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Abstract: This article presents the results of a study of the physical and mechanical properties of fine-
grained fly ash concrete based on a combined reinforcement with steel and basalt fibers. The main
studies were conducted using mathematical planning of experiments, which allowed the experiments
to be algorithmized in terms of both the amount of experimental work and statistical requirements.
Quantitative dependences characterizing the effect of the content of cement, fly ash binder, steel, and
basalt fiber on the compressive strength and tensile splitting strength of fiber-reinforced concrete
were obtained. It has been shown that the use of fiber can increase the efficiency factor of dispersed
reinforcement (the tensile splitting strength to compressive strength ratio). To increase the resistance
of basalt fiber, it is proposed to use fly ash in cement systems, which reduces the amount of free lime
in the hydrating cement environment.

Keywords: Portland cement; fiber concrete; basalt fiber; steel fiber; fly ash; mathematical experiment
planning

1. Introduction

An increase in concrete strength leads to increased fragility and deterioration of the
deformation properties. This concrete is characterized by almost immediate destruction
under short- and long-term loads when it reaches its ultimate stresses [1–4]. One of the ways
to solve this problem is by adding dispersed fiber reinforcement to the cement matrix, which
can significantly increase its tensile and flexural strength, crack resistance, resistance to
impact and vibration, etc. [5–8]. Fiber-reinforced concrete has increased abrasion resistance
as well as resistance to cracking [9].

Dispersed reinforced concrete, or fiber concrete, is a group of composite materials that
include short lengths of various fibers in a cement matrix. Different types of materials, such
as steel, glass, synthetic materials, carbon, etc., can be used as fiber [10–14]. Steel fibers, as
well as nonmetallic fibers, are usually used to reinforce fine-grained concrete or cement
stone. Dispersed reinforcement effectively prevents the development of grain cracks only
when the distance between the fibers is not greater than 10–12 mm.

The most popular are Portland cement steel fiber-reinforced concrete. This type of
fiber can have a different cross-sectional profile, size, and surface [15–18]. The amount of
fiber added to concrete in volume, according to studies by a few authors, ranges from 0.5 to
2% [19,20]. The addition of steel fiber to concrete increases tensile and flexural strength by
up to 200% [4,21–23], while the impact on compressive strength is less significant, increasing
by 15–20% [24].

Due to its higher crack resistance, steel fiber concrete is characterized by an increase in
frost and heat resistance by 1.5 to 2 times. Important indicators of steel fiber concrete are
increased resistance to abrasion, impact and dynamic resistance, and shrinkage [25].
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Several authors have shown [26–28] that the use of steel fiber is effective in reinforced
concrete structures to increase their crack resistance, in thin-walled structures, and in structures
operating under dynamic loads (airfield pavements, highways, seismic structures, etc.).

At the same time, an important problem with the use of steel fiber in concrete is the
possibility of the formation of so-called “hedgehogs”, increased “clumping” in the concrete
structure, and uneven distribution of fiber, which requires the use of special devices to
evenly add fiber to the concrete mixture.

Although steel fiber is used to improve the mechanical properties of concrete, it is still
susceptible to corrosion [29], and its high specific consumption encourages the use of more
available methods of concrete reinforcement, in particular the use of nonmetallic fibers.
Such a fiber is not subject to corrosion and is therefore suitable for concrete structures in
corrosive environments. The effect of various nonmetallic fibers on concrete properties has
been described in a number of studies [30–34].

One of the most effective types of mineral fibers for dispersed concrete reinforcement is
basalt fiber [35]. It is characterized by high strength under all types of stress conditions and
the ability to resist significant deformations in the elastic state. A significant increase in the
deformability and strength of cement stone occurs due to the elimination of the influence
of stress concentration by basalt fibers in places weakened by structural defects (shells,
microcracks). Basalt fiber is chemically inert and does not react with salts or dyes, which is
why basalt fiber-reinforced concrete is used in the construction of marine structures and
decorative concrete.

