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Abstract: Concrete is the most used construction material, needing large quantities of Portland
cement. Unfortunately, Ordinary Portland Cement production is one of the main generators of CO2,
which pollutes the atmosphere. Today, geopolymers are an emerging building material generated
by the chemical activity of inorganic molecules without the Portland Cement addition. The most
common alternative cementitious agents used in the cement industry are blast-furnace slag and fly
ash. In the present work, the effect of 5 wt.% µ-limestone in mixtures of granulated blast-furnace
slag and fly ash activated with sodium hydroxide (NaOH) at different concentrations was studied
to evaluate the physical properties in the fresh and hardened states. The effect of µ-limestone was
explored through XRD, SEM-EDS, atomic absorption, etc. The addition of µ-limestone increased the
compressive strength reported values from 20 to 45 MPa at 28 days. It was found by atomic absorption
that the CaCO3 of the µ-limestone dissolved in NaOH, precipitating Ca(OH)2 as the reaction product.
SEM-EDS analysis showed a chemical interaction between C-A-S-H- and N-A-S-H-type gels with
Ca(OH)2, forming (N, C)A-S-H- and C-(N)-A-S-H-type gels, improving mechanical performance
and microstructural properties. The addition of µ-limestone appeared like a promising and cheap
alternative for enhancing the properties of low-molarity alkaline cement since it helped exceed the
20 MPa strength recommended by current regulations for conventional cement.

Keywords: slag; fly ash; µ-limestone; geopolymer; composite

1. Introduction

Portland cement (PC), a traditional cementitious material, is the most predominant
binder used in construction with a large consumption worldwide [1]. However, cement
manufacturing causes alarming greenhouse gas (GHG) emissions, raw materials consump-
tion, and intensive energy expenses. The whole production process of PC consumes about
3.2 GJ energy per ton for raw material mining, transporting, clinker calcination, and grind-
ing. Almost 810 kg of carbon dioxide, 1.0 kg of sulfur dioxide, and 2.0 kg of nitrogen oxides
are generated per ton of cement manufactured [2–4]. Projections for the global demand
for Portland cement predict there will be about six billion tons per year, generating over
4.8 billion tons of carbon dioxide (CO2). CO2, as the main greenhouse gas, is responsible
for global warming, and the cement industry causes around 8% of CO2 emissions world-
wide [5]. CO2 emissions from cement production are generated by the combustion essential
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to attain temperatures of about 1450 ◦C (30–35%), limestone decarbonation to produce
clinker (50–60%), and materials handling (around 10%) [6]. Thus, it is crucial to develop
new alternatives to replace PC to reduce CO2 emissions and conserve energy [7]. Two
practices may be accepted: (i) the partial Portland cement replacement by supplementary
cementitious materials to reduce energy and raw materials consumption and diminish CO2
emissions, and (ii) clinker production with no cement content.

It is common in the building materials sector to find traditional binders replaced by
alternative secondary products such as silica fume, blast-furnace slag, fly ash, biomass, ash,
red mud, and natural, and artificial puzzolans. The diversity of chemical compositions in
these by-products results in new hydrated phase formation (with different chemical and
physical properties found in traditional Portland cement) [8,9].

Otherwise, the alkaline activation of powders obtained from by-products based on
aluminosilicates (precursors) can generate an inorganic binder when some alkaline com-
pounds react with those precursors. The alkaline-activated binder’s interest is due to its
extreme-temperature tolerance, minor permeability, stable bonding, favorable durability,
attractive chemical corrosion resistance, immobilization of toxic waste, and environmental
friendliness, among other benefits [10–23].

Raw materials used for geopolymer synthesis frequently come from industrial alu-
minosilicate wastes, natural aluminosilicate minerals, or their mixtures [9,24]. A geopoly-
mer’s properties are obviously affected by the characteristics of raw materials (min-
eralogical composition, glassy/amorphous fraction, particle size distribution, particle
morphology, etc.).

Large quantities of ground granulated blast-furnace slag (GGBFS) and fly ash (FA) are
still available in the trading market. This fact motivates a part of the scientific community
and the cement industry to focus on new geopolymer development through GGBFS and FA
utilization based on their probable high hydraulic potential and monetary and atmospheric
benefits [25–28].

Fly ash is a powder by-product with fine spherical particles ranging from <1 mm to
more than 100 mm and produced in thermal power plants during coal burning, whose
annual production is now difficult to estimate due to the general crisis of energy products
(mainly oil and gas), but a few years ago, it was estimated to be about 900 million tons [29].

Alkaline activation of fly ash with high hydroxide concentrations leads to a reaction
product (N-A-S-H gel) that may develop more than 60 MPa when thermally cured.

On the other hand, ground granulated blast-furnace slag is another by-product mate-
rial with a high fraction of glassy phase rich in silica, alumina, and amorphous calcium,
making it suitable for use as a precursor for synthesizing GP [30]. The annual production of
GGBFS is about 400 million tons. GGBFS as a precursor material in geopolymer formation
has been extensively investigated [31–33]. Since GGBFS is rich in calcium, silicon, and
aluminum, the primary reaction product is a C-A-S-H-type gel, which may exist together
with the geopolymer gel based on the GGBFS chemical composition, alkali activator type,
and alkali concentration [31–33]. The C-A-S-H gel from GGBFS enhances the setting and
mechanical strength characteristic of a geopolymer [34–39]. Diverse methods and mixtures
of alkaline solutions with different precursors, such as sodium silicate, sodium hydroxide,
sulfates, and oxides of alkali metal salts, including binary and ternary mixtures of hydrox-
ides with sodium carbonates and sulfates, have been designed for the alkaline activation of
slags [40,41].

