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Abstract: The most accepted approach to sealing in high-level radioactive waste repositories (HLRWs)
is to develop a low-pH grouting material with a pH of the pore solution of less than 11. Currently,
the most widely used binary low-pH grouting material is MCSF64, which comprises 60% microfine
cement (MC) and 40% silica fume (SF). In this study, a high-performance MCSF64-based grouting
material was developed by incorporating naphthalene superplasticizer (NSP), aluminum sulfate (AS),
and united expansion agent (UEA) to enhance the slurry’s shear strength, compressive strength, and
hydration process. Orthogonal experiments were conducted to measure the flow time, yield stress,
plastic viscosity, initial setting time, shear strength, and compressive strength of the MCSF64-based
slurry, and the optimal mix proportion was determined using the Taguchi–Grey relational analysis
method. The pH variation of the pore solution, shrinkage/expansion, and hydration products of
the optimal hardened slurry were evaluated using simplified ex-situ leaching (S-ESL), a length
comparometer, and scanning electron microscopy (SEM), respectively. The results demonstrate that
the Bingham model effectively predicted the rheological properties of the MCSF64-based slurry. The
optimum ratio for the MCSF64-based slurry was water/binder (W/B) ratio of 1.4, and the contents
of NSP, AS and UEA by mass of binder were 1.9%, 3.6% and 4.8%, respectively. The optimal mix
exhibited a pH value below 11 after curing for 120 days. The addition of AS and UEA facilitated
hydration, shortened the initial setting time, improved early shear strength, and enhanced the
expansion ability of the optimal mix under water curing conditions.

Keywords: low-pH grouting materials; microfine cement; silica fume; aluminum sulfate; slurry
performance; orthogonal test; Taguchi–Grey relational analysis

1. Introduction

Geological disposal has emerged as a leading strategy for long-term nuclear waste
disposal in numerous countries, including Europe, the United States, China, and Japan [1].
In constructing a high-level radioactive repository (HLRW), ordinary Portland cement
(OPC)-based materials are commonly utilized for various purposes, such as fissure sealing,
rock bolting, tunnel and drift lining, and sealing plugs, in addition to the construction
of auxiliary structures required for the repository’s operation [2,3]. In engineered barrier
systems (EBSs), bentonite, a type of clay consisting mainly of montmorillonite, plays a
crucial role owing to its exceptional swelling and adsorbing abilities, which effectively
restrict nuclide migration. However, upon closure, the repository becomes saturated with
groundwater. When OPC-based materials contact with groundwater, they generate a
pore solution with a pH range of 12.5–13.8 (pH > 13 for fresh OPC-based materials, pH
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of 12.5 for evolved ones in equilibrium with portlandite). Such a highly alkaline plume
can potentially impair bentonite’s buffering and sealing performance, thereby adversely
affecting the long-term stability of the HLRW [4]. Currently, the predominant method used
to preserve the stability of bentonite, which is heavily influenced by the pH of the materials
it interacts with, is to produce cementitious materials that generate a pore solution with a
pH of ≤11, as degradation of the bentonite buffer and host rock is restricted at or below
this threshold [5–7].

Substituting cement with mineral admixtures such as fly ash (FA), blast furnace
slag (BFS), metakaolin (MK), and silica fume (SF) at binary, ternary or even quaternary
levels has emerged as an effective approach to reduce the pH of the pore solution [8]. Of
these mineral admixtures, SF is recognized as the most promising agent for pH reduction
in hardened cement pastes or slurry owing to its high pozzolanic activity [9]. Adding
SF to cement has a dual effect, serving as both a chemically inert filler and a pozzolan
that reacts with Ca(OH)2, and the blending of OPC with the high replacement of SF
resulted after longer hydration times in the entire consumption of Ca(OH)2 with ettringite,
and calcium silicate hydrate (C-S-H) gel with a reduced Ca/Si ratio as the only hydrate
phase observed [10]. Several investigations have been conducted to identify the optimal
content of SF in low-pH cementitious materials. Kim et al. [11] found that the required
pH (pH ≤ 11) is obtained after curing for 130 days when the grouting material contains
40% SF. Coumes et al. [12] stated that blends containing at least 40% SF could achieve
pH values below 11. Calvo et al. [13] indicated that at least 55% of SiO2 in the binder
was needed if OPC was to be used as the basic cement of the low-pH blend, or pozzolan
blended additions above 40% had to be employed. Lothenbach and Rentsch [14] studied
the low-alkali cement “ESDRED” consisting of 60% CEMI and 40% SF, and found that a pH
value of 11 would be reached even if the SF had reacted, as C-S-H phases would likely be
stable, while ettringite would most likely convert to thaumasite in the long run. Savage and
Benbow [15] suggested that SF should comprise at least 40 wt. % of dry materials to meet
the pH requirement, and the Ca/Si molar ratio of C-S-H gel should be under 0.8. Based on
these investigations, a 40% SF content appears to be the critical content of binary low-pH
cementitious materials for achieving a target pore solution pH of ≤11.

Grouting technology has been around for hundreds of years, used to enhance engi-
neering quality in different field applications. In terms of grouting technology, the efficacy
of the grouting is highly dependent on the selection of an appropriate grouting material.
Conventional grouting materials mainly include cement-based slurries, chemical slurries
and organic–inorganic composite slurries. In recent years, some friendly novel composite
slurries, such as geopolymer grouts and controlled low-strength materials (CLSMs), have
been widely considered [16,17]. However, the slurries mentioned above are unsuitable for
use due to the necessity of preventing water seepage and minimizing the damage caused by
highly alkaline pore water to bentonite. For the construction of HLRW, the grouting mate-
rial must possess low pH, low hydraulic conductivity, good penetrability of micro-fractures,
and physical and chemical compatibility with the host environment to ensure long-term
operational safety. As a result, a low-pH microfine cement (MC) material has been rapidly
developed and utilized for fractures with an aperture of more than 100 µm [18,19]. Several
projects have been conducted since 2002 to investigate low-pH grout, including those car-
ried out by the Swedish Nuclear Fuel and Waste Management Company (SKB), the Nuclear
Waste Management Expert of Finland (POSIVA), and the Nuclear Waste Management
Organization of Japan (NUMO). Based on these studies, the MCSF64 (60% MC + 40% SF)
with high W/B ratios (1.2~3.0) slurry was selected as a low-pH injection grout mix, and
tested both in the laboratory and in field settings [20]. In addition, the Posiva research
report emphasizes that naphthalene superplasticizers (NSPs) have a lower likelihood of
complexing with nuclide ions compared to other types of water-reducing agents, hence
it is recommended to use NSPs in the MCSF64 slurry for better fluidity [21]. Indeed,
Holt et al. [22] investigated the properties between MCSF64 low-pH grout and plain MC
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grout at equivalent W/B ratios. The test results show that the former grout achieved
superior performance in stability, homogeneity, and penetration ability.