The results of many studies show that basalt fiber has a small effect on the compressive
strength of concrete, but there is a significant increase in the tensile splitting strength [36].
With a basalt fiber content of 2 kg/m3, the increase in compressive and flexural strength
at the age of 28 days is 25% and 84% higher compared to concrete without fiber. An
appropriate fiber content can optimize the internal microstructure of concrete, but an
excessive fiber content will lead to agglomeration, causing a decrease in strength.

The authors [37,38] note a decrease in concrete plasticity caused by the addition of
basalt fiber. This was due to the larger surface area, which required more cement paste,
which reduced the plasticity of the concrete, and the increased friction between the fibers
and the concrete during mixing.

Conflicting results have been reported in the literature on the effect of basalt fiber
on the compressive strength of concrete. Li et al. [39] noted that 0.5% of basalt fiber by
total concrete volume is optimal and can effectively increase impact strength and provide
excellent resistance to freeze–thaw and carbonation of concrete. The addition of basalt
fiber can prevent aggregate separation and improve the homogeneity of the concrete
mixture [29]. Moreover, the addition of basalt fiber can reduce segregation and shrinkage
deformations [40].

However, basalt fiber has a significant disadvantage. In the alkaline environment of
hardening Portland cement, the fiber surface is destroyed by the formation of shells [41]. In
this regard, when reinforcing concrete with basalt fiber, it is necessary to use additives that
bind to CaO; in particular, it is advisable to use fly ash from both an environmental and
economic point of view [42–44].

An important area of concrete research and development is minimizing the use of
cement by partially replacing it with various active mineral additives, including those
obtained from production waste. Many production wastes have been sufficiently studied
to be used as structural components of binders and concretes, which also helps to solve the
environmental problem and accompanies a reduction in the cost of concrete and mortars.

Fly ash is one of the most common mineral fillers, the effectiveness of which has been
confirmed by practical experience [45,46]. Thermal power plants fired by crushed hard coal
capture accumulate a significant amount of it annually, the quality of which depends on
its nature, dispersion, and grain composition. Fly ash actively affects the formation of the
structure of composite building materials at all stages of hydration and structure formation
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of cement systems, that is, the sequential transition from the coagulation structure to the
formation of a spatial crystal framework [47].

Fly ash, due to its aluminosilicate phase, has pozzolanic activity and chemically
interacts with Ca(OH)2, which is released during the hydrolysis of cement clinker minerals.
Due to the pozzolanic activity, the addition of fly ash to cement–water systems not only
increases the volume of hydrate formation but also accelerates the hydrolysis process and
increases the degree of cement hydration, which ultimately has a positive effect on the
strength of cement stone [42,47].

Fly ash contributes to the sulfate resistance of cement concrete in the same way as other
active mineral additives. This can be explained by the fact that the content of the Ca(OH)2
formed in fly ash concrete and mortars as a result of the hydration of C3S and C2S is lower
compared to mixtures without fly ash, since Ca(OH)2 together with silicates contained in fly
ash form calcium hydrosilicates. Additionally, the amount of ettringite decreases as a result of
a decrease in the concentration of Ca(OH)2 in hardening concrete [48]. Paper [49] reports a
study on improving the protective properties of cement mortars by adding fly ash.

The study of the properties of concrete and concrete mixtures using combined rein-
forcement is also reported in several works [41,50]. Concrete with combined fiber has better
plasticity, flexural tensile strength, and increased crack resistance [51].

The study of the properties of concrete and concrete mixtures using steel and basalt
fibers is reported in several papers. This concrete has improved physical and mechanical
characteristics. However, there is a significant disadvantage to using basalt fiber in concrete.
In the alkaline environment of Portland cement curing, the fiber surface is destroyed, leading
to the formation of defects. In this regard, as shown in this study, when reinforcing concrete
with basalt fiber, it is necessary to use additives that bind CaO (in particular, fly ash) and
consequently reduce the alkalinity of the curing environment. Therefore, to achieve superior
physical and mechanical properties of concrete, it is recommended to study fine-grained fly
ash concrete based on combined reinforcement with steel and basalt fibers.