The synergistic effect of binary ash/slag composites (with a 50/50 ratio) activated
with NaOH and cured at 25 ◦C, which have reached compressive mechanical strength
values of about 50 MPa at 28 days of reaction, has also been studied [42–44]. Additionally,
activated ash/slag pastes with NaOH have been studied from the mineral, mechanical,
and microstructural points of view. The findings have demonstrated the presence of two
reaction products. A reaction product with Ca/Si = 0.8, Al/Ca = 0.6, and Si/Al = 2–3 ratio
corresponds to a hydrated gel rich in Al3+, including Na in its structure. The other hydration
product is alkaline aluminosilicate hydroxide with a three-dimensional structure [42–44].
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Wang et al. [45] studied the synergic effect of a fly ash/slag-based geopolymer with
variations of fly ash/slag ratios (20 to 60 wt.%) activated with three NaOH solutions (0.5%,
1%, and 1.5%). Experimental samples were cured at 1, 3, 7, and 28 days. It was observed
that as slag content increases in a geopolymer, the compressive resistance increases, result-
ing in an optimal compressive strength of about 93 MPa. Deb et al. [46] studied Class F fly
ash/GGBFS-based geopolymer activation at 0%, 10%, and 20% GGBFS/Class F fly ash ratio
in a NaOH and Na2SiO3 solution. Compressive strength increased at higher GGBFS/Class
F fly ash ratios. The highest compressive strength (51 MPa) was reached at 20% slag and
80% fly ash with a 40% NaOH and Na2SiO3 solution and cured at 20 ◦C. Xu et al. [47]
synthesized a geopolymer based on FA and GGBFS in different grades using an activat-
ing solution formulated from a concentrated Hanford secondary waste (HSW) stimulant
(5 mol/L NaOH mixed with solid binders). The optimal compressive strength reached
about 52 MPa at a fly ash/GBFS mass ratio equal to 5/3.

On the other hand, many studies have demonstrated improvements of the properties
of Portland cement by limestone (CaCO3) addition. It has been reported that limestone
powders homogenize and broadly distribute clinker particle size when limestone particle
sizes below 8 µm are used in a range of 10% to 40% [48].

Based on the above, there is much interest in the scientific community to study the
effect of CaCO3 on alkaline binary compounds. Consequently, the present research evalu-
ated the µ-limestone (CaCO3) addition effect on the formation of hybrid hydration gels of
alkaline-base cement (slag and ash) at different curing conditions and their influence on
mechanical properties.

2. Materials and Methods
2.1. Materials

The precursors used to elaborate the geopolymers were: (i) granulated blast-furnace
slag from Lazaro Cardenas steel-making plant (Michoacán, Mexico), (ii) Class F fly ash (FA)
from Nava thermoelectric plant (Coahuila, Mexico), and (iii) µ-limestone from mountain
deposits in Nuevo León, México. Sodium hydroxide from Jalmek with 98.5% purity (Nuevo
León, Mexico), bi-distilled water, and water glass (sodium silicate from Silicatos solubles,
Monterrey, Mexico) were used for the alkaline solution preparation.

Before using GGBFS, FA, and limestone as precursor raw materials to prepare alkali-
activated cements, a 1 h grinding process was performed on them in a vibro-energy grinding
ball mill (DM 1 model, Sweco Inc.) using 80 kg of 20 mm steel balls and 5 kg of raw material
charge in the mill.

Figure 1 shows the GGBFS and FA before (Figure 1a,c, respectively) and after the
milling process (Figure 1b,d, respectively). After the milling process, an angular morphol-
ogy in the slag was observed. Meanwhile, for the FA, the milling process directly influenced
the size and surface area of the particles, thus obtaining milled fly ash (MFA) (Figure 1e).

Figure 2a–d shows the size and angular morphology of the µ-limestone particles after
milling. Particles in the range of 10 to 30 µm were obtained.

Table 1 shows the physical properties of the raw materials in terms of fineness modulus
and average particle size. Meanwhile, Table 2 shows the chemical composition of the raw
materials. The fineness modulus test (Blaine) was carried out according to the ASTM
C204-17 standard. The average particle size was evaluated using a laser granulometry
technique in MICROTAC 3500 equipment (Microtract, Montgomeryville, PA, USA). The
chemical analysis was performed utilizing the X-ray fluorescence (FRX) method with X
EPSILON 3-X equipment (Malvern Panalytical Ltd., Malvern, Worcs, UK).
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distribution (10–30 µm). 

Figure 1. Raw materials before and after the milling process. (a) GGBFS before the milling process,
(b) GGBFS after the milling process, (c) FA before the milling process, (d) FA after the milling process,
and (e) milled fly ash (MFA).
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Figure 2. µ-limestone SEM characterization. (a) µ-limestone particles-X 1000, (b) µ-limestone
morphology-X 5000, (c) µ-limestone angular morphology-X 10,000, and (d) µ-limestone particle
size distribution (10–30 µm).



Materials 2023, 16, 3818 5 of 24

Table 1. Physical properties of the raw materials.

Raw Material Size (µm) Blaine (m2/kg)

Slag 60 4.5
Milled fly ash 30 3.8
µ-limestone 30 7.0

Table 2. Chemical analysis of the raw materials (oxides wt.%).

Raw Material MgO Al2O3 SiO2 SO3 K2O CaO TiO2 MnO FexOy L.O.I

Slag 9.57 9.71 32.16 3.24 0.42 42.24 1.62 0.14 0.41 2.5
Fly ash 0.63 26.72 61.94 1.03 3.67 2.80 0.93 0.01 4.24 2.7

µ-limestone 1.06 0.42 1.60 0.0 0.01 97.04 0.0 0.0 0.01 -

The hydraulic activity of slag was 1.23, which represents good hydraulic behavior,
according to the literature [49–52].

2.2. Sample Preparation

FA(MFA)/slag-based binary pastes with and without µ-limestone addition were
mixed, following the proportions in Table 3. The criteria used for the mass ratio selection of
each mixture came from an extensive revision of the literature, trying to select unexplored
gaps in parameters (mixing composition) that gave us some elements of novelty. Then,
the dry pastes were activated using NaOH as the activating solution at 4 M and 8 M
concentrations. The dry pastes were mixed in a Hobart mixer (A 200 model, USA) at low
speed for 5 min to a well-material homogenization. The alkali solution was incorporated
into the pastes at a controlled velocity for five minutes.

Table 3. Mixtures’ design.