In summary, the above works have significantly contributed to improving and imple-
menting MCSF64 low-pH grouts in HLRW. However, certain issues, including prolonged
setting time, poor early shear strength, and dimensional instability, have been identified
with this specific grout mix, resulting in reduced effectiveness and workability during
practical grouting [11,22,23]. Therefore, the objective of this paper is to develop a slurry for
microfracture grouting based on MCSF64 by incorporating NSP, aluminum sulfate (AS),
and united expansion agent (UEA) to enhance the shear strength, setting time, compres-
sive strength, and hydration process of the slurry, while maintaining desirable flowability.
In this study, an orthogonal test was used to explore the effects of admixtures on the
performance of the MCSF64-based slurries. The flow time, rheological parameters, rhe-
ological model, initial setting time, shear strength, compressive strength, pH variation,
shrinkage/expansion, and microstructure of the MCSF64-based slurries were assessed. The
optimal mix proportion of the MCSF64-based slurry was determined using Taguchi–Grey
relational analysis. Through this study, some theoretical basis and guidance for the future
application of low-pH grouting materials in the HLRW field may be provided.

2. Design Requirements and Materials
2.1. Design Requirements of Low-pH Grouting Materials

Table 1 summarizes the fundamental performance criteria of low-pH grouting materi-
als [18,19]. The primary objective of these materials is to maintain a pH ≤ 11 to prevent any
undesirable effects on the bentonite. Furthermore, the grout slurry must exhibit sufficient
permeability to be injected into microcracks of at least 100 µm in size. In addition, the
marsh funnel viscosity (flow time) should not exceed 45 s to ensure a desirable fluidity.
Adequate strength is also required to withstand any outward water pressure following pre-
grouting, and this can be achieved through effective work procedures and the management
of early shear strength development. It should be noted that Table 1 gives good grouting
experience guidance for laboratory determinations in HLRW around the world, but the
exact criteria must be examined further, and these requirements are subject to verification
by international research groups.

Table 1. Requirements used for the development of low-pH grouting materials.

Order of
Importance Property Requirement [18] Updated

Requirement [19]

Required Properties
pH ≤11 ≤11

Penetration ability bmin ≤80 µm ≤80 µm
Penetration ability bcrit ≤120 µm ≤120 µm

Desired Properties

Plastic viscosity ≤50 mPa.s ≤50 mPa.s
Yield stress ≤5 Pa ≤5 Pa

Bleed ≤10% ≤2%
Workability time ≥60 min ≥60 min

Shear strength 6 h ≥ 500 Pa 6 h ≥ 500 Pa
Compressive strength 28 d ≥ 4 MPa 28 d ≥ 4 MPa
Marsh funnel viscosity

(Flow time) - ≤45 s

2.2. Materials

The MC used in this study was the K1000 type of P.O 52.5 Portland cement (Qing Yun
Kang Jing Building Materials Co., Ltd., Dezhou, China). Its performance was confirmed to
adhere to the Chinese standard GB/T 35161-2017 [24]. The undensified SF was produced
by Bo Run Building Materials Co., Ltd., Zhengzhou, China. The UEA (Wuhan Jianfeng
Hongda Building Materials Co., Ltd., Wuhan, China) with a low alkalinity content was
used to enhance the expansion performance of hardened grouts. The UEA conformed with
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Chinese standard GB/T 23439-2017 [25]. The details of the chemical components above are
shown in Table 2, which was measured using X-ray fluorescence (XRF) (S8 Tiger, Bruker
Technology Co., Ltd, Beijing, China). NSP, one of the naphthalene sulfonated-formaldehyde
copolymers, was produced by Chen Qi Co., Ltd. in Shanghai, China, and has a pH value
of 8.00 (20 ◦C). In this study, a 50% alkali-free accelerator based on aluminum sulfate (AS)
(Shanxi Feike New Materials Technology Co., Ltd., Yuncheng, China) was used. Table 3
presents the basic physical and chemical properties of AS provided by the manufacturer.
The MCSF64-based slurry was prepared using tap water, and the designed raw materials
of the slurry are shown in Figure 1. The SEM images of MC and SF, presented in Figure 2,
show that SF particles are mostly spherical, and some groups of agglomerates could be
observed, while the shape of the MC particles was angular and irregular. The X-ray
diffraction (XRD) spectra (Smartlab9, Rigaku Corporation, Tokyo, Japan) of MC and SF,
which are presented in Figure 3, indicate that SF is primarily composed of amorphous silica.
Furthermore, the SF has weak impurity peaks, which implies the presence of impurities
in the SF. As can be seen from the XRD spectra, alite and belite were the main mineral
phases in MC.

Table 2. The main chemical components of raw materials.

Material SiO2 CaO Al2O3 Fe2O3 MgO SO3 Na2O K2O TiO2 P2O5 LOI

MC (wt. %) 21.10 61.60 4.08 3.95 3.64 2.40 0.18 0.35 0.40 0.16 2.14
SF (wt. %) 96.30 0.30 0.50 0.12 0.20 0.12 0.10 0.31 - 0.35 1.70

UEA (wt. %) 38.01 18.85 12.93 4.69 5.34 17.15 0.13 0.71 0.21 - 1.74

Table 3. Basic physical and chemical properties of accelerators.

Accelerator Solid
Content/%

Alkali
Content/%

Cl−
Content/%

F−
Content/% pH Value

AS 50.63 0.05 0.02 0.04 2.2
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3. Methods
3.1. Preparation of Fresh Slurries and Samples

In this study, the fresh slurry was prepared in a similar method to that described by
Posiva [19]. A high-speed mixer operating at 1500 r/min was used in a specific order:
Firstly, water and NSP were added to the mixer, followed by the addition of MC, which
was then quickly and uniformly stirred for 1 min. Next, AS and UEA were incorporated
and the mixture was further agitated for 2 min. Finally, SF was added and stirred for
an additional 2 min, with a total mixing time of approximately 5 min. After mixing, the
slurry was poured into 40 mm × 40 mm × 160 mm molds and covered with a preservative
film to prevent water evaporation. To ensure the maintenance of adequate moisture
content, the surrounding area was continuously misted. After 2 days, the samples were
demolded and cured under standard conditions of 20 ± 1 ◦C and 98% RH. To minimize
the influence of temperature, slurry preparation and performance tests were carried out
at room temperature. The detailed procedures for sample preparation and the testing of
various properties are presented in Figure 4.
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3.2. Experimental Methods of the MCSF64-Based Materials

Based on the performance requirements outlined in Table 1, the main properties of
the MCSF64-based low-pH grouting materials investigated in this paper include pH value,
particle size, flow time, plastic viscosity, yield stress, initial setting time, shear strength,
and compressive strength. Bleeding capacity was not studied, because it was tested and
observed in the laboratory that even with a W/B ratio of 1.8, the bleeding capacity of the
MCSF64-based slurry remained below 5% after 2 h from preparation, indicating that the
slurry could be considered stable according to SL62-2014 and EN 12715 standards. The
test process is depicted in Figure 4, and the specific test methods for each property of the
grouting materials are as follows.

pH test: The measurement of pH in low-pH cementitious materials is a critical aspect
of material characterization, particularly in the context of HLRW’s construction applications.
The routine ex-situ leaching (R-ESL) method has been established as the standard method
for this purpose by the Spanish National Research Council (CSIC) [26]. Recent comparisons
between R-ESL and the pore fluid expression (PFE) method have demonstrated that R-ESL
exhibits high levels of accuracy, repeatability, and reproducibility. However, the 1:1 solid to
liquid ratio utilized in R-ESL can result in difficulties during filtrate extraction and lower test
efficiency due to the requirement of nitrogen bubbling. To address these issues, a simplified
ex-situ leaching (S-ESL) method was used in this study to measure the pH of grouts.
The solid to liquid ratio was increased to 1:5 in S-ESL, thereby enabling the extraction
of more filtrate. Moreover, the dilution during the preparation of the suspension was
insufficient to desaturate the solution with respect to the C-S-H phase, and the measured
pH was representative of the pore solution [27]. The experiments were conducted in an
air-conditioned room with a controlled temperature of 21 ± 1 ◦C. The pH of the samples
was measured using a PHS-3CB digital display acidity meter (Shanghai Yueping Scientific
Instrument Co., Ltd., Shanghai, China). Figure 5 illustrates the test procedures of S-ESL.
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Particle size: The particle size distributions of MC and SF were measured by a laser particle
size analyzer (Bettersize2600, Dandong Baite Instrument Co., Ltd., Dandong, China).