2. Materials and Methods

The materials used for the study of fine-grained fly ash concrete based on combined
reinforcement with steel and basalt fibers were:

• Portland cement CEM I 42.5R from the “Dyckerhoff” Wiesbaden, Germany, cement
plant in Ukraine. Mineralogical composition of clinker: C3S—57.10%; C2S—21.27%;
C3A—6.87%; C4AF—12.19% (EN 196-2). The specific surface area of Portland cement
SCem = 300–320 m2/kg (EN 196-6). The chemical composition of Portland cement
(determined chemically according to EN 196-2) is shown in Table 1; particle size
distribution of Portland cement is shown in Figure 1;

• Fly ash from “Burshtyn” TPP (Ivano-Frankivsk Oblast, Ukraine), which is a type
II category B ash with a 45 µm sieve particle size of no more than 25% (class 2)
(EN 450-1:2012). The specific surface area of the fly ash SA = 250–280 m2/kg
(EN 196-6). The chemical composition of the fly ash is shown in Table 1; particle
size distribution of fly ash is shown in Figure 1;

• Quartz sand with a fineness modulus FM = 2.05. Dust and clay particle content up to
1.5% (EN 12620+A1); particle size distribution of sand is shown in Figure 1;

• Granite aggregate of a 2–5.6 mm fraction. Dust and clay particle content up to 0.5%
(EN 12620+A1);

• Polycarboxylate superplasticizer with 30% water reduction effect (EN 934-2);
• Steel fiber (StF) with a wavy shape. The standard tensile strength is 1350 MPa

(EN 14889-1). Fiber dimensions: length—60.0 ± 5.0 mm; thickness—1.0 ± 0.1 mm,
wave width—6.0 ± 0.1 mm. A photo of the steel fiber is shown in Figure 2a;

• Basalt fiber (BF). Fiber dimensions: length—24 mm, diameter—16 µm. Tensile strength
2800 MPa and elastic modulus 85 GPa. A photo of the basalt fiber is shown in Figure 2b.
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Table 1. Chemical composition of Portland cement 1 and fly ash.

Material Name L.O.I.
Oxide Content, %

SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O Na2O

Clinker – 21.80 5.32 4.11 66.80 0.95 0.63 0.54 0.42
Fly ash 5.1 46.1 18.1 22.1 2.1 2.0 2.3 1.2

1 The chemical composition of Portland cement based on the clinker used was characterized by an additional SO3
content due to the addition of gypsum in the amount of 3.1%.
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In the study of fine-grained fly ash concrete based on combined reinforcement, physical
and mechanical research methods, and methods of mathematical planning of experiments
were combined. In the course of research to evaluate the effect of fly ash, steel, and basalt
fiber on the properties of concrete mixtures and concrete, standard cubes (10 × 10 × 10 cm)
and prisms (10 × 10 × 40 cm) were made, which were cured under normal conditions
(EN 12390-2). The flowability of the concrete mixture was tested immediately after mixing all
components using the fall cone method according to EN 12350-2. The compressive strength
was tested on 4 specimens at 7 and 28 days of age (EN 12390-3), and the tensile splitting
strength on 3 specimens at 7 and 28 days of age (EN 12390-6). The main studies were
conducted using mathematical planning of experiments [52], which allowed the experiments
to be algorithmized according to a scheme that is optimal in terms of both the amount of
experimental work and statistical requirements. The effect of basalt fiber on the concrete
microstructure was studied using an electron microscope of type JSM–5500 LV.
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The theory of experiment planning is based on probabilistic and statistical meth-
ods that allow for a theoretically grounded determination of the minimum number and
composition of experiments, as well as the order of their conduct, to obtain quantitative
dependencies between the parameter under study and the factors affecting it.

The task of planning mathematical experiments is to get an idea of the response surface
of the factors (graphical dependence), which can be analytically represented as a function:

M{y} = ϕ(X1, X2, X3, . . . , Xn), (1)

where y is the optimization parameter, that is, the output parameter of the system, and Xi
are the variable factors of the same system.

The most convenient way is to represent the unknown function as a polynomial:

Y = β0 +
n

∑
i=1

βiXi +
n

∑
i=1

βiiX2
i + ∑

i 6=j
βijXiXj + . . . (2)

where X1, X2, . . . , Xk are independent variables (factors) that can be varied in the experi-
ments; β0, βi, βij, βii are theoretical regression coefficients.