Code

Saturated Curing (Immersed in Water)

Binders (wt.%)
NaOH

Activator L/S Ratio
Slag Fly Ash Milled

Fly Ash µ-Limestone

100S 100 - - -
4 M 0.22, 0.25, 0.30

8 M 0.25, 0.30

100S5C 100 - - 5
4 M 0.22, 0.25

8 M 0.25, 0.30

80S20FA 80 20 - -
4 M 0.25, 0.30

8 M 0.22, 0.25, 0.30

80S20MFA 80 20 20 -
4 M 0.22, 0.25, 0.30

8 M 0.25, 0.30

80S20MFA5C 80 - 20 5
4 M 0.25

8 M 0.25, 0.30

60S40FA 60 40 - -
4 M 0.30

8 M 0.30

60S40MFA 60 40 20 -
4 M 0.25, 0.30

8 M 0.25, 0.30

60S40FA5C 60 40 - 5
4 M 0.25, 0.30

8 M 0.25, 0.30
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Table 3. Cont.

Code

Saturated Curing (Immersed in Water)

Binders (wt.%)
NaOH

Activator L/S Ratio
Slag Fly Ash Milled

Fly Ash µ-Limestone

Controlled Curing 25 ◦C

100S 100 - - - 4 M 0.25, 0.30

100S5C 100 - - 5 4 M 0.25, 0.30

60S40FA 60 40 - - 4 M 0.35, 0.40

60S40MFA 60 - 40 - 4 M 0.30

60S40MFA5C 60 - 40 5 4 M 0.30

Controlled Curing 80 ◦C

100FA5C - 100 - 5 8 M 0.40

100MFA5C - - 100 5 8 M 0.35, 0.40

40S60FA 40 60 - - 8 M 0.40

40S60FA5C 40 60 - 5 8 M 0.40

40S60MFA 40 - 60 - 8 M 0.35

40S60MFA5C 40 - 60 5 8 M 0.30, 0.35

The L/S ratio was determined according to ASTM C230-14 to obtain good workability;
this value was set between 0.22 and 0.40 (see Table 3).

After mixing, the consistency test was carried out according to the ASTM C230-14 stan-
dard. The paste was poured into the molds to create cylindrical samples of 25.4 mm × 50.8 mm,
allowing it to be set at an ambient temperature for 24 h. The hardened specimens were
removed from the molds and then subject to a specific curing process.

The specimens were classified and treated under three groups of curing methods:
(1) saturated curing (immersed in water): water-saturated state at 100% relative humidity
for 28 days; (2) controlled curing at 25 ◦C: permanent water spray cured at controlled
temperatures of 25 ◦C for 28 days; and (3) controlled curing at 80 ◦C: water steam cured at
controlled temperatures of 80 ◦C during the first 24 h and then set at room temperature
until 28 days.

2.3. Test Methods

The samples were evaluated by compressive strength using an INSTRON universal
mechanical testing machine (Instituto de Ingeniería Civil, Universidad Autónoma de Nuevo
León, México). The evaluation was set to a 200 kg/s loading rate for 28-day-old specimens.

The final reported values were calculated as the mean value of six specimens for each
paste system.

After the compression test, the samples were collected, immersed in an acetone solu-
tion for 48 h, oven-dried for 24 h to stop hydration and aging, and then crystallographiccally
and microstructurally analyzed.

The phase composition of the raw material and experimental mixtures was determined
using an X-ray diffractometer. For X-ray diffraction analysis, a D8 advanced Bruker model
equipped with a Vantec detector (Instituto de Ingeniería Civil, Universidad Autónoma de
Nuevo León, México) was used at an excitation voltage of 40 kV, current of 40 mA, scan
rate of 0.05 (2θ/sec), and a 2theta (2θ) angle between 10◦ and 70◦. The powders (mixture
of raw materials without hydration process) and controlled curing mixture systems were
analyzed at 28 days of age by XRD.
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A scanning electron microscopy technique (SEM) was utilized to determine the mi-
crostructure of the experimental specimens using a JEOL microscope JSM-6490LV equipped
with an Oxford energy dispersive detector (EDS) for qualitative and quantitative micro-
analysis (Instituto de Ingeniería Civil, Universidad Autónoma de Nuevo León, México).

On the other hand, the µ-limestone’s stability was studied in NaOH alkaline solutions
with separate molarities of 4 M and 8 M. µ-limestone powders were added to both alkaline
solutions and stirred for 24 h. Then, the resulted solution was analyzed by atomic absorp-
tion to determine if Ca2+ ions were dissolved. µ-limestone powders were also analyzed by
X-ray diffraction after treatment in the alkaline solution.

3. Results
3.1. Mechanical Properties

Table 4 displays the compressive resistance results of all the experimental pastes
studied in the present work. As observed, most of the saturated cured pastes (71%) did not
reach 20 MPa, which is the lowest compressive resistance demand of an OPC 20R [53]. In
this study, this criterion was used to determine the optimal mixtures in terms of compressive
strength. The compressive resistance of these pastes incremented with the slag, i.e., when
the amount of slag increased, the 28-days compressive resistance was increased. This
phenomenon could be ascribed to the formation of C-A-S-H gels, which would reduce the
porosity and densify the microstructure of the pastes’ matrix [54–58]. On the other hand,
it can be noted that with increasing molarity of NaOH, the compressive resistance of the
pastes gradually increased, which could be justified by the internal reaction of Si, Al, and
Ca elements originated by the expanded breakage of the T-O-T bonds (T: Si or Al) in fly
ash and Ca-O and Si-O bonds in ground granulated blast-furnace slag, incited by the high
alkalinity resulting from the rising NaOH molarity [59,60]. Although it is expected that
NaOH molarity would gradually increase the compressive strength, an overdose alkali
solution (8 M) might increase the mixture’s water/solid ratio, contributing to a higher
liquid content, which slows down the gel formation process and successive increment of
poor gel reaction products [61].

The binder’s alkaline activation process would be accelerated with the L/S ratio’s
diminishment due to the mixture’s consistency decrement [62]. In this case, the reaction
products such as C-A-S-H- and N-A-S-H-type gels can be promptly produced with a low
L/S ratio, contributing to early-age compressive resistance development [54,55].

