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Abstract: Microalgae have been widely employed in water pollution treatment since they are eco-
friendly and economical. However, the relatively slow treatment rate and low toxic tolerance
have seriously limited their utilization in numerous conditions. In light of the problems above, a
novel biosynthetic titanium dioxide (bio-TiO2 NPs)—microalgae synergetic system (Bio-TiO2/Algae
complex) has been established and adopted for phenol degradation in the study. The great biocompat-
ibility of bio-TiO2 NPs ensured the collaboration with microalgae, improving the phenol degradation
rate by 2.27 times compared to that with single microalgae. Remarkably, this system increased the
toxicity tolerance of microalgae, represented as promoted extracellular polymeric substances EPS
secretion (5.79 times than single algae), and significantly reduced the levels of malondialdehyde and
superoxide dismutase. The boosted phenol biodegradation with Bio-TiO2/Algae complex may be
attributed to the synergetic interaction of bio-TiO2 NPs and microalgae, which led to the decreased
bandgap, suppressed recombination rate, and accelerated electron transfer (showed as low electron
transfer resistance, larger capacitance, and higher exchange current density), resulting in increased
light energy utilization rate and photocatalytic rate. The results of the work provide a new under-
standing of the low-carbon treatment of toxic organic wastewater and lay a foundation for further
remediation application.
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1. Introduction

With the development of industry, phenol has been widely used as one of the raw
materials in plastics, oil refineries, paper making, coal processing, and pharmaceutical
industries, becoming one of the most common organic pollutants [1,2]. At the same
time, the extensive utilization of phenol has resulted in a dramatic increase in phenolic
wastewater discharged into natural water bodies. As a biotoxic organic matter, phenol
can produce toxic stimulation to living organisms in the environment [3] and has been
classified as a major pollutant by the US Environmental Protection Agency (USEPA) and
the National Pollutant Release Inventory (NPRI) [4] of Canada. Prevalent studies about
phenolic wastewater treatment methods include steam distillation [5], adsorption [6],
extraction [7], chemical oxidation [8], and biodegradation [9], which are expensive and
require further treatment. Some studies have also employed enzymes and cell systems
coupling with nanoparticles [10]. However, the construction of most systems is complicated,
while the systems generated by absorption are low efficient owing to a relatively long
treatment period [11–13] (Table S1). Hence, it is imperative to seek a phenol removal
strategy with high efficiency, low cost, and easy operation, which is of great significance to
environmental protection and human health.

Microalgae utilize solar energy to fix carbon dioxide [14], called photosynthesis. This
approach has been employed as an environmentally friendly and sustainable alternative
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to the energy-intensive and conventional biological treatment processes prevalently used
today [15]. The idea of microalgae for biodegradation has been proposed for the first time
by Oswald and Gotaas [16]. Following studies have shown that some cyanobacteria and
eukaryotic microalgae, such as Chlorella species, Scenedesmus species, Selenastrum capricornu-
tum, Tetraselmis marina, Ochromonas danica, Lyngbya gracilis, Nostoc punctiforme, Oscillatoria
animalis, and Phormidium foveolamm, may be able to transform phenolic compounds through
a biological process [17]. By producing valuable by-products (e.g., proteins, lipids), microal-
gae have shown great potential for environmentally sustainable development. However,
the toxicity tolerance of microalgae to harmful pollutants was poor, which affected the
treatment efficiency of phenolic wastewater [18]. To increase the treatment efficiency of
microalgae-based systems, several strategies have been proposed, including selecting ap-
propriate microalgae strains [18], optimizing the growth conditions [19], and developing
integrated systems with other treatment technologies [20].

Photocatalysis is an environmentally friendly method for the degradation and removal
of pollutants in wastewater [21]. Researchers kept on synthesizing new photocatalysts,
especially for organic contaminants removal [22–25]. Titanium oxide (TiO2) was the most
promising photocatalyst because of its environmental friendliness, low cost, and stable
properties. Studies have been reported to improve the performance of TiO2 by combining
it with other materials, such as doping cations (rare earth and transition metals) [26,27]
or anions (halogen, sulfur, carbon, and nitrogen) [28], since high photoelectron-hole pair
recombination rate reduced the efficiency of TiO2. Studies about TiO2 with chlorophyll
have been reported to broaden TiO2 absorbance wavelength to visible light and reduce
photoelectron-hole pair recombination rate [29,30]. Due to low solubility in water, in those
studies, the chlorophyll was in the form of powder [29] or directly sprayed on leaves [30].
However, research about TiO2 with biological organisms is rarely reported due to its poor
solubility and toxicity.