The experiment was planned according to a typical matrix, that is, a table with n rows
and m columns, which contains a set of combinations of factors varied relative to some
origin or zero (baseline) level. The allowable area of variation of factors (factor space) is
selected on the basis of a preliminary study of the object in accordance with the purpose. To
simplify the recording of experimental conditions and processing of experimental data, the
upper level of factors is coded +1, the lower level −1, and the main level corresponds to 0.

To build quadratic models, a full factorial experiment was used, which provides
all possible combinations of factors at three levels. For the technological analysis and
selection of significant factors, along with checking the adequacy of the equation, the
significance of the regression coefficients was also assessed. The significance of the
bi-regression coefficients was evaluated by finding the experimental value of the
t-test (ti) and comparing it with the tabulated value. The regression equations, being
quadratic in nature, allow one to trace the individual and joint influence of factors on the
studied output parameters to establish the necessary and optimal values of the factors.

The results of the experiments were processed using mathematical statistics methods,
obtaining, in general, quadratic regression equations for k factors.

3. Results and Discussion

In order to study the influence of composition factors on the strength characteristics of
fine-grained fly ash fiber concrete as well as establish optimal parameters for the manufac-
ture of such concrete, the main studies were performed using mathematical planning of
experiments. For this purpose, a three-level, three-factor plan B3 was implemented [52],
the planning conditions of which are given in Table 2.

Table 2. Conditions for planning the study experiments.

Technological Factors Levels of Variation Variation
IntervalNatural View Coded View −1 0 +1

Cement–ash binder content (B), kg/m3 X1 400 500 600 100
Steel fiber content, (StF), kg/m3 X2 40 80 120 40
Basalt fiber content, (BF), kg/m3 X3 0 2 4 2

The cement–ash binder was obtained by thoroughly mixing Portland cement with
fly ash in an amount of 30% by weight of the binder. To reduce the water consumption of
the mixture, a polycarboxylate-type superplasticizer was added in an amount of 0.7% by
weight of the binder (Portland cement + fly ash). The choice of fiber content was based on
the optimal amount of fiber, according to previous studies and a review of the literature [41].



Materials 2023, 16, 3969 6 of 14

The flowability of the mixtures at all points of the plan was constant and amounted
to 12–15 cm, according to the slump of a standard Abrams cone. For this purpose, the
amount of water was determined separately for each mixture. The matrix for the planning
of experiments and compositions of fly ash concrete mixtures is given in Table 3, and
the experimental results of studies of fine-grained fly ash concrete based on combined
reinforcement with steel and basalt fibers are given in Table 4.

Table 3. Planning matrix and composition of concrete mixtures.

No.

Coded View Natural View The Composition of the Concrete Mixture, kg/m3

X1 X2 X3 Binder Steel Fiber Basalt Fiber Cement 1 Fly Ash 1 Coarse
Aggregate Sand Water SP

1 +1 +1 +1 600 120 4 450 150 1030 580 144 4.2
2 +1 +1 −1 600 120 0 450 150 1030 610 132 4.2
3 +1 −1 +1 600 40 4 450 150 1030 680 138 4.2
4 +1 −1 −1 600 40 0 450 150 1030 700 126 4.2
5 −1 +1 +1 400 120 4 300 100 1080 720 160 2.8
6 −1 +1 −1 400 120 0 300 100 1080 730 156 2.8
7 −1 −1 +1 400 40 4 300 100 1080 780 152 2.8
8 −1 −1 −1 400 40 0 300 100 1080 810 144 2.8
9 +1 0 0 600 80 2 450 150 1030 630 138 4.2

10 −1 0 0 400 80 2 300 100 1080 750 160 2.8
11 0 +1 0 500 120 2 375 125 1055 675 135 3.5
12 0 −1 0 500 40 2 375 125 1055 750 125 3.5
13 0 0 +1 500 80 4 375 125 1055 700 135 3.5
14 0 0 −1 500 80 0 375 125 1055 710 125 3.5
15 0 0 0 500 80 2 375 125 1055 710 130 3.5
16 0 0 0 500 80 2 375 125 1055 710 130 3.5
17 0 0 0 500 80 2 375 125 1055 710 130 3.5

1 as a part of the binder.