The compressive resistance results of controlled curing at 25 ◦C are also shown in
Table 4. As observed, all controlled curing pastes at 25 ◦C reached a compressive strength
of >20 MPa. The compressive resistance of these pastes improved with the addition of slag.
Since slag is rich in Ca, Si, and Al, the predominant reaction product was a C-A-S-H-type gel
that might improve the setting and strength characteristic of alkaline-activated cement by
porosity reduction and densification process of the cementitious matrix. Idawati et al. [63]
studied an FA/GBFS-based geopolymer, variating fly ash/slag ratios. They claimed that
the gel formation of the slag-based geopolymer was governed by a C-A-S-H-type gel.
Meanwhile, fly ash-based geopolymer was controlled by a N-A-S-H-type gel.

It has been found that C-A-S-H- and N-A-S-H-type gels can exist together when
slag/fly ash composites are mixed. A hybrid-type gel (N-C)-A-S-H is also identified in slag
systems as a part of the calcium released by the dissolution of the slag and its incorporation
into the N-A-S-H-type gel because of fly ash activation [44,64].

Regarding the mechanical strength of controlled curing pastes at 80 ◦C (see Table 4),
most pastes did not reach 20 MPa at 28 days (62%). In this case, a high L/S ratio (high
liquid content) used in a high-alkali solution (8 M) can hinder gel formation and subsequent
increment of poor gel reaction products [61].
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Table 4. Compressive strength results of the experimental pastes.

Code NaOH
Activator

Compressive Strength (MPa)

Saturated Curing (Immersed in Water)

L/S Ratio = 0.22 L/S Ratio = 0.25 L/S Ratio = 0.30

1 Day 7 Days 28
Days 1 Day 7

Days 28 Days 1 Day 7 Days 28 Days

100S
4 M 8 16 21 6.5 11.8 18.5 3.8 6.5 14

8 M - - - 9.6 12 18 5.5 10 13

100S5C
4 M 13 20 20 7 12 18 - - -

8 M - - - 6 17 17 11 11 11

80S20FA
4 M - - - 6.1 11 16.5 4.2 9.2 16

8 M 7.3 9.6 12 12 15 17 8.2 12 16

80S20MFA
4 M 10.2 21 22 10.2 18.7 24 4.3 11 13

8 M - - - 10 15 20 8 13 18

80S20MFA5C
4 M - - - 13 20 34 - - -

8 M - - - 11 16 16 6.4 8 12

60S40FA
4 M - - - - - - 4 8 11

8 M - - - - - - 4.9 7.6 13

60S40MFA
4 M - - - 6 21 23 - - -

8 M - - - 8 16 18 9 13 17

60S40FA5C
4 M - - - 9 18.1 27 6 15.5 21

8 M - - - 8.2 10 11 6.4 11 13

Controlled Curing 25 ◦C

L/S Ratio = 0.25 L/S Ratio = 0.30 L/S Ratio = 0.35 L/S Ratio = 0.40

1
day 7 days 28

days
1

day
7

days
28

days 1 day 7
days

28
days 1 day 7 days 28

days

100S 4 M 16 23 33 18 22 35 - - - - - -

100S5C 4 M 14 24 30 19 25 40 - - - - - -

60S40FA 4 M - - - - - - - - - 7.5 12 24

60S40FA5C 4 M - - - - - - 6.5 12.5 24 - - -

60S40MFA 4 M - - - 11 22 42 - - - - - -

60S40MFA5C 4 M - - - 17 31 42 - - - - - -

Controlled Curing 80 ◦C

L/S Ratio = 0.25 L/S Ratio = 0.30 L/S Ratio = 0.35 L/S Ratio = 0.40

1
day 7 days 28

days
1

day
7

days
28

days 1 day 7
days

28
days 1 day 7 days 28

days

100FA5C 8 M - - - - - - - - - 6.4 6.9 7.0

100MFA5C 8 M - - - - - - 14 16 22 9 13 16

40S60FA 8 M - - - - - - - - - 7 8 11

40S60FA5C 8 M - - - - - - - - - 15 15 15

40S60MFA 8 M - - - - - - 9 11 12 - - -

40S60MFA5C 8 M - - - 25 30 30 20 20 20 - - -

Figure 3 shows the optimal mixtures according to the compressive strength of satu-
rated curing pastes. As shown, there was a clear improvement in compressive strength as
µ-limestone was added to all the pastes evaluated in the present study. There was also a ten-
dency where µ-limestone added to the pastes accelerated the reactions at
7 days, reaching early mechanical strength increments. The 28-days compressive resis-
tance of all mixtures except for the high NaOH molarity (8 M) mixtures were higher than
20 MPa, accomplishing the primary demand of an OPC 20R. Nevertheless, looking at
the reinforced concrete application, only mixtures with elevated slag content (80%) could
achieve the standard criteria because they could reach a 28-days compressive resistance
of 34 MPa. Thus, the paste with 80% slag and 20% milled fly ash with 5% of µ-limestone
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addition, L/S ratio = 0.25, and 4 M of NaOH could be proposed as the optimal mixture for
compressive resistance.
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Figure 3. Alkali-activated pastes with 4 M and 8 M of NaOH with saturated curing.

The optimal mixtures of controlled curing at 25 ◦C are shown in Figure 4. In this
type of curing, high increases in compressive strength were observed concerning saturated
curing pastes. An improvement in mechanical strength was shown as µ-limestone was
added to the 100% of GBFS. Meanwhile, no significant contribution of µ-limestone in the
mechanical resistance in binary mixtures at 28 days was observed. However, the benefit
was related to the early development of high strength at 7 days. On the other hand, there
was a significant effect when using milled fly ash compared to that with pastes that used
fly ash, since the strength values were doubled at 28 days. The surface area of the milled
fly ash contributes to high reactivity, better activation, and a possible N-A-S-H-type gel
formation. The paste with 60% slag and 40% milled fly ash with 5% of µ-limestone addition,
L/S ratio = 0.30, and 4 M of NaOH (60S40MFA5C 4M-0.30 paste) could be suggested as the
optimal mixture for compressive strength, reaching 42 MPa at 28 days.
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Figure 5 shows the optimal mixtures of compressive strength of controlled curing
at 80 ◦C pastes. There was an improvement in compressive strength as µ-limestone was
added to all the pastes evaluated in these conditions. CaO content from µ-limestone might
strengthen the geopolymer matrix by making an amorphous structure based on a Ca-
Al-Si gel. In addition, Ca improves the compressive resistance in geopolymeric binders
because when CaO content is high, porosity decreases. Additionally, the formation of
amorphous-structured Ca-Al-Si gel strengthens the final reaction product [65–68].
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In addition, there was a tendency where µ-limestone added to the pastes accelerated
the reactions at 7 days, reaching early mechanical strength increments similar to those
attained at 28 days. Taking into account the obtained results, the paste with 40% slag
and 60% milled fly ash with 5% of µ-limestone addition, L/S ratio = 0.30, and 8 M of
NaOH (40S60MFA5C 8M-0.30 paste) could be proposed as the most favorable mixture for
compressive resistance, reaching 30 MPa at 28 days.