Flow time (FT): The Marsh funnel viscometer is a straightforward apparatus char-
acterized by a simple structure and easy operation, which makes it a viable option for
assessing the viscosity changes of slurry in the engineering field. The manufacture of the
Marsh funnel viscometer meets the American Petroleum Institute (API) standard. The
methodology involves timing the flow of a 1500 mL slurry into a 946 mL measuring cup
and recording the FT in seconds [28]. Before the actual test, water was used to calibrate
the instrument (26 ± 0.5 s). The measurement was performed three times, and the average
value was used to determine the final results.

Rheological property: The shear stress at various shear rates of the slurry was mea-
sured using a FANN-D12L digital rotating viscometer (Qingdao Senxin Co., Ltd., Qingdao,
China). FANN-D12L is a rotational coaxial–cylindrical-type viscometer with twelve stan-
dard rotation speeds (i.e., 600, 300, 200, 100, 60, 30, 20, 10, 6, 3, 2 and 1 rpm). The relationship
between shear rate (γ) and rotation speeds (n) is γ = 1.703 × n [29,30]. The corresponding
shear rate is varied from 1021.8 s−1 to 1.703 s−1. At each rotation speed, the initial viscosity
values (0 min after preparation) were tested, and then the slurry rheological model and rhe-
ological parameters, including plastic viscosity (PV) and yield stress (YS), were determined
by fitting the test data.

Setting time: A Vicat apparatus was used to test the setting time of the fresh slurry
corresponding to the Chinese Standard GB/T 1346-2011. In this study, only the initial
setting time (IST) was used as an example to illustrate the coagulation characteristics of
MCSF64-based grouts.

Shear strength (SS): In accordance with ISO 17892-6 and consistent with Posiva [18,19],
the SS of fresh slurry after curing for 6 h was determined using a modified Vicat meter. The
method involved the use of a cone with an angle of 30◦, and the mass of the cone plus rod
and index mark was 80 g. Each group comprised two specimens and was placed in the
curing room after being prepared. In order to ensure the uniformity of the samples, the
cone falling depth was recorded at three different positions for each sample, with a total of
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six data points being collected. The average value of these measurements was taken as the
final result. The formula for calculating SS is as follows:

τ =
cmg

i2
(1)

where τ is shear strength, kPa; m is the mass of the cone, g; g is gravity acceleration, the
value of which is 9.81 m/s2; i is fall cone depth, mm; c is a constant, which is related to the
cone angle β (β = 30◦, c = 0.80; β = 60◦, c = 0.27).

Unconfined compression strength (UCS): The UCS of the hardened slurry was tested
using an MTS CMT4304 (Shenzhen Meters Co., Ltd., Shenzhen, China) with a servo-
controlled system, and the sample was loaded continuously and evenly at a rate of
1.0 mm/min. To ensure the precision and reliability of the experimental results, six samples
were tested for each group, and the average values were calculated.

Shrinkage/expansion: The shrinkage/expansion characteristics of hardened grouts
were evaluated in accordance with JT/G603-2004 using a length comparometer. Specifically,
three specimens, each of 40 mm × 40 mm × 160 mm, were demolded after 3 days in the
standard curing room, and their initial length was measured at room temperature, with
this time being designated as the testing zero point. In this study, one group was placed
in a room with RH 30%, while another group was placed in water with RH 100%. From
the date of sample forming, we recorded the daily length change after 4, 7, 14, 28, 56 and
90 days, respectively. The shrinkage/expansion ratio of grouts is calculated as follows:

ε =
L0 − Lt

L− Ld
(2)

where L0 is the initial length after curing for 3 d, mm; Lt is the length of the corresponding
age, mm; L is sample length, 160 mm, and Ld is the sum of the length of two copper nails
embedded in the sample, 20 mm.

Morphology observation: After curing the samples for the designated period, the
surface layer was removed, and the middle portion of each sample was crushed and
collected. The fractured pieces were then immersed in absolute ethyl alcohol to halt the
hydration process, and subsequently dried in an oven at 60 ◦C until reaching a constant
weight. The morphology of the hydration products in the samples was investigated using
a ZEISS GeminiSEM 360 scanning electron microscope manufactured by Carl Zeiss AG.

3.3. Taguchi and GRA Method

Orthogonal experimental design is a method used to study the effects of multiple fac-
tors and levels. This approach involves selecting representative points from comprehensive
experiments based on orthogonality. These points possess the characteristics of “uniform
dispersion, uniformity, and comparability”. By reasonably selecting the main factors that
affect slurry performance and their corresponding levels, and then performing statistical
analysis, the best combination of levels for different factors that achieve a specific goal can
be determined. As a result, an orthogonal test was performed in this study to investigate
the multi-objective parameters of MCSF64-based slurry mix proportions in order to find
the best scheme.

Grey relational analysis (GRA) is an available technique that leverages grey system
theory to address multi-output problems with complex interrelationships. In terms of the
GRA method, experimental data are first normalized between zero and one, and this is
followed by a step referred to as grey relational generation. Subsequently, the grey relational
coefficient, representing the correlation between the actual and desired experimental data,
is determined by normalizing the data. The overall grey relational grade for each response
is then calculated by averaging the estimated grey coefficients. Consequently, a multi-
response problem can be transformed into a process optimization problem with the grey
relational grade (GRG) serving as the objective function. Notably, some scholars have
successfully applied the Taguchi method in combination with GRA to optimize the multi-
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objective proportioning of grouting materials, and this approach has demonstrated both
feasibility and practicality [31].

By employing the Taguchi design method, experimental results are transformed into
a signal-to-noise (S/N) ratio, which provides information about the degree of dispersion
around the desired outcomes. The S/N ratio encompasses three types of performance
characteristics, including lower-the-better, nominal-the-better, and higher-the-better. For
this study, FT, PV, YS, and IST are categorized as small indicators (lower-the-better), whereas
SS and UCS are classified as large indicators (higher-the-better), for MCSF64-based slurry.
The S/N ratios for these three characteristics could be computed using Equations (3)–(5):

Lower − the better : S/N = −10 log10

(
1
n

n

∑
i=1

yi
2

)
(3)

Nominal − the better : S/N = −10 log10

(
1
n

n

∑
i=1

(yi − y0)
2

)
(4)

Higher − the better : S/N = −10 log10

(
1
n

n

∑
i=1

(
1
yi
)

2
)

(5)

where yi is the observed value of the ith trial and jth repetition response, and n denotes the
number of trials.

