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Abstract: A classical problem with Cu-based shape memory alloys (SMAs) is brittle fracture at triple
junctions. This alloy possesses a martensite structure at room temperature and usually comprises
elongated variants. Previous studies have shown that introducing reinforcement into the matrix
can refine grains and break martensite variants. Grain refinement diminishes brittle fracture at
triple junctions, whereas breaking the martensite variants can negatively affect the shape memory
effect (SME), owing to martensite stabilization. Furthermore, the additive element may coarsen
the grains under certain circumstances if the material has a lower thermal conductivity than the
matrix, even when a small amount is distributed in the composite. Powder bed fusion is a favorable
approach that allows the creation of intricate structures. In this study, Cu–Al–Ni SMA samples were
locally reinforced with alumina (Al2O3), which has excellent biocompatibility and inherent hardness.
The reinforcement layer was composed of 0.3 and 0.9 wt% Al2O3 mixed with a Cu–Al–Ni matrix,
deposited around the neutral plane within the built parts. Two different thicknesses of the deposited
layers were investigated, revealing that the failure mode during compression was strongly influenced
by the thickness and reinforcement content. The optimized failure mode led to an increase in fracture
strain, and therefore, a better SME of the sample, which was locally reinforced by 0.3 wt% alumina
under a thicker reinforcement layer.

Keywords: shape memory; additive manufacturing; Cu–Al–Ni; local-reinforcement; alumina;
fracture mode

1. Introduction

Shape memory alloys (SMAs) have demonstrated their utility in diverse applications
ranging from aerospace to everyday life, such as dampers, valves, and hydraulic tube
couplings. The damping property in the martensitic state is one of the unique properties of
bulk SMAs, wherein recovery occurs without the need for additional force [1].

Functional actuators and sensors can be made from Ni–Ti alloys and Cu-based binary
and ternary alloys, such as Cu–Al, Cu–Zn, Cu–Al–Ni, and Cu–Zn–Al alloys [2]. However,
for high-temperature applications, Ni–Ti alloys cannot be used because they are low-
temperature SMAs. Ni–Ti–X (X = Hf, Zr, Pd), Cu-based alloys, TiTa-based alloys, Co–Ni–Ga
alloys, and Ni–Mn–Ga alloys are high-temperature SMAs. Owing to their good corrosion
resistances and low manufacturing costs, Cu–Al–Ni SMAs have garnered wide attention
from researchers. Coarse grain size, fracture at triple junctions, and brittleness are the most
common issues found in the application of Cu–Al–Ni alloys in the required areas [3]. Grain
refinement by adding an element and heat treatment have been utilized in order to broaden
its applicability [4,5]. The effects of the addition of Nd, boron, Mn, Co, Zr, and Ti on the
mechanical properties and the shape memory effect (SME) of Cu–Al–Ni alloys show that
significant improvements have been achieved [6–8]. The addition of additional elements to
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the Cu–Al–Ni alloy affects the fabrication cost. However, if the alloy is subjected to high
temperatures, grain segregation due to elemental reactions is amplified. Furthermore, the
additive element may coarsen the grains because of its lower thermal conductivity than
that of the matrix [9]. Three-dimensional printing can significantly tailor the microstructure
and functional properties of Cu-based SMAs via element concentration, the generation of
nanoprecipitates, and changes in endothermic–exothermic enthalpies [10–12]. However, by
tailoring the size and distribution of elements and phases, simultaneous improvement in the
mechanical properties and shape memory properties of SMAs still remain as challenges [13].

In the current study, to improve the damping characteristics of a Cu–Al–Ni alloy
subjected to a compressive environment, a local reinforcement approach around the neutral
plane of samples fabricated using laser three-dimensional (3D) printing was proposed. This
approach focuses on the thickness of the locally deposited reinforcement layer, reinforce-
ment content, and fracture mode of the samples. At the center area of the printed sample, a
layer comprising alumina-reinforced Cu–Al–Ni with no specific pattern was deposited at
two different thicknesses, representing the low- and high-reinforcement layers. Alumina
(Al2O3) reinforcement was selected because of its excellent biocompatibility. The aim of
this study was to provide a new understanding of samples produced via the 3D printing
process with a locally reinforced region around the neutral plane. The fracture mode under
a compressive force was then examined in order to correlate it with the shape recovery
ratio of the fabricated samples used as dampers at high temperatures.