Summary Discussion of Limestone’s Effect on Mechanical Properties

As observed, the addition of µ-limestone could undoubtedly modify the mechanical
responses of slag-based alkali-activated binders. As communicated in the literature, the
mechanisms promoted by limestone that are favorable to the resistance development of
slag-based paste are: (i) producing nucleation sites [69–71], (ii) increasing slag dissolu-
tion [72–74], (iii) improving pore refinement [69,71,72,75,76], (iv) reaching higher packing
density [70], (v) enhancing reaction degree [73,75], and (vi) gel products’ intensification [73].
As was shown, the slag-based alkali-activated pastes exhibited compressive resistance
higher than that of fly ash-based alkali-activated pastes provided by the C-A-S-H- or
C-S-H-type gels [77,78]. The reaction intensification by µ-limestone might induce the for-
mation of C-A-S-H- or C-S-H-type gels, probably reducing the porosity and densifying the
microstructure of the pastes’ matrix [54–58].

The acceleration and intensification of reaction in slag-based alkali-activated pastes
responds to the action of µ-limestone grains acting as nucleation sites that induce the
formation of reaction products [69,70,73,74]. The nucleation sites ease the precipitation
and increment of reaction products, meaning that limestone can add apparent physical
modifications and minor chemical effects.
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A small amount of µ-limestone might refine the pore structure [73,75,79,80].
Rashad et al. [71] concluded in their research work that a microstructural densification effect
when replacing 15% slag with limestone is observed, improving compactness, causing an
induced filler effect, and enhancing packing density. Using a NaOH activator and a <25%
limestone addition, reduced pore volume and pore size <15 nm were found.

On the other hand, limestone in FA-based alkali-activated pastes induces a more
exhaustive and speed-up reaction [81]. It has been proposed that limestone can extensively
speed up gel formation since it can behave as a nucleation site for the reaction products,
improving their precipitation [81–83].

The formation of amorphous phases (i.e., N-A-S-H) and some crystalline phases,
such as quartz, mullite, hematite, and magnetite, can be found in FA-based-activated
pastes activated with NaOH. When <5% of additive was added to these pastes, the same
crystalline phases remained present, i.e., no new phase formation was observed except for
calcite. These non-reactive phases mostly acted as fillers or micro-aggregates embedded in
the matrix.

Low µ-limestone content in FA-based alkali-activated pastes can result in a more
packed and denser microstructure [80,81,84,85] that eventually improves the strength of
alkali-activated pastes [81]. This phenomenon might be attributed to a filler effect of
unreacted particles and more gel products due to the nucleation sites generated by the
limestone and other Ca-containing phases [80,81,84,85].

Meanwhile, the effect of µ-limestone on the compressive strength of binary pastes
exhibits positive trends [83,86–88]. A C-(A)-S-H-type gel may have been present in fly
ash-slag systems with a limestone addition that showed minor chemical modifications
(releasing Ca2+) and did not present new phases [83,89]. Regarding amorphous phases, the
formation of calcium-containing phases, e.g., C-S-H or calcium hydroxide, can be found
along with N-A-S-H as a consequence of the limestone dissolution within FA systems [85].

In binary pastes, µ-limestone can increase strength because of the filler effect [86].
The µ-limestone addition benefited the strengthening mechanisms by pore size control
and seeding-like sites simultaneously with minor chemical modifications. Additionally,
the addition of µ-limestone might improve strength by a dissolution mechanism on the
activator, yielding better packing [87].

The 80S20MFA5C pastes developed the highest strength among the saturated curing
pastes due to possibly extensive formation of C-S-H and C-A-S-H gels induced by µ-
limestone. The acceleration and intensification of the reaction in this paste could be
explained by the fact that µ-limestone grains worked as seeding-like sites, facilitating the
precipitation and growth of reaction products. Furthermore, a small amount of µ-limestone
might have refined the pore structure. This phenomenon might have reduced the porosity
and densify the microstructure of the pastes matrix, resulting in a strengthened effect.

The 60S40MFA5C pastes reached the highest compressive strength of all controlled
curing at 25 ◦C pastes. In this case, µ-limestone might have interacted with the slag aids as
a nucleation agent to C-S-H and C-A-S-H gels formation. Meanwhile, C-S-H or calcium
hydroxide, N-A-S-H formation, and low N-(C)-A-S-H gels formation could be found due
to the dissolution of µ-limestone within fly ash systems. Additionally, a filler effect and
better packing density might have been present in this paste.

The 40S60MFA5C pastes reached the highest compressive strength of all controlled
curing at 80 ◦C pastes. However, a hindrance in compressive strength development could
be found when compared to that of the other systems, mainly by a high L/S ratio (high
liquid content) used in a high-alkali solution (8 M), which negatively affected gel formation
and subsequent increment of poor gel reaction products as N-A-S-H gels. However, there
was a tendency where µ-limestone added to the pastes accelerated the reactions at 7 days,
reaching early mechanical strength increments similar to those reported at 28 days. In this
case, µ-limestone might have interacted with the fly ash as a nucleation agent for N-A-S-H
gels formation.
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3.2. SEM and X-ray Diffraction Characterization

Figure 6a,b show the 100S and 100S5C pastes’ microstructure cured at
controlled conditions.
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Both pastes with an L/S = 0.25 ratio reported Ca/Si values between 1.5 and 1.9.
These ratios favor the C-A-S-H gels and the hydrotalcite phase formation since the Mg/Al
ratio with values between 1 and 1.2. Additionally, Figure 6b shows a µ-limestone particle
embedded in the cementitious matrix. The closer the EDS is performed to the particle, the
more the calcium ratio increases. Furthermore, Figure 6b shows a µ-limestone particle
embedded in the cementitious matrix. The closer the EDS is performed to the particle, the
more the calcium ratio increases.