In this work, biosynthetic TiO2 nanoparticles (bio-TiO2 NPs) were composed in mi-
croalgae solution to generate a synergetic system, Bio-TiO2/Algae complex, in order to
solve the problems in microalgae biodegradation, such as slow treatment rate and low toxic
tolerance. Compared to chemically synthesized TiO2 NPs, the synthesized bio-TiO2 NPs
were biocompatible with microalgae, which could collaborate with microalgae and enhance
phenol degradation rate by 2.27 times. Several parameters were analyzed to understand the
synergetic mechanism of the Bio-TiO2/Algae complex, including cell metabolism, antioxi-
dant stress, electron transfer rate, and photogenerated electron-hole trapping experiments.
The synergetic mechanism of phenol degradation by Bio-TiO2/Algae was investigated,
which introduced a possible idea for wastewater treatment in conjunction with carbon
capture and utilization.

2. Materials and Methods
2.1. Chemicals and TiO2 Biosynthesis

All agents were analytical grade and used without further purification. L-Arginine,
L-Cysteine, and Tyzor LA-Lactid acid chelated titanate (Ti-BALDH) were purchased from
Macklin (Shanghai, China). Phenol and other chemicals were obtained from Macklin
(Shanghai, China). Using Ti-BALDH as raw material, bio-TiO2 NPs were prepared by
the bionic dehydrating method [31]. Briefly, 0.0053 g L-Arginine powder and 0.01 g L-
Cysteine were dissolved in 20 mL deionized water and adjusted to pH 7 with concentrated
nitric acid. After stirring for 15 min, 200 µL Ti-BALDH (0.294 wt%) was dropped into the
mixture and stirred for another 20 min, forming slight white turbidity. To synthesize bio-
TiO2/Algae complex, 0.0053 g L-Arginine powder, and 0.01 g L-Cysteine were dissolved
in 20 mL T. obliquus suspensions and stirred for 15 min. After adding 200 µL Ti-BALDH
(0.294 wt%) and stirring for another 20 min, slight white turbidity was formed.
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2.2. Microalgae Culture and Growth Conditions

Tetradesmus obliquus (T. obliquus, FACHB-12), Chlorella vulgaris (C. vulgaris, FACHB-8),
and Chlorella ellipsoidea (C. ellipsoidia, FACHB-40) were purchased from the Institute of
Wuhan Hydrobiology, Chinese Academy of Sciences (Wuhan, China), with a density of
1 × 106 algae cells mL−1. BG11 was used as a growth medium for microalgae routine
culture, which included: NaNO3 1.5 g/L, K2HPO4 0.004 g/L, MgSO4·7H2O 0.075 g/L,
CaCl2·2H2O 0.036 g/L, Citric acid 0.006 g/L, Ferric ammonium citrate 0.006 g/L, EDTANa2
0.001 g/L and Na2CO3 0.02 g/L. The trace elements (A5) of the 1 mL/L included: H3BO3
2.86 g/L, MnCl2·4H2O 1.86 g/L, ZnSO4·7H2O 0.22 g/L, Na2MoO4·2H2O 0.39 g/L, CuSO4·5
H2O 0.08 g/L and Co(NO3)2·6 H2O 0.05 g/L, pH 7.1. Those three microalgae were screened
for phenol degradation without the aid of nanoparticles, and T. obliquus was chosen in the
following studies.

The inoculum of T. obliquus was cultured in triangular vials (100 mL) in a sterile BG11
base medium. Those culture vials were placed in a light incubator (OSRAM DULUX L
36 W, 4500 lux, 30 ◦C), and the light condition was set to a light/dark cycle of 16/8 h. The
inoculum amount of microalgae was 1% (Vinoculum/Vmedia), with an absorbance of 1.0 at a
680 nm optical density (OD 680 nm), equivalent to a microalgae biomass of 0.8222 g L−1.