Zij =
max

(
yij
)
− yij

max
(
yij
)
−min

(
yij
) ; i = 1, 2, . . . , m; j = 1, 2, . . . , n (6)

Equation (6) is chosen for the normalized S/N ratio in the lower-the-better case.

Zij =
| yij − Target | −min

(
| yij − Target |

)
max

(
| yij − Target |

)
−min

(
| yij − Target |

) ; i = 1, 2, . . . , m; j = 1, 2, . . . , n (7)

Equation (7) is chosen for the normalized S/N ratio in the nominal-the-better case.

Zij =
yij −min

(
yij
)

max
(
yij
)
−min

(
yij
) ; i = 1, 2, . . . , m; j = 1, 2, . . . , n (8)

Equation (8) is chosen for the normalized S/N ratio in the higher-the-better case.

∆ =
(
Zmax − Zij

)
; i = 1, 2, . . . , m; j = 1, 2, . . . , n (9)

The quality loss function is computed using Equation (9).

GRCij =
min(∆) + λmax(∆)

∆ij + λmax(∆)
; i = 1, 2, . . . , m; j = 1, 2, . . . , n (10)

The grey relational coefficient (GRC) is computed using Equation (10).

GRGi =
n

∑
j=1

ϕjGRCij; i = 1, 2, . . . , m (11)

The grey relational grade (GRG) is computed using Equation (11).
where:
yij is the S/N ratio value of the ith experiment for the jth response;
Zmax is the optimal performance value of the jth characteristic;
Zij is the ith normalized value of the jth characteristic;
∆ij is the difference between the optimum value of the normalized S/N ratio and the

ith normalized S/N ratio value for the jth response;
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λ is the distinguishing coefficient (0 ≤ λ ≤ 1), and λ can be adjusted by the analyzer
according to the practical needs, usually set as 0.5;

GRCij is GRC for the ith replicate of jth response, i = 1, 2, . . . , m and j = 1, 2, . . . , n;
ϕj is the weight of the jth response, and the sum of all ϕj is equal to 1.0. All the

responses (characteristics) considered in this research are given equal weighting.
According to the methodology mentioned above, the Taguchi experimental design

method was utilized to select four factors, namely, W/B ratio, NSP content, AS content,
and UEA content. After conducting extensive exploratory trials, the corresponding levels
of the four selected factors were identified and are listed in Table 4. The content of UEA
was determined by the manufacturer, who recommends that the content of UEA should
be between roughly 6% and 8% by mass of cement. Therefore, the UEA content in the
orthogonal test ranged from 3.6% to 4.8% by mass of binder. The L16 (45) orthogonal test
scheme was employed for the experiment, as shown in Table 5.

Table 4. Four factors and four levels of MCSF64-based orthogonal test.

Level
Factors

W/B Ratio NSP Content (%) AS Content (%) UEA Content (%)

1 1.4 1.6 3.6 3.6
2 1.5 1.7 4.0 4.0
3 1.6 1.8 4.4 4.4
4 1.7 1.9 4.8 4.8

Table 5. The MCSF64-based slurry orthogonal test scheme L16 (45).

Sample W/B Ratio NSP Content (%) AS Content (%) UEA Content (%) Blank

S1 1(1.4) 1(1.6) 1(3.6) 1(3.6) 1
S2 1(1.4) 2(1.7) 2(4.0) 2(4.0) 2
S3 1(1.4) 3(1.8) 3(4.4) 3(4.4) 3
S4 1(1.4) 4(1.9) 4(4.8) 4(4.8) 4
S5 2(1.5) 1(1.6) 2(4.0) 3(4.4) 4
S6 2(1.5) 2(1.7) 1(3.6) 4(4.8) 3
S7 2(1.5) 3(1.8) 4(4.8) 1(3.6) 2
S8 2(1.5) 4(1.9) 3(4.4) 2(4.0) 1
S9 3(1.6) 1(1.6) 3(4.4) 4(4.8) 2
S10 3(1.6) 2(1.7) 4(4.8) 3(4.4) 1
S11 3(1.6) 3(1.8) 1(3.6) 2(4.0) 4
S12 3(1.6) 4(1.9) 2(4.0) 1(3.6) 3
S13 4(1.7) 1(1.6) 4(4.8) 2(4.0) 3
S14 4(1.7) 2(1.7) 3(4.4) 1(3.6) 4
S15 4(1.7) 3(1.8) 2(4.0) 4(4.8) 1
S16 4(1.7) 4(1.9) 1(3.6) 3(4.4) 2

4. Results and Discussion
4.1. Grain Size Analysis

Groutability is a critical parameter that must be considered when evaluating the
effectiveness of injection grouts. The ability of the grouting material to permeate and
propagate through rock fractures is influenced by various factors, including the geometrical
parameters of the fracture, as well as the particle size, rheological properties, and stability
of the grouting material. It has been widely observed that grouting materials with smaller
particle sizes exhibit increased injectability [32]. The particle size distribution of the raw
materials utilized in this study is depicted in Figure 6, and Table 6 presents the characteristic
grain sizes and specific surface areas of MC and SF. Data analysis indicates that both MC
and SF meet the requirements of EN 12715, which specifies a specific surface area greater
than 800 m2/kg and d95 less than 20 µm. It is worth noting that the actual particle size of SF
is smaller than that of MC, while the particle size distribution of SF is relatively wide, which
suggests that this material tends to agglomerate, despite attempts to reduce agglomeration
via the ultrasonic treatment of the powder. This phenomenon has also been reported by
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Wei et al. [33]. In practice, the relationship between the particle size of cement and fracture
aperture can be assessed using the “groutability ratio”, which is defined as follows [34]:

G = b/d95 (12)

where G is the groutability ratio, b is the aperture of fracture (µm), and d95 is 95% by volume
of the particle diameter smaller than this value. Penetration ability is considered difficult if
G < 2 and satisfactory if G > 5. In this study, G = 100 µm/15.05 µm ≈ 6.6. Thus, satisfactory
permeation can be achieved.
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Table 6. Gradation of MC and SF.

Materials
Grain Sizes (µm) Specific Surface

(m2/kg)d95 d90 d50 d10

MC 14.22 11.59 4.23 0.85 998
SF 15.05 7.66 2.09 0.81 1327

4.2. Analysis of the Taguchi–Grey Relational and Variance Results
4.2.1. Flow Time of the MCSF64-Based Slurry

The evaluation of the fluidity and workability of fresh slurry heavily depends on the
FT. Typically, slurries with smaller FT values tend to have better groutability and spread
ability. Figure 7 displays the FT results for fresh slurries (S1 to S16). As demonstrated in
Figure 7, all fresh slurries satisfied the requirements specified in Table 1, where the FT was
less than 45 s. The FT of the slurries varied between 35.56 s and 44.36 s. It is noteworthy that
S4, which had a 1.4 W/B ratio, 1.9% NSP, 4.8% AS, and 4.8% UEA, exhibited the highest FT
among all MCSF64-based slurries. Obviously, the W/B ratio had a significant impact on FT,
and S16 had a higher W/B ratio, as well as lower AS and UEA contents, hence showing the
lowest FT.
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In Table 7, the signal-to-noise (S/N) ratios given by FT, YS, PV, and IST are calculated
using Equation (3), while SS and 28-day UCS are calculated using Equation (5). The average
S/N ratio (ASNR) refers to the average value of all S/N ratio values at a certain level with
a specific factor. In this paper, minitab26 was used to analyze the test data.