Table 4. Experimental results of research.

No. W/C

Strength, MPa
Crack Resistance 1

fc,tn/fc,m
Tensile Splitting,

fc,tn, at Age Compressive, fc,m, at Age

7 Days 28 Days 7 Days 28 Days 28 Days

1 0.24 15.3 21.0 73.0 98.4 0.21
2 0.22 13.1 18.8 75.0 96.1 0.20
3 0.23 12.2 16.8 71.0 95.4 0.18
4 0.21 11.1 14.0 75.5 92.1 0.15
5 0.40 13.8 16.8 46.4 68.8 0.24
6 0.39 12.8 15.0 47.5 64.7 0.23
7 0.38 10.9 13.8 45.2 62.8 0.22
8 0.36 8.2 11.2 44.1 57.8 0.19
9 0.23 14.9 17.9 69.0 91.1 0.20

10 0.40 14.7 17.6 47.8 61.1 0.29
11 0.27 15.2 18.2 65.7 86.7 0.21
12 0.25 10.5 13.8 58.2 76.8 0.18
13 0.27 15.4 18.5 64.4 85.0 0.22
14 0.25 12.1 14.6 61.3 80.9 0.18
15 0.26 14.7 17.6 64.0 82.8 0.21
16 0.26 14.4 17.3 62.7 84.5 0.20
17 0.26 14.6 17.5 62.5 82.5 0.21

1 tensile strength to compressive strength ratio fc,tn/fcm.

After processing and statistical analysis of the experimental results obtained, experi-
mental and statistical models of the compressive and tensile strengths of fine-grained fly
ash-containing, fiber-reinforced concrete were constructed, which are given in Table 5.
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Table 5. Experimental and statistical models of compressive and tensile splitting strength of fine-
grained fly ash fiber concrete.

Parameter Experimental and Statistical Models

Compressive strength at the age of 7 days f7c,m = 63.0 + 12.66·X1 + 2.53·X2 + 1.57·X3 − 0.93·X1X2 − 0.43·X1X3 − 1.03·X2X3 −
+ 4.35·X1

2 − 0.8·X2
2 + 0.1·X3

2; R2 = 0.974
(3)

Compressive strength at the age of 28 days f28
c,m = 82.28 + 15.79·X1 + 2.98·X2 + 1.88·X3 − 0.73·X1X2 − 0.44·X1X3 − 0.24·X2X3 −

+ 5.16·X1
2 + 0.49·X2

2 + 1.69·X3
2; R2 = 0.992

(4)

Tensile splitting strength at the age of 7 days f7c,tn = 14.62 + 0.62·X1 + 1.73·X2 + 1.03·X3 − 0.3·X1X2 − 0.05·X1X3 − 0.08·X2X3 +
+ 0.19·X1

2 − 1.76·X2
2 − 0.86·X3

2; R2 = 0.947
(5)

Tensile splitting strength at the age of 28 days f28
c,tn = 17.38 + 1.41·X1 + 2.02·X2 + 1.33·X3 + 0.38·X1X2 + 0.08·X1X3 − 0.18·X2X3 +

+ 0.49·X1
2 − 1.26·X2

2 − 0.71·X3
2; R2 = 0.945

(6)

R2—coefficient of determination.

Analysis of constructed models (3–6) confirms that the most significant effect on com-
pressive strength is exerted by the cement–ash binder content, which in turn is associated
with the water–binder ratio, and on tensile splitting strength, by dispersed reinforcement.
According to the significance of the influence of variable factors on the compressive and
tensile splitting strength of concrete, they can be organized in the following descending
order: X1 >> X2 >> X3 and X2 > X3 > X1, respectively.

It should be noted that, In order to achieve the required flowability, concrete mixtures
require more water to mix with an increase in fiber content. The decrease in concrete
plasticity is explained by the larger surface area, which requires more cement paste, while
the effect of basalt fiber is more significant.

Based on experimental and statistical models, graphical dependences of compressive
strength (Figures 3 and 4) and tensile splitting strength (Figures 5 and 6) of fine-grained fly
ash-containing fiber concrete were constructed at the ages of 7 and 28 days, as well as the
ratio of tensile splitting strength to compressive strength at the age of 28 days.