2.3. Characterization Methods

The morphology of T. obliquus cells and the distribution of TiO2 on the cell surface were
observed using a TESCAN scanning electron microscope (SEM; Zeiss TESCAN MIRA4, Carl
Zeiss AG, Jena, Germany) equipped with an energy dispersive X-ray spectroscopy (EDS;
Oxford Xplore 30). Specifically, the samples were fixed in 2.5% glutaraldehyde (6–12 h) and
dehydrated with 50%, 70%, 80%, 90%, and 100% anhydrous ethanol in a gradient manner,
then immersed in 50% isopentyl acetate (V/V) and 100% isopentyl acetate for 15 min
successively and coated with a layer of Pt on the surface. Then the samples were observed
and analyzed by SEM and EDS. Then, those as-prepared powders were scanned by X-ray
diffraction patterns (XRD) in the region of 5◦ to 90◦ using an X-ray diffractometer (Rigaku
Ultima IV, Tokyo, Japan) with Cu Kα radiation. The X-ray photoelectron spectroscopy
(XPS) study was performed with an Escalab 250XI spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA) using calibration C1s at 284.8 eV.

The UV-Vis absorption of both bio-TiO2 NPs and Bio-TiO2/Algae was scanned with a
UV-Vis spectrometer (Agilent, Santa Clara, CA, USA). The distribution of biosynthesized
TiO2 NPs in the Bio-TiO2/Algae synergetic system was observed by High-Resolution Trans-
mission Electron Microscope (HRTEM, HT7800, Hitachi, Tokyo, Japan) on the copper net.

2.4. Photocatalytic Degradation of Phenol

Three systems were established in this study, including Algae (T. obliquus only), Bio-
TiO2/Algae (T. obliquus + bio-TiO2 NPs), and a control system (inactivated T. obliquus
(60 ◦C for 20 min) + bio-TiO2 NPs). The inoculum of three systems (OD 680 = 1.0,
Vinoculum/Vmedia = 1%) was cultured in 100 mL triangular vials with 60 mL sterile BG11
base medium, followed by the addition of 100 mg L−1 phenol. Those culture vials were
placed in a light incubator (4500 lux, 30 ◦C), and the light condition was set to a light/dark
cycle of 16/8 h.

For phenol detection, the supernatant was collected by centrifugation at 6000 rpm
for 5 min and filtrated with a 0.45 µm organic membrane [21] before testing with a high-
performance liquid chromatography (HPLC, LC-1260, Agilent, USA) equipped with a
ZORBAX SB-C18 column (150 mm × 4.6 mm × 5 µm). Mobile phase A was ultra-pure
water, and mobile phase B was methyl alcohol (A:B = 40:60). The flow rate of the mobile
phases was 1.0 mL min−1, and the detection wavelength was 270 nm.

2.5. Electrochemical Characteristic Experiments

Electrochemical characterization of Bio-TiO2/Algae was performed, including cyclic
Voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel. Experiments
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were conducted using an electrochemical workstation (CHI 660E, CH Instrument Inc.,
Shanghai, China) with a three-electrode chamber [32]. A glassy carbon electrode, platinum
wire electrode, and Ag/AgCl electrode were used as working electrode, counter electrode,
and reference electrode, respectively. The working electrode was polished with Al2O3
powder with particle sizes of 5 mm, 1 mm, 0.3 mm, and 0.05 mm successively. Then, the
working electrode was ultrasonically cleaned with deionized water, anhydrous ethanol,
and deionized water for 30 s each. Finally, the working electrode was tested with 5 mM
potassium ferricyanide as a solute and 0.1 M potassium chloride as a solvent. CV was
performed at a voltage of −1.5–1.5 V and a scan rate of 50 mV/s. EIS was performed at
1–106 Hz frequency, and the equivalent circuit of EIS data was simulated by Zview 2.0
software. The Tafel curve was performed at a voltage of −1.5–1.5 V and a scan rate of
10 mV/s.

2.6. Free Radical Capture Experiments

The roles of photogenerated electrons (e−), photoholes (h+), hydroxyl radicals (·OH),
and O2− in the catalytic degradation of phenolic pollutants in the system were determined
by trapping experiments with trapping agents. The trapping agents used included Potas-
sium bromate, ethylenediamine tetraacetic acid disodium salt (EDTA-2Na), tert-butanol
(t-BuOH), and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinylox (TEMPO). The steps were
similar to phenol degradation experiments. After the addition of phenol, a final concen-
tration of 0.5 mM or 5 mM trapping agents was added to the culture vials. The phenol
concentration was detected till 52 h.