Table 7. S/N ratio values of different properties of the MCSF64-based slurry.

Sample FT YS PV IST SS 28-Day UCS

S1 −32.4815 −10.9309 −25.8051 −55.7066 13.5291 17.7860
S2 −32.5371 −11.2933 −26.7412 −55.3875 15.1094 18.2338
S3 −32.8096 −12.8888 −27.9727 −54.9638 17.7873 18.7704
S4 −32.9398 −13.6789 −28.6786 −54.6479 19.8334 19.3697
S5 −31.8302 −9.4843 −25.5108 −59.1330 9.5134 16.7644
S6 −31.8746 −9.1273 −24.8855 −59.0655 7.7922 16.6757
S7 −32.5165 −10.1571 −25.5384 −57.6391 11.3992 16.4803
S8 −32.3358 −9.6575 −25.0958 −57.8974 8.9121 16.7539
S9 −32.1641 −8.1987 −24.4335 −59.8068 6.7390 14.4390

S10 −32.2620 −9.0664 −24.5834 −59.1999 8.3328 15.6781
S11 −31.5544 −6.2773 −23.3758 −61.7272 3.4868 14.8702
S12 −31.6162 −7.0822 −22.9967 −61.5474 4.8068 13.7148
S13 −31.5406 −6.5267 −22.9350 −62.6067 3.9158 12.2979
S14 −31.3640 −4.1903 −22.4443 −62.8915 0.7485 12.2274
S15 −31.1718 −3.4052 −21.4523 −62.9844 −0.2646 12.5062
S16 −31.0192 −2.1442 −21.5981 −63.5507 −2.2368 11.7205

Figure 8 presents the ASNR values for the FT of the MCSF64-based slurries for different
factors. It can be seen from Figure 8 that there was a notable decrease in the ASNR values
of the FT with an increase in the W/B ratio of the slurry from 1.4 to 1.7. This trend can be
attributed to the increased presence of free water in the liquid phase and reduced friction
between MC and SF particles. The ASNR values showed a moderate decline when the
NSP content exceeded 1.8%, which can be explained by the introducing of a high amount
of SO4

2− ions when adding AS. These ions weaken the adsorption degree and dispersion
ability of NSP to MC particles, resulting in a minor variation in the FT from a macroscopic
view. The addition of AS content results in a significant increase in FT, as the detrimental
effect of AS on FT can be attributed as follows: (i) the main component of AS is aluminum
sulfate (Al2(SO4)3), which enhances the hydration of tricalcium aluminate (C3A) and the
initial dissolution of tricalcium silicate (C3S) after mixing, resulting in the rapid formation of
acicular ettringite (AFt) crystals and the consumption of water; (ii) the adsorption of a large
number of SO4

2− ions on MC particles will lead to a competitive adsorption effect with
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NSP anions, which diminishes the electrostatic repulsion of NSP. Therefore, the increase in
AS remarkably weakens the fluidity and dispersibility of fresh slurry. Zhang et al. [35] also
reported similar results. Moreover, these marked and regular trends reflect that the data
obtained in FT tests are reliable, although previous studies have shown that the standard
Marsh cone nozzle is not very sensitive in low-viscosity grouting materials [36]. The UEA
content appeared to have little effect on the FT of the fresh slurry, with the ASNR showing
a slight increase when the UEA content exceeded 4.4%.
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4.2.2. Rheological Model of the MCSF64-Based Slurry

In terms of cement-based slurry, rheological properties are typically characterized by
dividing the slurries into Newtonian fluid, Bingham fluid, and power law fluid categories
based on the water–cement ratio [37]. However, incorporating 40% SF in binary low-pH
grouting material may result in a rheological model that differs from the conventional
cement-based slurry. Usually, the rheological parameters of slurry can be obtained by
fitting different rheological constitutive equations on the diagram of shear stress (τ) and
shear rate (γ), which is helpful in evaluating the rheological properties of MCSF64-based
slurries. Figure 9a shows the test data and fitting curves of fresh MCSF64-based slurry
(S1 to S4).
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Based on the data presented in Figure 9a, the relationship between the γ and τ of all
fresh slurries can be approximated with a straight line. The experimental data were fitted
using the Bingham fluid equation, and in most cases, the resulting correlation coefficients
(R2) were equal to 0.99. This suggests that the rheological model of MCSF64-based slurry
can be considered as Bingham fluid, and hence, the rheological parameters can be obtained
after fitting data:

τ = τ0 + ηγ (13)

where τ is the shear stress, Pa; τ0 is the yield stress, Pa; η is the plastic viscosity, Pa·s; γ is
the shear rate, s−1.

As shown in Figure 9b, the rheological behavior of S1 followed a Bingham model
over a period of 0 to 60 min, with γ fixed at 100 rpm (170.3 s−1). During this period, the
yield stress (YS) of S1 increased by 160%, ranging from 3.52 Pa to 5.64 Pa, while the plastic
viscosity (PV) increased by 154%, ranging from 19.51 mPa·s to 30.14 mPa·s. The increasing
effect on the rheological parameters is mainly accounted for by the hydration reaction,
especially when the C3A of the fresh slurry begins, resulting in the free water decreasing
and the sediment gradually increasing, hence the increase in rheological parameters with
time [38].

4.2.3. Rheological Parameters of the MCSF64-Based Slurry

To acquire a satisfactory grouting effect, the rheological parameters of the slurry
should be as low as possible to maintain superior flowability and groutability. In this
regard, the PV and YS of MCSF64-based fresh slurries were investigated, as shown in
Figure 10. The results indicate that the rheological parameters of all fresh slurries examined
met the requirements outlined in Table 1. Notably, mix S4 demonstrated the highest YS
of 4.83 Pa and PV of 27.16 mPa·s, while mix S16 exhibited the lowest YS of 1.28 Pa and a
relatively lower PV of 12.02 mPa·s. This behavior can be attributed to the dominant effect
of the W/B ratio and AS content, with mix S16 containing a higher W/B ratio and lower
AS content compared to mix S4.
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Figure 11 shows the ASNR values for YS and PV in the MCSF64-based slurry for
different factors. As shown in Figure 11, the variation of the W/B ratio on YS exhibited
a similar trend to that of PV. Specifically, the ASNR decreased dramatically as the W/B
ratio increased, which can be attributed to the higher amount of free water leading to lower
internal friction force and a greater lubrication effect on MC and SF particles. The ASNR
of YS and PV decreased as the NSP content increased. This observation is attributable to
the fact that NSP, being an anionic surfactant, can directionally adsorb onto the surface of
MC particles, lowering the solid–liquid interface energy and forming a double-electron
layer solvation membrane via electrostatic repulsion. As a result, the flocculation structure
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caused by the high surface energy of MC and SF begins to decompose into smaller ones,
releasing more free liquid, and improving the fluidity of fresh slurry. It is noted that the
variation in the mean S/N ratio of PV is not visible compared to YS. A possible reason
for this phenomenon is that the change in PV was small due to the uniform dispersing of
particles in suspensions, thus the effect of NSP on PV is less remarkable. The available
literature [39] also reports similar results. The ASNR of YS and PV increased with a small
increase in the AS content. This is because AS can react with C3A or Ca(OH)2 to form
AFt, and a large amount of free water is consumed in the formation process of AFt, which
increases the internal friction within hydration products, leading to an increase in the
values of the rheological parameter of fresh slurry. The variation in the ASNR presented a
rising trend as UEA content increased, which indicates that the addition of UEA increased
the rheological parameter’s values by consuming a part of the water in the slurry.
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4.2.4. Initial Setting Time of the MCSF64-Based Slurry

