crack initiation,
where stress concentration led to crack nucleation. Subsequently, the crack propagated into
the Laves phase. Additionally, compared to the as-cast HEA [35], the annealed HEA has a
stronger matrix due to the precipitation of a fine second phase. However, this strengthening
comes at the cost of slightly decreased plasticity. Fracture morphology analysis reveals that
the area corresponding to the FCC matrix is flatter in the annealed HEAs.
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Figure 10. The fracture surface morphologies of (a) AN600, (b) AN700, and (c) AN800 HEAs.

4. Conclusions

In this investigation, we tailored the microstructure of CoCrFeNiNb0.2Mo0.2 by adjust-
ing the annealing temperature to further enhance the strength of the HEA. The following
conclusions can be achieved from experimental results:

(1) After annealing treatment at an appropriate temperature, the phase formation of
the researched HEA transformed from Laves + FCC to Laves + HCP + FCC. The
dimension and the volume fraction of Laves phase and the newly precipitated HCP
phase would be various when the annealing temperature changed. Both the Laves
phase and HCP precipitate would be coarser as the temperature increase.

(2) A new kind of Cr2Nb type HCP precipitate was formed after annealing, which is
semi-coherent with the matrix and has an excellent strengthening effect on the current
HEA system.

(3) The microstructure of HEA was tailored by adjusting the annealing temperature. A
considerable amount of nano-scale precipitate was formed, leading to an enhancement
of the mechanical properties. The best overall tensile properties were achieved in
AN700. The YS, UTS, and elongation are 727 MPa, 1.05 GPa, and 8.38%, respectively.

(4) After annealing, the materials AN600, AN700, and AN800 exhibit fracture patterns
that comprise both cleavage and ductile fractures in their respective phases of Laves
and FCC. The ductile fracture displays a necking feature rather than the presence
of typical dimples. Cracks are observed to initiate at the boundary between the
two phases due to localized stress concentration and subsequently propagate within
Laves phase. The presence of nano-scale HCP phase precipitation results in a slight
reduction in matrix plasticity and a flatter fracture area in the FCC matrix.
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