2. Experimental

The initial powders of Cu, Al, and Ni with particle sizes of 30, 30, and 40 µm, re-
spectively, and 99.9 wt% purity, and Al2O3 particles with an average particle size of 5 µm,
were purchased from AVENTION Co., Ltd. (Jacksonville, FL, USA). It is already known
that the alloy exhibits a memory effect when the Al content is in the range of 10–15 wt%.
Powder mixtures of 82 wt% Cu, 14 wt% Al, and 4 wt% Ni were mechanically alloyed. The
weight percentage of Al2O3 was determined to be 0.3 and 0.9 wt% in order to not have a
significant effect on density, and it was replaced by Cu in the mixtures [9]. A rotational
speed of 200 rpm with a ball-to-powder weight ratio of 5:1 was applied to the mixture for
5 h during the ball milling. The average sizes of the particles were 20–30 µm and 60–70 µm.
The morphology of Al2O3 is shown in Figure 1a, and the resultant powder mixtures are
shown in Figure 1b–d. Figure 2 confirms the uniform distribution of Al2O3 particles in
Al2O3 0.9 wt%-reinforced Cu–Al–Ni sample using EDX elemental maps of Al and O that
show no signs of agglomeration within the powder stock.
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parts, as shown, for instance, in Figure 4b. 

Figure 1. SEM images of: (a) Al2O3. (b) Cu–Al–Ni. (c) Al2O3 0.3 wt%-reinforced Cu–Al–Ni.
(d) Al2O3-0.9 wt%-reinforced Cu–Al–Ni.
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Figure 2. EDX elemental maps of: (a) Al, and, (b) O, in Al2O3 0.9 wt%-reinforced Cu–Al–Ni
powder mixture.

The laser was an nLight quasi continuous wave (nLight-QCW) fiber laser system with
a maximum power of 500 W. The laser spot diameter and layer thickness were 80 and
50 µm, respectively. The scanning strategy between the layers was an x–y alternation. The
reinforced layer was deposited at the center of the printed samples. Figure 3 illustrates the
building process under an Ar atmosphere and the proposed method for fabricating locally
reinforced samples. In this figure, t is the reinforced layer thickness with a magnitude of
100 and 500 µm. The optimum conditions for the laser process were determined based on
the density measurements. A laser power of 300 W and a scan speed of 400 mm/s were
identified for the Cu–Al–Ni samples, which were also applied to reinforced samples [9].
Figure 4a shows the built sample. The compressive samples were extracted from the built
parts, as shown, for instance, in Figure 4b.

Prior to the microstructural evolution, the samples were polished and a solution of
30 mL distilled water, 20 mL HCl, and 15 mL HNO3 was used to etch the samples for
3–4 min. A TESCAN MIRA3 FE-SEM (TESCAN, Czech Republic) system equipped with an
EDS analyzer was used for scanning electron microscopy (SEM) examination. A DSC25
system was utilized to measure the transformation temperatures. To calculate the SME,
the height of the compressive samples was measured after wire cutting (L0), unloading
(L1), and heating/cooling (L2) when samples were heated to Ap for 10 min, which is the
temperature at which each sample falls within its average austenite temperature range.
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Thus, the recovered strain, or εSME, was (L2 − L1)/L0 × 100. The pre-strain (loading strain)
was set to two different values of 5 and 10%.
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Figure 4. (a) Printed sample. (b) A compressive sample extracted from the fabricated part.

3. Results and Discussion
3.1. Microstructure

The phase transition temperatures are listed in Table 1. The decrease in Al content
caused by the reaction with Al2O3, resulting in the formation of precipitates and Al deple-
tion, was the cause of the increase in the austenite and martensite temperatures with the
addition of Al2O3 [9,14].

Table 1. DSC results.