Figure 7a shows the microstructure of the 100MFA5C paste where the addition of
µ-limestone had a significant effect on the physical properties due to the formation of
hydration gels. µ-limestone could dissolve in a highly alkaline environment, which resulted
in Ca(OH)2 particles leaching and beginning to react with the N-A-S-H gels, according to
the variation of the stoichiometric ratios forming (N) C-A-S-H gels.

The amounts of Ca(OH)2 resulting from the dissolution of the µ-CaCO3 modifies the
pH and can influence the decrease of MFA dissolution and N-A-S-H gel formation [90].
The dominant reaction product is the N-A-S-H gel. CaCO3 may show polymorphism into
vaterite, calcite, and Ca(OH)2 by the dissolution through the gel formation process [81].

The curing temperature influenced the formation of zeolites [91], which was corrob-
orated by the Na/Al ratios with values higher than 0.70. Zeolites do not provide higher
mechanical strength but contribute to the reaction mechanisms of aluminosilicates by the
temperature and molarity of the activating solution [92].

In Figure 7b, in areas where the Ca(OH)2 particles were closer to the interface of the N-
A-S-H gels, the presence of C-S-H-type gels calculated by Ca/Si ratios >1.50
was observed.

N-A-S-H-type gels’ formation occurred at the point farther away from the µ-limestone
particle interface. It should be noted that the 100MFA5C pastes showed a better reaction of
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the MFA particles thanks to the particle size combined with the extreme alkalinity of the
activating solution and curing at a temperature of 80 ◦C.
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Figure 8a shows the microstructural analysis by SEM of the 60S40MFA binary pastes
activated with NaOH-4 M at L/S = 0.25 and immersed in water for curing. During its
microstructural analysis, the formation of the characteristic hydration gels after alkaline
activation for the slag composite gels (C-A-S-H) with a Ca/Si = 1.85 ratio and for the fly
ash paste gels (N-A-S-H) with Si/Al > 2 ratios were found. The N-A-S-H type hydration
gels’ formation occurred at the interface of the milled fly ash particles, while the hydration
gels at the slag interface were C-A-S-H-type gels, shown in Figure 8b. When calcium was
present in high amounts, it could be said to be a (C)-N-A-S-H gel since Ca2+ was not a part
of the structural polymerization chain.

The joint hydration of these compounds resulted in hybrid-gel formation, such as
C-S-H, C (N-A)-S-H, N(C-A)-S-H, N-A-S-H, C-A-S-H, C-A-S-H, with the type of hybrid gel
mixture depending on the type of activation.

Pastes with a higher Ca/Si ratio develop a hybrid C-N-A-S-H gel in response to the
Ca2+ freed by slag partition and its incorporation into an N-A-S-H-type gel. This gel can
coexist with forming C-A-S-H gels by slag activation and N-A-S-H gels by ash activation,
which is more distinguishable at earlier ages [64].

The microstructure of the ternary slag-MFA-µ-limestone pastes was analyzed in de-
tail in Figure 9. This figure shows the stoichiometric relationships and coexistence of
reported hybrid hydration gels [64,67,82]. Figure 9a shows the 60S40FA5C paste with an
L/S = 0.25 ratio. Formation of hybrid gels (C-S-H and C-A-S-H) was observed through
the characteristic values in the Ca/Si ratio. Si/Al ratios values >2 were detected in several
areas through the microanalysis since a higher Si concentration than Al concentration was
detected in the microanalysis. It could be highlighted that at the interface of both reacted
particles (slag and MFA), a hybrid gel was formed with a more balanced stoichiometric
ratio (Ca/Si = 1.39). This value proved the presence of a C-S-H gel. Unreacted fly ash
particles were also observed. A gel with an Si/Al ratio > 3 was calculated in areas where
fly ash reacted. When binary mixtures with high amounts of slag were used, the main
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reaction product was calcium silicate hydrates (C-S-H gel) with high amounts of tetrahedral
coordinated Al [43]. In areas closest to the interface between µ-limestone and the hybrid
hydration gels, a high amount of Ca2+ was calculated by microanalysis.
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Figure 9b shows a µ-lime particle magnification where a detachment of Ca(OH)2
particles was observed in response to the high alkalinity of the activating solution. At the
µ-limestone/paste interface, the registered Ca/Si ratio was about 1.7–2.2. Meanwhile, the
N-A-S-H gels around the µ-limestone were at average values of an Si/Al ratio = 2.6.

As reported by J. Temuujin et al. [93], the addition of CaO and Ca(OH)2 compounds
improves the mechanical characteristics of FA-based geopolymer gels. Ca(OH)2 is con-
sidered a more reactive additive than CaO. Ca(OH)2 compound addition results in the
precipitation of C-S-H gels or hydrated calcium aluminosilicate phases. Ca(OH)2 was
obtained in the present work by dissolving CaCO3 from the µ-limestone in an alkaline
NaOH-4 M solution. This alkaline compound contributes to slag activation in binary
paste mixtures.

Figure 10 shows the microstructural analysis by SEM of the 60S40MFA5C binary pastes
activated with NaOH-4 M at L/S = 0.25 and immersed in water for curing. Figure 10a
shows the (C)N-A-S-H gels formation by calcium addition, which was not a part of the gel
structure but was present in the gel.
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CaO content seems to strengthen the geopolymers, forming a structured Ca-Al-Si gel,
showing a slight positive effect on the physical properties [67].

The stoichiometric ratio Si/Al = 2.8 indicated that most of the gel formed was an
N-A-S-H-type gel. There was N-A-S-H-type gel formation with some areas of C-A-S-H
gel formation due to the Ca/Si = 1.1 value ratio shown in Figure 10b. This figure shows a
dispersed distribution of unreacted particles.