In grouting, careful control of the slurry’s setting time is essential to achieve optimal
diffusion radius and effect. According to previous studies, it is appropriate to control the
final setting time within 4–24 h [40]. Figure 12 displays the initial setting time (IST) of
MCSF64-based slurries, which ranges from 540 to 1505 min. Among tested slurries, mix
S16 has the longest IST due to its higher W/B ratio and lower AS content. Conversely, mix
S4 has the shortest IST due to the dominant influence of the W/B ratio and higher AS and
UEA contents compared to other slurries.
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Figure 13 shows the ASNR values of the IST for MCSF64-based slurries with different
factors. As shown in Figure 13, the ASNR of the IST increased as the W/B ratio increased
from 1.4 to 1.7. The increase in the W/B ratio can cause a decrease in the cement concen-
tration (particularly C3A and C3S), and subsequently slow down the hydration process of
the cement. Therefore, the IST was prolonged. The ASNR increased with an increase in
the NSP content, indicating that the inclusion of NSP in the slurries prolongs the IST to a
certain extent by adsorbing its molecules on nucleating hydrate particles, which inhibits the
development of hydration products and lowers the efficient hydration reaction in the liquid
phase. Similar observations have been reported by Wang et al. [41]. The ASNR decreases
notably with an increase in the AS content. The above phenomenon can be explained as
follows: when a liquid Al3SO4 is added to the fresh slurry, a possible reaction between
cement and Al3SO4 can be expressed by Equations (14)–(17) [42]. Moreover, the reaction
in Equation (15) is more likely to happen at early ages because of the extra addition of
Al3+ and SO4

2− by AS; thereby, the rapid formation of AFt crystals shortens the IST of
fresh slurry. This observation is in good agreement with those in previously published
studies [43]. The variation in the ASNR values fell moderately with UEA content. UEA is
a type of sulfoaluminate expansion agent composed mainly of CaO, SO3 and Al2O3. The
addition of UEA during cement hydration leads to water consumption and the formation of
AFt, which can slightly reduce the IST of MCSF64-based slurries [44]. However, due to the
powdery nature of UEA, its hydration rate is slower when compared to AS. Consequently,
the effect of UEA on the IST is not as pronounced as that of AS.

Al3+ + 4OH− 
 Al(OH)3 + OH− 
 [Al(OH)4]
− (14)

2[ Al(OH)4]
− + 6Ca2+ + 4OH− + 3SO2−

4 + 26H2O 
 C3AA·3CaSO4A·32H2O (15)

4 [Al(OH)4]
− + 6Ca2+ + 8OH− + C3AA·3CaSO4A·32H2O 
 3C3AA·CaSO4A·12H2O + 8H2O (16)

2 [Al(OH)4]
− + 4Ca2+ + 4OH− + SO2−

4 + 6H2O 
 C3AA·CaSO4A·12H2O (17)
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4.2.5. Shear Strength of the MCSF64-Based Slurry

The characterization of internal deformation and flow resistance of slurry is a crucial
aspect that hinges on the measurement of SS. In the context of water plugging, early SS
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plays a more pivotal role than compressive strength. Figure 14 illustrates the SS of the
MCSF64-based slurry after curing for 6 h. The achieved properties of all the slurry samples,
as per Table 1, satisfied the desired standards (6 h > 0.5 kPa). Mix S4 demonstrated the
highest SS of 9.81 kPa among all the slurries studied, while mix S16 recorded the lowest SS
values of 0.77 kPa, with corresponding falling depths of 8 mm and 28.5 mm, respectively.
The wide variance observed in the SS of the MCSF64-based slurries is attributable to the
prominent impact of the W/B ratio and AS content.
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The ASNR values of SS for all slurries with different factors are illustrated in Figure 15.
Obviously, the shorter the setting time of the slurry, the higher the corresponding SS.
Therefore, those factors that lead to a shorter setting time, such as a low W/B ratio,
high AS and UEA content, enhance the early SS of the slurry. Section 4.2.4 provides a
detailed explanation of this mechanism. Additionally, the acidic environment created by
AS facilitates the dissolution of C3S, promoting the hydration reaction of cement at early
stages [45]. This, in turn, fosters the growth of AFt, which acts as a skeleton and, along
with C-S-H gels and other hydration products, directly contributes to the development of
the early SS of the slurry.
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4.2.6. Unconfined Compression Strength of the MCSF64-Based Slurry

The long-term stability of grouting materials and the reinforcement effect of surrounding
rock are believed to be positively correlated with the compressive strength of hardened slurry.
The 28-day UCS of hardened MCSF64-based slurries is depicted in Figure 16. As shown
in Figure 16, all hardened slurry samples, except for mix S16 (3.86 MPa), exceeded 4 MPa.
Since the W/B ratio has a marked effect on UCS, S4 exhibited the highest UCS of 9.86 MPa.
Furthermore, slurries with a higher AS content demonstrated relatively higher values than
those with a lower AS content. Hence, the W/B ratio and AS content are inferred to be crucial
factors in the UCS development of MCSF64-based slurries. Based on the findings of this study,
it is recommended that the W/B ratio of MCSF64-based slurries does not exceed 1.7.
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The ASNR values of the 28-day UCS of the hardened MCSF64-based slurries for
different factors are presented in Figure 17. The results indicate that increasing the W/B
ratio from 1.4 to 1.7 causes a significant decrease in ASNR, primarily due to the elevated
total porosity and inferior pore structure in hardened grouts, resulting in a lower UCS in
MCSF64-based slurries. This observation complies with previously reported research [46].
The ASNR trend shows an initial rise followed by a decline with increasing NSP content,
indicating that an optimal NSP dosage of 1.7% may be most effective in achieving a higher
UCS after a 28-day curing period. A reasonable explanation is that the effect of NSP
on the UCS of hardened MCSF64-based slurries is not significant, with the 28-day UCS
depending mainly on the W/B ratio and AS content. The ASNR of the 28-day UCS increases
significantly with AS content, which can be attributed to the introduction of Al3+ and SO4

2−

by AS, reducing the concentration of Ca(OH)2 produced by C3S and C2S and leading to
the formation of AFt. Furthermore, SO4

2− can replace SiO4
4− in the C–S–H gel, enabling

free SiO4
4− to react with the outer layer Ca2+ and form C–S–H gel, thereby promoting

cement hydration and enhancing the UCS of the slurries [47]. The addition of UEA can also
increase the UCS of hardened grouts, potentially due to the loose AFt layer that allows Ca2+

to pass through the network microstructure and react with highly activated minerals (SiO2
and Al2O3) from UEA. This reaction also consumes Ca(OH)2 and accelerates the hydration
process of the cement, while the increase rate of ASNR values of UCS becomes gentle when
its content exceeds 4.4%.
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4.2.7. Procedure of Optimal Grout Mix Selection Using the Taguchi–Grey Relational
Analysis Method

MCSF64-based slurries containing various additives with different properties can be
optimized by analyzing and discussing the orthogonal test results presented above. Never-
theless, the optimal level for specific performance is not necessarily the best combination
to satisfy all the attributes. Therefore, based on Taguchi-based Grey relational analysis,
idealized levels for different properties were obtained in the present study.