ID Ms (◦C) Mf (◦C) As (◦C) Af (◦C)

Cu–Al–Ni 184 75 223 275
Cu–Al–Ni-0.3Al2O3 225 103 246 320
Cu–Al–Ni-0.9Al2O3 340 255 293 364

Figure 5a–c shows the mid-layer cross-sections of the metallographic micrographs of
Cu–Al–Ni, Cu–Al–Ni-0.3Al2O3, and Cu–Al–Ni-0.9Al2O3. The thickness of the reinforced
layer was set at 500 µm (10 deposited layers). Coarse grains were observed in all samples.
Therefore, the reinforcement particles do not play a significant role in breaking and refining
the grains. Even though only a small amount was added to the alloy to prevent the
built samples from reaching low cooling rates [15,16], Figure 5d depicts the grain sizes
through optical microscopy, showing that with the addition of 0.9 wt% Al2O3, the grain
size increased because of the low thermal conductivity of Al2O3 versus copper.
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Figure 5. The morphology of the grains obtained from optical microscopy: (a) Cu–Al–Ni, (b) Cu–Al–
Ni-0.3Al2O3, and (c) Cu–Al–Ni-0.9Al2O3. Two numbered symbols (+) denote the regions for EDS
analysis. (d) The average values of grain sizes (BD: building direction).

Figure 6 shows the SEM images of the interface between the reinforced layer and the
matrix. Broken martensite variants exist in the regions containing reinforcement particles,
whereas the variants appear in a larger size in the non-reinforced region. It was concluded
that the reinforcement particles could break the martensite variants rather than the grains.
With increasing Al2O3 content, the martensite variants were continuously refined, as shown
in Figure 6b. The greater trapping of the reinforcement element inside the matrix variants
in Cu–Al–Ni-0.9Al2O3 was responsible for its variants’ refinement. The lower Marangoni
flow caused by the ceramic particles with low thermal conductivity [17,18], in addition to
the ceramic’s low sensitivity to grain misorientation, reduced the diffusion and aggregation
of Al2O3 particles at the grain boundaries [19]. This led to a small variation in the grains,
as shown in Figure 5d, but a greater variation in size. EDS analysis on spectra 1 and 2 in
Figure 5b,c shows an almost constant amount of O in two samples with a low amount of Al,
as demonstrated in Table 2. Thus, one can deduce that the increase in Al2O3 content from
0.3 to 0.9 wt% had no remarkable effect on alumina concentration in the grain boundaries.

Table 2. The EDS analysis results of numbering points in Figure 5b,c.

Spectrum Cu Al Ni O

1 81.0 11.5 7.4 0.1
2 82.7 12.2 5.0 0.1

According to Figure 6a, both the small variants of 18R β′1 martensite and the large
plate shape variants of 2H γ′1 martensite co-exist at the interface in Cu–Al–Ni-0.3Al2O3,
whereas the small variants exist at the interface of Cu–Al–Ni-0.9Al2O3 in Figure 6b. This
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could affect the SME because smaller variants are able to inhibit martensite transformation
owing to greater entanglement [20].
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To precisely explore the phases in the mid layers, X-ray analysis was performed. It
has been reported that the existence of the γ′1 phase falls in the range of around 40◦ and
65◦ [21]. Figure 7 confirms the co-existence of β′1 and γ′1 phases in Cu–Al–Ni-0.3Al2O3,
whereas less possibility of a γ′1 phase was detected in Cu–Al–Ni-0.9Al2O3.
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3.2. Mechanical Properties

At the temperature range of around 25 ◦C (room temperature), compression tests were
carried out to examine the mechanical properties and the SME of the samples built using
two different reinforcement layer thicknesses (100 and 500 µm). The compressive stress–
strain curves are shown in Figure 8a. The samples show similar elastic moduli but different
compressive fracture strengths and flow behaviors. The plot indicates that at a lower
reinforcement thickness, the sample with higher reinforcement content underwent a higher
fracture strain, whereas at a higher reinforcement layer thickness, the sample with lower
reinforcement content exhibited a higher fracture strain. The effects of these observations
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on the SME are briefly discussed. In Cu–Al–Ni-0.9Al2O3, the variant refinement shown in
Figure 6b might be responsible for its high fracture strength.
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The reason for the similar trend in the elastic modulus of samples might be related
to the “inverse rule of mixtures”. In a composite material with a certain arrangement
of reinforcement layers, the material property is a function of the loading direction. It
is then known as an anisotropic composite, i.e., its strength and stiffness have different
values in different directions. If the reinforcement layer is perpendicular to the loading
direction, it is an isostress composite [22]. The loading direction significantly influenced the
mechanical behavior of the reinforced composite. Considering the isostrain and isostress
models depicted in Figure 8b, the elastic modulus is different for each condition. In this
study, the positioning of the reinforcement layer was assumed to be similar to that in the
isostress condition. Thus, the stress in the composite, σC, is equal to the matrix stress, σM,
and reinforcement stress, σr:

σC = σM = σr (1)

The composite deformation, ∆LC, in the direction of loading is the sum of the matrix
and reinforcement deformation and comes from the strain, εC, and thickness or volume, V.
Thus, we have

∆LC = ∆LM + ∆Lr (2)

εC = VM εM + Vr εr (3)

Assuming elastic behavior, the strain can be expressed in terms of stress, ε = σ/E.
From Equation (1), the inverse rule of mixtures can be written as follows:

1
EC

=
VM

EM
+

Vr

Er
(4)

This equation implies that the increase in the composite modulus under isostress
is not significantly affected by the low reinforcement content (Vr). Therefore, this study
sheds new light on the demand for the further investigation of the orientations of local
reinforcement layers in the 3D printing of metallic materials for future studies.

Figure 9a shows a typical stress–strain plot with the visualization of the pre-strain and
εSME. The plots have variations in their slope lines along the flow direction. A reduction in
the early stages might imply a partial detwinning of the variants, similar to a stress-plateau
after an insignificant elastic deformation that is followed by elastic deformation. This is
frequently observed in the compression test because the detwinning anisotropy of the
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martensite in the compression test is different from that in the tension test. Less recovery
emerges from compression due to the limited and partial detwinning, which is a result of
heavy martensite collision or dislocation generation via compression [15]. This leads to a
low partial detwinning at the beginning of the material flow and low shape recovery.
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Figure 9. (a) Visualization of pre-strain and SME. Blue dashed line denotes a full recovery. Stress–
strain curves were obtained under the pre-strains of (b) 5% and (c) 10%. (d) Quantitative values of
the shape memory effect (SME) and irrecoverable strain (IRS) obtained under 5 and 10% pre-strain.
Here, 0.3 and 0.9 denote reinforcement content, and 100 and 500 denote the layer thickness of the
reinforcement layer. T: the temperature at which the sample is heated to obtain SME.