The XRD results of raw material are plotted in Figure 11 to facilitate the phase evolution
analysis in alkali-activated binders. Calcite (C) (JCPDS 83-0578) and dolomite (D) (JCPDS
89-5862) phases were reported from the slag. Meanwhile, merwinite (W) (JCPDS 84-1205),
mullite (M) (JCPDS 89-2644), and quartz (Q) (JCPDS 89-1962) phases were observed from
the limestone. Finally, mullite (M), quartz (Q), and hematite (He) (JCPDS 33-664) phases
were detected in the fly ash.

Figure 12a shows the diffractograms of 60S40MFA and 60S40FA pastes activated
with NaOH-4 M at 25 ◦C with and without the addition of µ-limestone. These analyses
helped determine whether CaCO3 addition influenced the reaction kinetics of hydration
gel formation. Hydrotalcite formation (H) (JCPDS 41-1428) shown by the appearance of
a peak between 11◦ and 13◦ (2θ) was established. C-S-H(C) gel formation was found in
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these pastes at 30◦ to 32◦ (2θ) peaks (JCPDS 29-0373). The angles of the “halos” match those
reported in the literature [82,83].

Materials 2023, 16, x FOR PEER REVIEW 17 of 26 
 

 

 

Figure 11. XRD of the raw materials. 

Figure 12a shows the diffractograms of 60S40MFA and 60S40FA pastes activated with 

NaOH-4M at 25 °C with and without the addition of µ-limestone. These analyses helped 

determine whether CaCO3 addition influenced the reaction kinetics of hydration gel for-

mation. Hydrotalcite formation (H) (JCPDS 41-1428) shown by the appearance of a peak 

between 11° and 13° (2θ) was established. C-S-H(C) gel formation was found in these 

pastes at 30° to 32° (2θ) peaks (JCPDS 29-0373). The angles of the “halos” match those 

reported in the literature [82,83]. 

Figure 11. XRD of the raw materials.

In the diffractogram, there were also peaks corresponding to calcite (Cc) (JCPDS 83-
0578) and merwinite (W) (JCPDS 84-1205) phases from the slag. For fly ash, no hydrated or
unreacted phases such as mullite (M) (JCPDS 89-2644), quartz (Q) (JCPDS 89-1962), and
ferrite (F) (JCPDS 80-2377) could be observed. The diffractogram of the water-saturated
60S40MFA5C between 15◦ and 25◦ (2θ) showed an amorphous halo attributed to an amor-
phous N-A-S-H gel reaction. The possible reaction of limestone with the alumina from the
mullite may form calcium carboaluminates since this crystalline phase can occur at low
angles in small proportions (10◦ and 15◦) [83,94].

It is worth mentioning that the 60S40MFA5C paste showed 20% of the mechanical
strength increment of 60S40MFA. This behavior was possibly associated with the more
intensive and accelerated formation of crystalline phases of the hydrated calcium sili-
cates attributed to the µ-limestone addition, since limestone can act as a nucleation site
for the reaction products, improving their precipitation. µ-limestone content can lead
to a more compact and denser microstructure that eventually improves the strength of
alkali-activated pastes.

Figure 12b shows the diffractograms of the same pastes, varying the L/S = 0.25 and
L/S = 0.30 ratios. No significant change in the formation of new crystalline phases was
observed. However, there was C-S-H gel formation between 39◦ and 40◦ and hydrotalcite
at 43◦ (2θ) [43]. Figure 12c shows the diffractograms corresponding to the pastes cured at
controlled temperatures (pastes with 100% raw material and the addition of µ-limestone).

The analysis showed an amorphous halo between 25◦ and 35◦ (2θ), derived from the
amorphous phase of the slag. The appearance of a C-S-H(C) signal at 31◦ (2θ) was shown in
the systems with the presence of slag. In the water-saturated 100S pastes, hydrotalcite (H)
formation between 11◦ and 13◦ (2θ) and C-S-H(C) gel were shown as new phases that also
had high intensity between 50◦ and 52◦ (2θ). In the 100MFA5C pastes, an amorphous halo
was observed between 15◦ and 25◦ (2θ). This phenomenon was attributed to the limestone
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addition (Cc) and the alumina present in the mullite phase from the FA. In the 100MFA5C
cured at 80 ◦C, a zeolitic phase was observed at 37◦ (2θ), corresponding to a phase called
chabazite (JCPDS 46-1427).
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Figure 12. Mineralogical formation of compounds in the analyzed pastes. (a) Comparison between
mixtures 60S40MFA with different curing methods. (b) Effect of µ-limestone addition in mixtures
60S40MFA5C by controlled curing. (c) Effect of curing temperature and µ-limestone addition in the
hybrid gels’ hydration. (d) Effect of curing temperature in the formation of mineral compounds in
binary mixtures with µ-limestone addition. (Cc = calcite, M = mullite, Q = quartz, C = calcium silicate
hydrate, W = merwinite, H = hydrotalcite, F = ferrite, Z = chabazite).

Alexander M. Kalinkin et al. 2020 [81] also reported the vitreous phase, similar to the
polymorphic phase reported in this work.

Figure 12d shows the diffractogram of the powders (mixture of raw materials without
hydration process) and controlled curing at 80 ◦C 40S60FA and 40S60MFA pastes. No
different peaks in the range of 30◦ to 32◦ and 50◦ to 52◦ (2θ) were identified. The only
peaks observed corresponded to the C-S-H gel from slag hydration. An amorphous halo
was present between 20◦ and 30◦ due to the amorphous phase of the fly ash. The analyses
showed characteristic peaks from the minerals present in the fly ash. However, this
qualitative technique only showed signals of the most intense compounds.

Summary Discussion of Phase Evolution

XRD analysis indicated that slag as a raw material presented crystalline phases such
as calcite, merwinite, and quartz [42,95]. Additionally, the glassy phase was evident in the
slag [42]. It is common to find low traces of ferrite in slag; however, it was not detected
in the XRD analysis, perhaps due to the low concentration as an equipment limitation
(below 3%).