3. Results and Discussion
3.1. Synthesis and Characterization of bio-TiO2 NPs and Bio-TiO2/Algae Complex

The synthesis of bio-TiO2 NPs was performed at room temperature. After stirring
for 35 min, a slight white precipitate was formed, preliminarily inferring the successful
synthesis of the nanoparticles. Compared to chemically synthesized TiO2 NPs, the bio-TiO2
NPs showed great biocompatibility and could collaborate with microalgae, which was
further confirmed by following characterization methods. The SEM images (Figure 1A)
indicated that the T. obliquus were fusiform with small ends and a large middle and
nanoparticles clustered on the surface of microalgae cells. The elemental composition was
analyzed by EDS to confirm the presence of Ti in nanoparticles on the cell surface. The EDS
(Figure 1B) analysis at the beginning of phases I and the end of phase III of the experiment
showed 18.96 and 0.67 wt% of elemental Ti, respectively. The significantly decreased Ti
content may be due to shedding during the photocatalytic process [21] or the increased
biomass (leading to a relative decrease in Ti content). The attachment of bio-TiO2 NPs to
microalgae was verified by XRD and XPS. XRD spectrum (Figure 1C) analyzed the crystal
structure of the pre-prepared sample appeared 2θ = 25.3 and 37.8, 25.3 anatase characteristic
peaks, indicating that the diffraction peaks of the bio-TiO2 NPs were similar to those of
anatase type nanoparticles [33]. However, the bio-TiO2 NPs had more diffraction peaks
at more positions, which might be attributed to biosynthesis containing more impurities,
including 2θ = 17.94 (possibly reflected in the L-Arginine [34] and L-Cysteine [35]) and
26.10 (possibly indicated to the L-Cysteine [35]).

The XPS was used to further study the element composition and Ti valence state of
the pre-prepared sample (Figure S1). The presence of Ti, O, C, and N elements in the
sample was observed in Figure S1A, which was consistent with the EDS analysis result.
Peaks at 458.0 and 463.8 eV should be ascribed to Ti 2p3/2 and Ti 2p1/2 and demonstrate
the existence of the Ti4+ state. The oxygen in the sample could be divided into the lattice
oxygen (OTi-O-Ti, 530.1 eV) and the surface hydroxyl oxygen (OTi-O-H, 531.4 and 531.5 eV).
The presence of OTi-O-Ti and Ti4+ confirmed the successful synthesis of TiO2 NPs. In the
high-resolution XPS diagram of C 1s of the sample, 284.4, 285.1, and 288.0 eV were observed,
corresponding to C-C, C=O, and O-C=O bonding, respectively. The N 1s core peak was
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observed at 400.4 eV, which corresponded to Ti-N bonding. The C 1s and N 1s indicated
that the synthesized bio-TiO2 NPs were coupled with amino acids.

Materials 2023, 16, x FOR PEER REVIEW 5 of 16 
 

 

 

Figure 1. (A) SEM image of Algae (up) and Bio-TiO2/Algae complex (down); (B) EDS analysis of 

Bio-TiO2/Algae before (up) and after (down) phenol degradation; (C) XRD patterns of chemical syn-

thesized TiO2 and bio-TiO2; (D) HRTEM image of Algae; (E) HRTEM image of Bio-TiO2/Algae; (F) 

Enlarge of selected region and the black dots are bio-TiO2 NPs inside microalgae cell. 