As stated previously, εSME was equal to (L2 − L1)/L0 × 100 when the height of the
sample after unloading was L1, and the height was L2 when the sample fell to room
temperature from Ap (austenite average temperature), where L0 denotes the initial height
of the sample. Figure 9b,c illustrates the stress–strain curves under 5 and 10% pre-strain
with quantitative values exhibited in Figure 9d that show the SME and irrecoverable strain
(IRS) of the samples. At 5% pre-strain, the values did not show remarkable fluctuations
in SME, which might be due to the small difference in the elastic modulus deduced from
the compressive plots. According to this figure, with an increase in pre-strain to 10%, an
increase in SME is evident in the samples. The difference between SME and IRS was also
increased, which is beneficial for damping applications. The increased SME may be a result
of the enhanced mismatch between the reinforcement particles and the matrix around the
neutral plane. When a sample is under compression, it is plausible that the additive hard
element is under compression, whereas the entire matrix is under tension [22,23]. Thus,
the increase in pre-strain augments the stress mismatch between the reinforcement and the
matrix around the neutral plane, which plays an important role in storing energy [24]. This
improved the SME.
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The higher SME is observed at the lower thickness of the reinforcement layer (t) when
the reinforcement content is higher, i.e., 0.9 wt%. The SME was high at a high reinforcement
layer thickness when the reinforcement content was lower, i.e., 0.3 wt%. According to the
sample behavior in the elastic region, it was deduced that the fracture mode and ultimate
compressive strain were able to influence the SME [25]. In the current work, the fracture
mode was examined using a rough estimation deduced from the macrosamples because
a clear difference between the fracture paths was observed. The reason for higher SME
could be related to either the transgranular fracture mode or higher fracture strain under
t = 500 µm with 0.3 wt% of Al2O3 or t = 100 µm with 0.9 wt% of Al2O3. In contrast to the
intergranular brittle fracture, which occurs when a brittle fracture passes through the grain
boundaries [26], the transgranular fracture occurs when high stress intensity exists during
loading [20], because the local reinforcement layer generates local stress accumulation in
the built part that is able to create inhomogeneous behavior within the sample [9,27,28]. The
propagation of the load in this case moves through the grains and does not cause a sharp fracture,
as intergranular fractures do. As shown in Figure 10a, with a schematic of the transgranular
fracture shown in Figure 10b, the crack likely followed a path along the fracture line during
loading, similarly to the sine curve that the locally reinforced layer made by perverting the
sharp propagation of the fracture path observed for the original Cu–Al–Ni alloy in Figure 10c.
These abovementioned samples, 0.3 wt% Al2O3, t = 500 µm and 0.9 wt% Al2O3, t = 100 µm,
showed better ductility in Figure 8a. According to Figure 10c, an intergranular fracture,
which is representative of a brittle fracture at triple junctions, occurred in the original
Cu–Al–Ni alloy. A schematic of this process is shown in Figure 9d. The sample of 0.9 wt%
Al2O3 with the reinforcement layer of 500 µm showed better ductility than the original
Cu–Al–Ni alloy in Figure 8a. Because the superelastic and shape memory properties of
SMAs are influenced by the number of martensite variants [29,30], the lower SME of this
sample was due to the smaller martensite variants at the reinforcement layer, as observed in
Figure 6b. This is able to enhance martensite stabilization [20], which results in an extreme
mismatch and, hence, the occurrence of defects at the interface in the deformed sample, as
shown in Figure 11.
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Figure 11. Defect in Cu–Al–Ni-0.9Al2O3 with t = 500 µm.

The extreme mismatch at the interface generates a stretched interlayer, which causes
the formation of cracks near the interface, as shown in Figure 11. These defects were
promoted under a high pre-strain of 10%. Thus, the optimized values of the reinforcement
layer and reinforcement content must be considered when the material is locally reinforced.

The findings of this study demonstrated that local reinforcement techniques could
increase the SME of the Cu–Al–Ni alloy by 4.5% rather than requiring more reinforcement
for the entire matrix. As was previously demonstrated [9], the fully reinforced sample did
not show a remarkable improvement in SME. This was due to the hard-to-achieve uniform
distribution of particles inside the printed part and, hence, the intricate anisotropy of stress
generated within the part instead of the generation of a programmed stress anisotropy.

4. Conclusions

To increase the SME of Cu–Al–Ni SMA, a method that uses a reinforcement element
that is not fully distributed within the matrix is required. The reinforcement particles were
mixed with the matrix, and the mixture was deposited at the center of the 3D-printed
samples in an area around the neutral plane. Two different percentages of alumina were
employed as reinforcement agents to deposit the mixture at two different thicknesses. The
selected values are representative of the low and high values, respectively. The key findings
are as follows:

1. The reinforcement particles can break martensite variants rather than grains. With an
increase in Al2O3 content, the martensite variants were continuously refined, which is
deleterious to SME.

2. The compressive samples show almost similar elastic moduli, but different compres-
sive fracture strengths and flowing behaviors led to different SME behaviors.

3. With the increase in pre-strain from 5% to 10%, the SME was increased, and an increase
in the SME was observed. The increased SME was a result of the enhanced mismatch
between the reinforcement particles and matrix around the neutral plane.

4. A higher SME was achieved at a lower thickness of the local reinforcement layer
accompanied by higher reinforcement content. The fracture mode and higher fracture
strain are responsible for this observation.

5. The sharp propagation of the fracture path in the original Cu–Al–Ni alloy was inhib-
ited by the locally reinforced layer, showing a curved fracture path. This implied the
better ductility of the material, accompanied by a higher fracture strain, indicating an
improvement in the brittle fracture at the triple junctions of the Cu–Al–Ni SMA.
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