The analysis of the results and the graphical dependencies (Figures 3 and 4) allowed
us to conclude that the most significant factor affecting the compressive strength of fine-
grained fly ash-containing fiber concrete at different curing times is the binder content, the
increase in which, from B = 400 kg/m3 to B = 600 kg/m3, led to an increase in strength of
35–45% at 7 days and 30–40% at 28 days, respectively. This is mainly due to a decrease in
the water binding ratio from W/B = 0.38–0.4 to W/B = 0.21–0.24. An increase in steel fiber
content within a variable range in a constant water–binder ratio increased compressive
strength by 12–16%. The effect was more significant in the absence of basalt fiber and
binder volume consumption of up to 500 kg/m3. In turn, the effect of basalt fiber at a rate
of up to 2 kg/m3 did not lead to an increase in compressive strength as occurred at the
ages of 7 and 28 days. Further increasing the basalt fiber content to 4 kg/m3 yielded a
slight increase in compressive strength of up to 10%. As in the case of steel fiber, it is more
significant with minimal use of another type of fiber and binder consumption.

The effect of dispersed reinforcement on tensile splitting strength was somewhat
different and had a more significant impact (Figures 5 and 6). Increasing the content of
steel fiber from 40 kg/m3 to 120 kg/m3 and basalt fiber to 4 kg/m3 led to an increase in
tensile splitting strength at 7 days from 8.2–10.5 Mpa to 13.1–15.2 Mpa, depending on the
variation of other factors within the experimental plan.

At the same time, the effect on tensile splitting strength at the age of 28 days was
somewhat different, whereby, along with the fiber content (both steel and basalt), the
cement–ash binder content had a significant impact. The influence of the interaction of
factors X1 with X2 and X2 with X3 was also observed. It should be noted that the positive
effect of increasing the fiber content of both types gradually faded as the content approached
maximum within the range of variation. This allowed us to assert the so-called optimum
zone (the extremes of the graphs), which is in the range of 80 to 100 kg and 2 to 3 kg for
steel and basalt fiber, respectively. Under these conditions, the tensile splitting strength
reaches 15–17 Mpa at the minimum binder consumption and 17–20 Mpa at the maximum
binder consumption.
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Figure 5. Graphical dependences of the tensile splitting strength of fine-grained fly ash fiber concrete
at the age of 7 days.
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Figure 6. Graphical dependences of the tensile splitting strength of fine-grained fly ash fiber concrete
at the age of 28 days.

The results obtained indicate that an increase in fiber content in the entire range of
variation leads to an increase in the tensile splitting strength at all curing times and has an
extreme character. This indicates a certain optimal consumption of steel fiber (80 to 100 kg)
in a composition with basalt fiber (2 to 3 kg), which would ensure the achievement of a
maximum tensile splitting strength of 18 to 21 Mpa.

The increase in strength is explained by the increased resistance to the development of
microcracks present in the concrete matrix (Figure 7b,d) due to the presence of fibers.

Thus, as a result of experimental studies, it was established that fine-grained fly ash
concrete is possible using steel and basalt fiber characterized by a compressive strength of
more than 80 Mpa and a tensile splitting strength of more than 17 Mpa. Combined concrete
reinforcement increases the strength of concrete, especially the tensile splitting strength,
which can be explained by the improvement of the concrete pore structure.

Given that there is no protective layer on the dispersed reinforcement, the corrosion
resistance of fibers in fiber-reinforced concrete is determined mainly by the crack resistance
and protective properties of the concrete itself, including permeability, which depend on its
pore structure. Improvement in the pore structure and increased crack resistance are more
evident when using a finely dispersed basalt fiber.
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Figure 7. Microstructure of cement–ash stone with the use of composite fiber reinforcement (a,c,e)
and without fiber (b,d).