The XPS was used to further study the element composition and Ti valence state of 

the pre-prepared sample (Figure S1). The presence of Ti, O, C, and N elements in the sam-

ple was observed in Figure S1A, which was consistent with the EDS analysis result. Peaks 

at 458.0 and 463.8 eV should be ascribed to Ti 2p3/2 and Ti 2p1/2 and demonstrate the exist-

ence of the Ti4+ state. The oxygen in the sample could be divided into the lattice oxygen 

(OTi-O-Ti, 530.1 eV) and the surface hydroxyl oxygen (OTi-O-H, 531.4 and 531.5 eV). The pres-

ence of OTi-O-Ti and Ti4+ confirmed the successful synthesis of TiO2 NPs. In the high-resolu-

tion XPS diagram of C 1s of the sample, 284.4, 285.1, and 288.0 eV were observed, corre-

sponding to C-C, C=O, and O-C=O bonding, respectively. The N 1s core peak was 

Figure 1. (A) SEM image of Algae (up) and Bio-TiO2/Algae complex (down); (B) EDS analysis of
Bio-TiO2/Algae before (up) and after (down) phenol degradation; (C) XRD patterns of chemical
synthesized TiO2 and bio-TiO2; (D) HRTEM image of Algae; (E) HRTEM image of Bio-TiO2/Algae;
(F) Enlarge of selected region and the black dots are bio-TiO2 NPs inside microalgae cell.

In HRTEM images (Figure 1D–F), the bio-TiO2 NPs surrounded microalgae (Figure 1E),
and some of them passed cell membranes and got close to the chloroplast (CLP) (Figure 1F).
The absorbance wavelength of the Bio-TiO2/Algae complex shifted to visible light (Figure S2),
also indicating the interaction of CLP in microalgae and bio-TiO2 NPs, since electron
transfer from TiO2 NPs to CLP resulted in a narrower bandgap. The two bandgaps were
calculated to be 3.10 eV for bio-TiO2/CLP and 3.24 eV for bio-TiO2 with empirical formula
(Eg = 1240/λg) [36].
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In conclusion, the bio-TiO2 NPs were successfully synthesized and coupled with mi-
croalgae, the Bio-TiO2/Algae complex, which provided a basis for the synergetic biodegra-
dation of phenol.

3.2. Phenol Degradation Promotion by Bio-TiO2/Algae Complex

The effect of Bio-TiO2/Algae on phenol degradation was tested. The photocat-
alytic degradation efficiency of phenol by the Bio-TiO2/Algae, Algae, and control system
are shown in Figure 2A. The phenol degradation efficiency of Bio-TiO2/Algae reached
98.95 ± 1.77% at 19 h, which enhanced 2.27 times and 1.32 times compared with that of
the Algae system (40.88 ± 4.62% at 19 h) and control system (74.89 ± 1.12% at 19 h). The
degradation rate of phenol in the control system was 1.75 times that of the Algae system.
Bio-TiO2/Algae complex showed the fastest phenol degradation rate, followed by the
control (photocatalysis only) and Algae (respiration only) system. Therefore, the contribu-
tion of the bio-TiO2 NPs photocatalytic degradation was greater than that of microalgae
biodegradation. Meanwhile, phenol was degraded via photocatalysis of bio-TiO2 NPs to
produce non-toxic, low toxic, and easily biodegradable intermediate metabolites [37,38].
Moderated toxicity to microalgae could be observed from the improved CLP content of
microalgae cells than that in the Algae system (Figure 1C), which was consistent with pre-
vious reports [30]. Meanwhile, visible light absorption wavelength and narrower bandgap
of the TiO2/CLP complex resulted in enhanced electrons transfer from TiO2 to CLP [30],
which improved the light energy utilization rate and photosynthetic efficiency (Figure 2C),
thereby enhancing the degradation ability of phenol.
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Figure 2. (A) Phenol degradation results with Algae, Control, and Bio-TiO2/Algae systems;
(B) Microalgae EPS expression of Algae and Bio-TiO2/Algae during phenol degradation; (C) Images
of Algae and Bio-TiO2/Algae during phenol degradation (three replicates were performed).