In accordance with the Taguchi–Grey relational analysis method described in
Section 3.3, the S/N ratio, summarized in Table 7, was normalized using Equations (6) and (8).
Then, the quality loss functions were computed using Equation (9) based on the normalized
data. At last, the GRC values were computed using Equation (10). Then, these GRC values
were subsequently converted into a single Grey relational grade (GRG) employing Equation
(11). The resultant GRC values and GRG are displayed in Table 8.

Table 8. GRC values of different properties of all the grout mixes.

Sample
GRC Values Grey Relational

Grade
GRG
OrderFT YS PV IST SS 28-Day UCS

S1 0.3964 0.3963 0.4536 0.8079 0.6364 0.7072 0.5663 6
S2 0.3875 0.3866 0.4059 0.8575 0.7002 0.7710 0.5848 5
S3 0.3491 0.3493 0.3566 0.9337 0.8436 0.8645 0.6161 4
S4 0.3333 0.3333 0.3333 1.0000 1.0000 1.0000 0.6667 1
S5 0.5421 0.4400 0.4710 0.4981 0.5167 0.5948 0.5105 10
S6 0.5289 0.4523 0.5128 0.5019 0.4782 0.5867 0.5101 11
S7 0.3907 0.4185 0.4693 0.5981 0.5668 0.5696 0.5022 14
S8 0.4218 0.4343 0.4979 0.5780 0.5026 0.5938 0.5047 13
S9 0.4562 0.4879 0.5479 0.4632 0.4573 0.4368 0.4749 16

S10 0.4359 0.4545 0.5357 0.4944 0.4897 0.5088 0.4865 15
S11 0.6421 0.5825 0.6526 0.3860 0.4030 0.4595 0.5210 8
S12 0.6166 0.5387 0.7006 0.3922 0.4234 0.4035 0.5125 9
S13 0.6481 0.5682 0.7090 0.3587 0.4094 0.3510 0.5074 12
S14 0.7358 0.7381 0.7846 0.3506 0.3664 0.3487 0.5540 7
S15 0.8629 0.8206 1.0000 0.3481 0.3544 0.3578 0.6240 3
S16 1.0000 1.0000 0.9612 0.3333 0.3333 0.3333 0.6602 2

Table 8 presents data indicating that mix S4, characterized by a W/B ratio of 1.4, 1.9%
NSP, 4.8% AS, and 4.8% UEA, demonstrated the highest GRG value of 0.6667. The mix S4
exhibited the lowest IST, the highest early SS, and a 28-day UCS that surpassed all other
groups. Nonetheless, mix S4’s fluidity was poor, as indicated by its high FT and rheological
parameters, making it debatable as to whether it is the optimal mix. In order to identify the
best combination of MCSF64-based slurries, the mean GRG for each parameter level was
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calculated. The maximum average GRG for every parameter level had a significant effect
on the responses. The mean GRG values for all parameters are provided in Table 9, where
the maximum mean GRG values for each factor are denoted (*).

Table 9. Mean GRG values for each level of all the factors.

Factor Level 1 Level 2 Level 3 Level 4 Max.–Min.

W/B ratio 0.6085 * 0.5069 0.4987 0.5864 0.0221
NSP content 0.5148 0.5339 0.5658 0.5860 * 0.0202
AS content 0.5644 * 0.5579 0.5374 0.5407 0.0269

UEA content 0.5338 0.5295 0.5683 0.5689 * 0.0352
*: optimal level for each factor.

As per the data presented in Table 9, the optimal combination for an MCSF64-based slurry
was found to be the mix with a W/B ratio of 1.4, 1.9% NSP, 3.6% AS, and 4.8% UEA, which
obtained the highest mean GRG values. Based on the above discussion, it can be inferred that
the optimal mix can meet all the design requirements of low-pH grouting materials.

4.2.8. Analysis of Variance (ANOVA)

In this study, ANOVA was utilized to determine the degree of effect of each factor on
the MCSF64-based slurries, specifically to assess the percentage contribution of four factors
toward the results of the GRG. Table 10 presents the ANOVA results of the GRG for all the
factors, while Figure 18 illustrates the percentage contributions of the four factors on the
tests. Based on the findings of Table 10 and Figure 18, it can be inferred that the W/B ratio
was the most critical factor, with the highest contributing effect of 63.33%. NSP also shows
a high contribution ratio (20.92%) because NSP plays a crucial role in improving slurry
fluidity. Moreover, the order of percentage contribution for the four factors was W/B ratio
> NSP content > UEA content > AS content.

Table 10. ANOVA results of GRG for the factors.

Factor DOF 1 SOS 2 MS 3 F Value p Value Percentage
Contribution/%

W/B ratio 3 0.0369 0.0123 22.9323 0.0143 63.33
NSP content 3 0.0122 0.0041 7.5736 0.0652 20.92
AS content 3 0.0021 0.0007 1.2771 0.4227 3.53

UEA content 3 0.0055 0.0018 3.4242 0.1695 9.46
Error 3 0.0016 0.0005 - - 2.76
Total 15 0.0583 100.00

1 DOF: Degree of freedom; 2 SOS: sum of squares; 3 MS: average squares.
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4.2.9. Comparison between the Optimal Mix and the Reference Mix

This section presents a comparative analysis between the properties of an optimal mix
and a reference mix (W/B ratio of 1.4, 1.6% NSP) without AS and UEA additives [23]. The
optimal mix, obtained by applying Taguchi–Grey relational analysis, consists of a W/B ratio
of 1.4, 1.9% NSP, 3.6% AS, and 4.8% UEA. The results of the tests, which are provided in
Table 11, indicate that the optimal mix possesses superior properties in terms of SS, IST, and
UCS, while maintaining a desirable fluidity that meets the design requirements outlined
in Table 1. Specifically, the optimal mix exhibits SS values of 3.2 kPa and 4.02 kPa at 6 h
and 8 h, respectively, whereas the reference mix shows 0 kPa at these times. Moreover, the
IST with a measured 632 min of the optimal mix decreases by nearly 50% compared to the
reference mix. Furthermore, the UCS values of the optimal mix at 4 days and 28 days are
1.16 MPa and 8.77 MPa, respectively, showing increases of 139.7% and 116.9% compared to
the reference mix. Additionally, since AS and UEA are inorganic additives, their impact on
the groundwater environment is minimal. Therefore, the findings suggest that the optimal
mix can serve as a viable candidate for use as a low-pH grouting material in HLRW.

Table 11. The test results between the optimal mix and the reference mix.