The micrographs show some of the densely packed hexagonal plates (Figure 7c) that
can be attributed to calcium hydroxide. Some spherical ash particles remained in their
original state (Figure 7a,c,d), while the bulk of them participated in the hydration process.
In the presence of fly ash, which is a source of active Al2O3 and SiO2, crystals of calcium
hydrosulfoaluminate 3CaO·AI2O3·3CaSO4·32H2O were formed on the surface of sand
particles (Figure 7d) and basalt fiber (Figure 7e), which crystallized in the form of needles
and provided for the formation of strong bonds between the fly ash particles, cement, and
aggregates, increasing the density and mechanical strength of the stone. The high degree of
hydration of the binders studied is also evidenced by the nature of pore overgrowth in the
cement stone. Hydrate formations in the form of thin crystals of calcium hydrosilicate and
elongated crystals of ettringite grew in the pore, contributing to pore colmatization and
increasing the strength of the stone. The phase composition of cement stone with fly ash
additive is characterized by an increased content of low-base hydrosilicates and calcium
hydrosulfoaluminate crystals, which form a homogeneous structure with increased density.

The deformability of concrete is closely related to its crack resistance. Various criteria
have been proposed to characterize the deformability of concrete. One of the simplest is the
ratio of tensile splitting, or flexural strength to compressive strength (fc.tn/fc.m) [4,41]. This
ratio increases as the homogeneity of the concrete micro- and macrostructure increases and
the number of various defects contributing to stress concentration decreases. This criterion
increases for concrete with dispersed complex reinforcement, which is confirmed by the
results obtained in Table 4 and the graphical dependencies in Figure 8. The analysis of the
obtained results led us to conclude that for fine-grained fly ash concrete, the increase in
fc.tn/fc.m from 0.17 to 0.23 and from 0.24 to 0.31 was caused by an increase in the content
of fiber, both basalt and steel, at a binder consumption of 400 kg and 600 kg, respectively.
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However, this tendency was observed at the optimal fiber content. For steel fiber, this is
80–120 kg/m3, and for basalt fiber, 2–4 kg/m3. This parameter increases significantly with
minimum consumption of ash-containing binder in the studied area of variation of the
given factor.
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Figure 8. Graphical dependences of the tensile splitting strength to compressive strength ratio of
fine-grained fly ash fiber concrete at the age of 28 days.

It should be noted that unreinforced, fine-grained concrete samples had a brittle
fracture pattern. Fiber-reinforced concrete specimens fractured differently, as evidenced by
the nature of their destruction. This observation shows that even after crack formation, the
fiber-reinforced concrete sample had the ability to carry a certain load. This is due to the
fact that some of the fibers did not break at the crack but in the concrete matrix and, after
that, were pulled out of the concrete. In addition, there were some fibers anchored on one
side of the crack to a small depth. Such fibers were also not cut off but were pulled out of
the matrix. The effect described above was enhanced by an increase in the volume content
of fiber.

4. Conclusions

Based on the analysis of a complex of experimental and statistical models of the strength
parameters of efficient fly ash concrete using steel and basalt fiber, the effectiveness of its
application for fine-grained concrete has been determined. Quantitative dependences char-
acterizing the effect of the content of the ash-containing binder, steel, and basalt fiber on the
tensile splitting strength and compressive strength of fiber-reinforced concrete were obtained.

An increase in fiber content over the entire range of variation leads to an increase
in tensile splitting strength at all curing times and has an extreme character, indicating a
certain optimal consumption of steel fiber (80–100 kg) in a composition with basalt fiber
(2–3 kg), which would ensure the achievement of a maximum tensile splitting strength
of 18–21 MPa. The strength at 28 days of the efficient, fine-grained fly ash fiber con-
crete obtained is within the characteristic limits of high-strength concrete and amounts to
83–98 MPa in compressive strength.

The use of fine-grained concrete on the fiber types studied has been shown to increase
the efficiency factor of dispersed reinforcement (the ratio of tensile splitting strength to
compressive strength) from 0.15–0.2 to 0.23–0.31.

The replacement of Portland cement with fly ash leads to a slight decrease in compres-
sive and tensile splitting strength, but the addition of composite reinforcement makes it
possible to eliminate this deficiency and increase strength properties.

To increase the resistance of basalt fiber in cement systems, it is effective to use fly ash,
which reduces the amount of free lime in the hydrating cement environment.
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