3.3. Metabolic Activity Analysis of Microalgae in Bio-TiO2/Algae Complex
3.3.1. EPS Excretion in Bio-TiO2/Algae Complex

EPS has been reported as positively correlated with biological activity since more
active cells can secret more extracellular polymer [32,39]. In this study, the bio-TiO2 NPs
increased the CLP amount and photosynthetic efficiency of microalgae, which may also
impact EPS secretions. Therefore, EPS secretion of Bio-TiO2/Algae and Algae system
were explored. As shown in Figure 2B, polysaccharide (PS) and protein (PN) are the main
components of EPS, and the sum of PS and PN is defined as the total EPS content [40]. The
total amount of EPS secreted by T. obliquus was 521.86 mg/g VSS and 48.12 mg/g VSS in
the Bio-TiO2/Algae and Algae system at 19 h when phenol degradation was completed
with Bio-TiO2/Algae. The PS level was 68.12 mg/g VSS in Bio-TiO2/Algae, which was
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lower in the Algae system (15.85 mg/g VSS). The PN level was higher in Bio-TiO2/Algae
(453.74 mg/g VSS) compared to the Algae system (32.27 mg/g VSS). Therefore, the addition
of TiO2 NPs largely increased the EPS level (by 1084.50%), especially PN secretion (by
1406.07%). It has been reported that the loosely bound EPS (LB-EPS) contains almost
no PN, while the tightly bound-EPS (TB-EPS) are composed of PN and PS in variable
ratios [41]. Therefore, the significantly increased PN in extracted EPS indicated a raised
level of excreted TB-EPS, which could combine with the bio-TiO2 NPs better because of
stronger and less reversible adsorption on solid surfaces [39]. In addition, it has been
reported that higher levels of PN in EPS were closely related to biological activity [42] since
PN is a major component of organisms and most enzymes [39]. Bio-TiO2/Algae showed
the fastest degradation rate of phenol, which might be attributed to the higher content
of PN in this system. Increased EPS secretion indicated that the bio-TiO2 NPs enhanced
the metabolic activity of T. obliquus and improved the stress response to the surrounding
environment, which was further verified by the following tests.

3.3.2. Analysis of ETSA in Bio-TiO2/Algae Complex

A high ETSA value can reflect the high respiratory activity of microorganisms and
high electron transfer efficiency [43]. ETSA was usually determined with INT, which acted
as an electron acceptor to measure the respiratory dehydrogenase activity of heterotrophic
microorganisms [32]. The ETSA value increased from phase I to phase II and decreased
in phase III for both systems (Figure 3C). The raised ETSA value in phase II might be due
to the increase in biomass and substrate abundance, while the dropped ETSA value in
phase III was due to a shortage of substrate. The ETSA content was slightly higher in
the Bio-TiO2/Algae complex, which was consistent with the increased degradation rate
of phenol.
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3.3.3. Measurement of ATP Level in Bio-TiO2/Algae Complex

ATP provided energy for microorganisms, indicated the utilization of organic matter
in TCA [44], and was also an energy source in the carbon fixation stage of photosynthesis,
thus promoting the Calvin cycle [45]. As shown in Figure 3D, the ATP value in phase I, II,
and III of Bio-TiO2/Algae were 8.71 ± 1.02, 7.59 ± 0.35, and 7.33 ± 0.07 g/(mg·h), which
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were 10.35 ± 0.20, 7.92 ± 0.14 and 7.15 ± 0.16 g/(mg·h) of Algae system. ATP levels in
both Bio-TiO2/Algae and Algae systems decreased during the reaction, but the decrease
was much faster in the Algae system. The reduced ATP may be due to long-term exposure
to aqueous phenol solution, which inhibited the photosynthesis of microalgae and reduced
the electron transfer chain. At the same time, it has been reported that interaction between
TiO2 and CLP could enhance the formation of ATP [30]. The change in ATP level indicated
that the bio-TiO2 NPs played a positive role in microalgae metabolism [46] and were able
to elevate energy levels to a certain extent to improve the degradation efficiency of phenol.

3.4. Stress Response Analysis of Microalgae in Bio-TiO2/Algae Complex

Though improved CLP content of microalgae was observed during phenol degrada-
tion, nanoparticle toxicity to microalgae was still under concern. Therefore, stress response
tests were performed on microalgae cells in Bio-TiO2/Algae and Algae system. Levels
of malondialdehyde (MDA) and superoxide dismutase (SOD) in the Bio-TiO2/Algae and
Algae system were tested at the end of phase I, II, and III during phenol degradation.
Figure 3A showed that lipid peroxides (MDA), a membrane damage metabolite, in the
Algae system were similar during the whole process. However, the MDA level of Bio-
TiO2/Algae decreased from phase I to phase II but increased in phase III, which was
43.67 ± 0.97%, 34.71 ± 1.64%, and 52.51 ± 0.26% in phase I, phase II, and phase III, com-
pared to MDA level of Algae system. The decreased MDA might be attributed to the
promotion of EPS secretion triggered by bio-TiO2 NPs, protecting cells from damage [47].
While in stage III, the antioxidant system of microalgae was damaged by oxidative stress
due to continuous exposure to adverse environments, resulting in lipid peroxidation of
cells and increased MDA content [48]. Therefore, the bio-TiO2 NPs enhanced the tolerance
of microalgae to toxicity by promoting EPS secretion and reduced lipid peroxidation.