After slag activation, the same crystalline phases before activation were detected
(calcite, merwinite, and quartz), as well as hydrotalcite and calcium silicate hydrate as new
crystalline phases. The slag alkaline activation promotes the development of an Mg/Al
ratio that matches the hydrotalcite phase. This formation depends on the raw material
nature and the activator’s alkalinity [96]. Hydrotalcite was detected at 40◦ (2θ). Other
investigations have also reported the hydrotalcite phase (PDF#89-0460) [75].
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As was reported in the literature, the formation of the calcium silicate hydrate gel was
influenced by the amount of alumina in the slag. After slag alkaline activation, calcium
silicate hydrate was detected at 29.5◦ (2θ) [83].

The µ-limestone addition in the slag acts as a nucleating agent and a C-S-H gel
precursor [75], besides a filler effect [48].

XRD analysis of fly ash as a raw material presents crystalline phases such as mul-
lite, quartz, and hematite. The glassy phase is also evident in fly ash [97–99]. After
fly ash activation, the same crystalline phases before activation were detected (mullite,
quartz, and hematite), as well as a new zeolitic crystalline phase known as chabazite. This
phase is observed at 37◦. Chabazite formation depends on the curing temperature and
sodium content.

On the other hand, the degree of geopolymerization in the activated fly ash is directly
related to the intensity of the amorphous silica peak around 30◦ [98,99].

Table 5 shows the hydration gels found in the present study. These findings are based
on stoichiometric ratios’ analysis by SEM. These formed gels have also been proposed and
corroborated using other characterization techniques [95,100–103].

Table 5. The hydration gels found in the present study.

Mixture Code Suggested Gel Type [44,48,64]

100S C-S-H
C-(A)-S-H

100S5C C-S-H
C-(A)-S-H

100MFA N-A-S-H

100MFA5C
N-A-S-H

C-S-H
(C)N-A-S-H

60S40MFA5C C-A-S-H, (N,C)-A-S-H,
C-(N-A)-S-H, C(N-A-S-H)

40S60MFA5C
N-A-S-H

(N,C)-A-S-H
C-(N-A)-S-H

3.3. Chemical Reaction of CaCO3 in Alkaline Aqueous Solutions

Figure 13 shows the diffractogram of µ-limestone powders after mixing with a NaOH-
4 M aqueous solution for 24 h by stirring. The diffractogram showed the portlandite
phase at 18◦, 34◦, 47◦, 51◦, and 55◦ (2θ). The JCPDS cards of the portlandite (calcium
hydroxide Ca(OH)2) and calcium carbonate (CaCO3) of the µ-limestone were indicated. It
was found that there was a reaction between the activating solution and the addition of
limestone, this addition mineral being one more ingredient for the effective activation of the
binary compounds (slag and fly ash). This analysis coincides with the studies of Nicholas
E. Pingitore et al. [104] on the dissolution of calcium carbonate in a sodium hydroxide
(NaOH).

Nicholas E. Pingitore et al. [104] analyzed CaCO3 (aragonite and calcite mineralogic
phases) activation in a Na(OH) solution using fine (62 to 125 µm in size) and coarse (250 to
500 µm in size) lime particles. They found CaCO3 in any mineralogical phase dissolved in
calcium hydroxide-Ca(OH)2.

The product of the reaction between calcium carbonate (CaCO3) and sodium hydrox-
ide (NaOH) is the formation of calcium hydroxide Ca(OH)2 in the form of portlandite and
sodium carbonate (Na2CO3).

CaCO3 (s) + 2NaOH (aq)→ Ca (OH)2 (aq) + Na2CO3 (aq) (1)
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X-ray diffraction results (see Figure 13) showed a substitution of CaCO3 by Ca(OH)2
that matched Nicholas E. Pingitore and co-workers’ research.

Figure 14 shows the hexagonal morphology of portlandite-Ca(OH)2 caused by the
CaCO3 reaction in aqueous and alkaline solutions. The µ-CaCO3 particle’s agglomeration
and reacted Ca(OH)2 particles were also observed. The mapping showed the distribution
of the compounds where a contrast between the Ca(OH)2, Ca (green), and Na (blue) plates
was shown.
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4. Conclusions

The µ-limestone addition on alkali-activated binders was investigated in terms of
the mechanical, microstructural, and crystallographic properties. Afterwards, the most
favorable mixtures were suggested. According to the results, the principal conclusions can
be listed as follows:

The compressive strength of alkali-activated binders increased significantly with
(i) µ-limestone addition, (ii) slag content increment, (iii) NaOH molarity, and (iv) L/S ratio
reduction.

The slag-based alkali-activated pastes exhibited compressive strength higher than that
of fly ash-based alkali-activated pastes. It was proposed that this mechanical character-
istic was reached by reaction intensification (C-A-S-H or C-S-H gels formation), porosity
reduction, matrix densification, nucleation sites availability, and pore refinement through
µ-limestone addition.

Low µ-limestone content in FA-based alkali-activated pastes could result in a more
packed and denser microstructure that eventually improves the strength of alkali-activated
pastes. This phenomenon might be attributed to a filler effect of unreacted particles
and more gel products due to the nucleation sites generated by limestone and other Ca-
containing phases.

The effect of µ-limestone on the compressive strength of binary pastes exhibited
positive trends. A C-(A)-S-H-type gel may be present in fly ash-slag systems. The µ-
limestone addition benefited the strengthening mechanisms by pore size control and
seeding-like sites simultaneously with minor chemical modifications. Additionally, the
µ-limestone addition might improve strength by a dissolution mechanism on the activator,
yielding better packing.

The paste with 60% slag and 40% milled fly ash with 5% of µ-limestone addition, an
L/S ratio of 0.30, and 4 M of NaOH (60S40MFA5C 4M-0.30 paste) could be proposed as
the most favorable mixture regarding the performance criteria of compressive strength,
reaching 42 MPa at 28 days. µ-limestone might interact with the slag aids as a nucleation
agent for C-S-H and C-A-S-H gels formation. Meanwhile, the formation of C-S-H or
calcium hydroxide, N-A-S-H, and low polymerization N-(C)-A-S-H gels could be due to
the dissolution of µ-limestone within fly ash systems. A filler effect and better packing
density might also be present in this paste.
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