Different Mix
Properties

Bleeding/% FT/s YS/Pa PV/mPa.s 6 h
SS/kPa

8 h
SS/kPa IST/min 4-Day

UCS/MPa
28-Day

UCS/MPa

Optimal mix 0.2 42.36 2.92 19.85 3.20 4.02 632 1.16 8.77
Reference mix 0.5 40.92 2.08 18.14 0 0 1265 0.83 7.50

4.3. pH of Hardened Optimal Mix and Reference Mix

Figure 19 shows plots of the pH variation versus curing time. As shown in Figure 19,
the pH values for the optimal mix and reference mix were approximately 12.75–12.78 after
curing for 3 day. This observation can be interpreted as implying that, on the one hand,
the pozzolanic reaction between SF and CH formed during cement hydration begins to
occur after 3 days [33,48]. On the other hand, the pore solution, primarily composed of
Na+, K+, Ca2+ and OH−, had a high ionic strength, resulting in a relatively higher pH value.
As time went by, the pH values of two different mixes gradually decreased, and finally
converged to 10.74–10.76 after about 150 days. The target pH value was obtained after
curing for 120 days. In addition to this, it is observed that the pH value of the optimal mix is
slightly lower when compared with the reference mix. This is mainly because the formation
of AFt reduces the Ca2+ concentration, hence the measured pH value is comparatively
decreased. The pH variation of the reference mix in this study is similar to that in previous
investigations [11]. The mechanism of pH reduction with curing time can be explained
by the following factors [8,12,49]: (i) the MC is diluted, lowering the alkali and hydroxide
concentrations in the pore solution significantly; (ii) the CH is consumed by the pozzolanic
reaction, leading to lower Ca2+ concentration in the pore solution; (iii) the additional C–S–H
gel with a low Ca/Si ratio formed by the reaction of the SF with CH enhanced its alkali
absorption capacity, which in turn reduced the equilibrium pH.
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4.4. Shrinkage and Expansion Analysis

The results of shrinkage and expansion for the two mixes are presented in Figure 20.
The optimal mix and reference mix experienced shrinkages when placed in dry environ-
ments with RH 30%, with respective rates of 0.25–16.14‰ and 0.16–15.24‰. This was
anticipated as injection grout materials possess a high W/B ratio, rendering mixes sus-
ceptible to drying shrinkage triggered by physical water loss. In addition, the movement
of water molecules away from capillaries (5–50 nm) through evaporation in dry condi-
tions is another reason for the shrinkage of hardened grouts [50,51]. The optimal mix
exhibited slightly higher shrink rates than the reference mix over time, attributed to the
former generating more AFt and consuming more internal water under the same conditions.
Microcracks appeared on the outer surfaces of both mixes after 7 days due to intensive
water loss. Furthermore, at 28 days (perhaps earlier), two-thirds of the samples in the two
mixes showed interconnectivity cracks, and only one sample could still be used for testing.
A similar crack phenomenon of MCSF64 hardened grouts was observed by Orantie and
Kuosa [23]. However, it should be highlighted that injection grouts are seldom exposed to
RH below 30% in underground engineering, and the groundwater will likely prevent the
grout inside sealed fissures from being subjected to water depletion, and thus drying. As
shown in Figure 20b, the expansion rate (0.59–1.59‰) of the optimal mix remained higher
than that of the reference mix (0.37–1.47‰), increasing by 159% and 122% at 4 and 28 days,
respectively. This implies that the expansion rate was less pronounced than the shrinkage
rate, and the optimal mix had a superior expansion capacity compared to the reference
mix. Generally, micro-expansion will produce a certain degree of compressive stress, which
improves the tightness between grouting materials and rock mass. Indeed, the addition of
AS and UEA in the optimal mix had a synergistic effect on forming AFt, thereby enhancing
its early expansion ability. Specifically, the generation of AFt by adding UEA in the early
stage can be achieved by following Equation (18). In the later period, the KAl3(SO4)2·(OH)6
from UEA may provide a stable expansion source due to its slower hydration, followed
by Equation (19) [52]. Moreover, these findings confirm that grouts require water within a
certain time to finish the hydration, and not just for a short period after preparation [53].

3CaO·3Al2O3·CaSO4 + 6Ca(OH)2 + 8CaSO4 + 90H2O→ 3(CaO·Al2O3·3CaSO4·32H2O) (18)

2KAl3(SO4)2·(OH)6 + 13Ca(OH)2 + 5CaSO4 + 78H2O→ 3(3CaO·Al2O3·3CaSO4·32H2O) + 2KOH (19)
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4.5. Microstructure Analysis of the Hardened Slurries

Figure 21 presents the SEM images of the reference and optimal mixes after 4 and 28 days
of hydration. As illustrated in Figure 21a,b, both mixes exhibited inadequate hydration
processes after 4 days of curing, resulting in a loose and porous microstructure in the hydration
products. Moreover, the internal microstructure of the hardened slurry displayed unreacted SF
particles, SF agglomerates, and larger voids. The incorporation of 40% SF in the mix resulted
in a “dilution effect” that decreased the concentration of MC and delayed the generation of
the C-S-H gel. In addition, the pozzolanic reaction between SF and Ca(OH)2 was weak during
the early stages of hydration, and SF particles mainly served as physical fillers. Thus, the
two mixes showed a lower hydration degree after curing for 4 days. Particularly, it can be
seen from Figure 21b that due to the addition of AS and UEA, the acicular AFt crystals were
crosslinked and intercalated, and extended to the edges of the pores in the hydration products
of the optimal mix, leading to a more compact space in the optimal hardened slurry, which
decreased the amounts of macropores and increased the early strength and expansion capacity
when compared with the reference mix.

Figure 21c,d show the microstructures of the two mixes after an extended curing period
of 28 days, showing a relatively higher degree of hydration reaction, with a reduction in
gap and pore sizes between hydration products and a denser microstructure of the primary
binding phase. The SEM images also indicate that most SF particles have a non-clean
and non-smooth surface, with numerous hydration products covering the surfaces of the
spherical particles, all of which collectively indicates that more C-S-H gels with a low
Ca/Si ratio were generated. The freshly produced dense gel firmly wraps around the
particle surface and develops a strong connection with the surrounding hydration products,
resulting in the reduced porosity and refined pore size distribution of the hardened slurry,
as well as higher UCS. Specifically, compared to the SEM images of the reference mix after
28 days of curing, Figure 21d reveals more needle-like AFt crystals, which is conducive to
improving the structural density and reducing the pore shrinkage stress of the hardened
grouts to some extent. These findings suggest that the optimal mix has a higher expansion
rate than the reference mix, which aligns with the expansion test results.
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5. Conclusions

Based on the results presented in this paper, the following conclusions can be derived:

(1) The orthogonal test results and variance analysis of the Grey correlation grade show
that the degree of influence on the properties of MCSF64-based slurries was as
follows—W/B ratio > NSP content > UEA content > AS content;

(2) For the rheological curves of MCSF64-based slurry, the Bingham model was suitable
for predicting the rheological properties because the correlation coefficients were 0.99
in all cases, and the Bingham model remained constant from 0 min to 60 min;

(3) The addition of AS and UEA positively affected the shear strength, initial setting time,
and compressive strength of the MCSF64-based slurries, while reducing the fluidity
of fresh slurry. However, the detrimental effects of AS and UEA on the fluidity of
slurry can be negated by adding NSP;

(4) The addition of AS and UEA accelerated the hydration process, decreased the pH
value, enhanced the expansion ability, and improved the microstructure of the MCSF64-
based slurries compared with slurries without AS and UEA;

(5) The results of the Taguchi–Grey relational analysis show that the optimal mix propor-
tion of the MCSF64-based slurry was found to be a W/B ratio of 1.4, 1.9% NSP, 3.6%
AS, and 4.8% UEA, which can satisfy the design requirements proposed by Posiva.
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