As oxygenic photosynthetic organisms, reactive oxygen species (ROS) were inevitably
generated by microalgae when the excitation of photosynthetic pigments exceeded the
metabolic demand [49]. ROS could cause oxidative damage to cells and affect photosynthe-
sis. Since SOD is able to resist and remove ROS, its activities can reflect ROS toxicity [50],
which was monitored during the whole degradation reaction. Similar to the MDA, the
SOD level in the Algae system stayed stable during the reaction (Figure 3B). However, the
SOD level of Bio-TiO2/Algae increased from phase I to phase II but decreased in phase
III, which was 43.25 ± 0.97%, 68.17 ± 0.65%, and 62.94 ± 2.94% in phase I, phase II, and
phase III, compared to SOD level of Algae system. The significantly reduced SOD level
might be attributed to the presence of bio-TiO2 NPs, which photocatalyzed phenol (a toxic
substance) and accelerated photosynthesis (by increased electron transfer rate to CLP) [30].

3.5. Variations of Extracellular Electron Transfer Behaviors in Bio-TiO2/Algae Complex

Higher electron transfer efficiency was usually observed in improved degradation
efficiency. Electrochemical measurement was an important method for evaluating electron
transport rate and electrochemical activity in a system [43]. In order to investigate the
electrochemical properties of the photocatalytic degradation system, Tafel, CV, and EIS tests
were conducted in both Bio-TiO2/Algae and Algae systems. As shown in Figure 4A, the ex-
change current density of Bio-TiO2/Algae and Algae systems was 1.455 × 10−7 A/cm2 and
1.096 × 10−7 A/cm2, respectively. The higher exchange current density of Bio-TiO2/Algae
indicated the increased reduction rate [32,51], which could also be reflected in the CV curve
(Figure 4B). The capacitor of Bio-TiO2/Algae (278.27 µF) was much higher than that of the
Algae system (225.51 µF). Tafel test was performed to further verify the improved electron
transfer in Bio-TiO2/Algae. As shown in Figure 4C, the electronic transfer resistance of
the Bio-TiO2/Algae and Algae system was 18.06 Ω and 21.25 Ω, respectively. Meanwhile,
the SEMI-arc radius of Bio-TiO2/Algae was smaller, indicating a lower electron transfer
barrier and increased electrical conductivity of phenol photocatalytic degradation in that
system [52,53]. The accelerated electron transfer might be attributed to the interaction of
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bio-TiO2 NPs and CLP (Figure 4D). Previous studies also reported that photoelectrons
transferred to CLP and suppressed photoelectron-hole pair recombination rate [29,30].
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3.6. Effect of Photoelectron and Photohole on the Degradation of Phenol by Bio-TiO2/Algae
Complex

According to the literature, the main active species of TiO2 were holes during the
photocatalysis process [54]. In order to investigate the photocatalytic degradation of
phenol by the bio-TiO2 NPs and the main substances in the photocatalytic process in Bio-
TiO2/Algae, the free radical trapping experiment was designed and carried out (Figure 5).
EDTA-2Na, TEMPO, t-BuOH, and KBrO3 were used to capture h+, O2

−, ·OH, and e−,
respectively [21,55].

When the concentration of trapping agent EDTA-2Na, TEMPO, t-BuOH, and KBrO3
was 0.5 mM, the degradation percentage of phenol was 3.46%, 83.95%, 95.48%, and 49.38%
at 52 h, respectively. Phenol could hardly be degraded in the presence of an h+ trapping
agent, indicating that photocatalytic degradation of phenol was mainly caused by h+

generated by the photocatalytic and photosynthetic reaction. The consumption of h+ was
also confirmed by increased pH (Figure S2). When the transfer of e− was blocked by KBrO3,
interestingly, higher blocker concentration resulted in a faster degradation rate, though the
rate was still lower than that of the system without a blocker. Therefore, the consumption
of e− would increase the reaction rate. Trapping of O2

− and ·OH would slow down the
degradation rate of phenol, and the rate was similar with both blocker concentrations.
Thus, those two free radicals were useful but not critical in the phenol degradation process,
and a blocker of 0.5 mM was already enough to block them. Those were consistent with
previous literature reports that biodegradation and indirect reactions with photochemically
produced hydroxyl radicals and peroxyl radicals, which were expected to be important
intermediate products [3].
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3.7. Synergetic Mechanism of Phenol Degradation by Bio-TiO2/Algae Complex

According to previous results, the synergetic mechanism of phenol degradation by Bio-
TiO2/Algae was proposed (Figure 6). First, the bio-TiO2 NPs degraded phenol to non-toxic
or low-toxic intermediate metabolites and alleviated the stress of phenol on microalgae cells,
resulting in the disinhibition of microalgae cell metabolism and photosynthesis. Second, the
bio-TiO2 NPs also stimulated EPS excretion of microalgae cells and decreased the oxidative
stress and lipid peroxidation damage of cells (represented as low SOD and MDA levels),
resulting in increased tolerance of microalgae cells to adverse environments. Meanwhile,
the bio-TiO2 NPs passed through cell membranes and interacted with CLP, which enhanced
the formation of ATP [30]. Thus, the cell metabolic activity and photosynthetic rate were
improved, which was indicated as a high ETSA value. A similar result was reported
previously, that exogenous nanomaterials were found to be a more direct and easier way to
stimulate and regulate cell metabolism, thus enhancing metabolic activity and improving
photosynthetic rate [48].

Phenol was degraded by both photocatalysis of bio-TiO2 NPs and the tricarboxylic
acid cycle of microalgae. Phenol degradation pathway by bio-organism and nanoparticles
has been investigated throughout previous studies, shown in Figure 6 [56–59]. Photocat-
alytic degradation of phenol was mainly caused by h+ generated by the photocatalytic and
photosynthetic reactions. Because of the interaction of bio-TiO2 NPs and CLP, during the
phenol degradation process, e− were rapidly transferred to CLP (Figure 4D) or O2, reducing
the photoelectron-hole pair recombination rate, supporting more h+, and improving the
photocatalytic performance of the bio-TiO2 NPs. The accelerated electron transfer was
shown as low electron transfer resistance, larger capacitance, and higher exchange current
density, resulting in increased light energy utilization rate and photocatalytic rate. Mean-
while, O2 generated by photosynthesis increased the consumption of e−, which further
improved photocatalytic efficiency.

Thus, the synergetic reaction of both the bio-TiO2 NPs (photocatalysis) and microalgae
cells (especially photosynthesis) was formed, which resulted in accelerated biodegradation
of phenol.
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4. Conclusions

In this study, bio-TiO2 NPs were successfully synthesized and coupled with microalgae,
providing a basis for synergetic biodegradation of phenol as the Bio-TiO2/Algae complex,
of which the phenol degradation efficiency reached 98.95 ± 1.77% at 19 h, enhancing
2.27 times and 1.32 times compared with that of Algae system (40.88 ± 4.62% at 19 h) and
control system (74.89 ± 1.12% at 19 h), respectively.

Bio-TiO2/Algae showed the fastest degradation rate of phenol, which might be at-
tributed to the higher content of PN in this system. Increased EPS secretion indicated that
the bio-TiO2 NPs enhanced the metabolic activity of T. obliquus and improved the stress
response to the surrounding environment, which was further verified by the ETSA and
ATP tests. Electrochemical studies, including Tafel, CV, and EIS tests, verified the increased
electron transfer, leading to accelerated degradation of phenol.

The results of the free radical trapping experiment showed that phenol could hardly
be degraded in the presence of an h+ trapping agent, indicating that photocatalytic
degradation of phenol was mainly caused by h+ generated by the photo-catalytic and
photosynthetic reaction.

Thus, the synergetic reaction of both the bio-TiO2 NPs (photocatalysis) and microalgae
cells (especially photosynthesis) was formed, which resulted in accelerated biodegradation
of phenol.

This study investigated a green and sustainable method for phenolic wastewater treat-
ment. The idea was enlightened for other toxicity low-carbon remediation in natural water.
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