
Citation: Starodubtsev, Y.N.;

Tsepelev, V.S. Isobaric Thermal

Expansivity and Isothermal

Compressibility of Liquid Metals.

Materials 2023, 16, 3801. https://

doi.org/10.3390/ma16103801

Academic Editors: Jun Liu, Andriy

Burbelko and Daniel Gurgul

Received: 13 March 2023

Revised: 5 May 2023

Accepted: 15 May 2023

Published: 17 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Isobaric Thermal Expansivity and Isothermal Compressibility
of Liquid Metals
Yuri N. Starodubtsev 1,2 and Vladimir S. Tsepelev 1,*

1 Research Center for Physics of Metal Liquids, Ural Federal University, Yekaterinburg 620002, Russia
2 Gammamet Research and Production Enterprise, Yekaterinburg 620131, Russia
* Correspondence: v.s.tsepelev@urfu.ru

Abstract: The relationship between the volumetric thermodynamic coefficients of liquid metals
at the melting point and interatomic bond energy was studied. Using dimensional analysis, we
obtained equations that connect cohesive energy with thermodynamic coefficients. The relationships
were confirmed by experimental data for alkali, alkaline earth, rare earth, and transition metals.
Cohesive energy is proportional to the square root of the ratio of melting point Tm divided by thermal
expansivity αp. Thermal expansivity does not depend on the atomic size and atomic vibration
amplitude. Bulk compressibility βT and internal pressure pi are related to the atomic vibration
amplitude by an exponential dependence. Thermal pressure pth decreases with an increasing atomic
size. Fcc and hcp metals with high packing density, as well as alkali metals, have the relationships
with the highest coefficient of determination. The contribution of electrons and atomic vibrations to
the Grüneisen parameter can be calculated for liquid metals at their melting point.

Keywords: isobaric thermal expansivity; isothermal compressibility; thermal pressure; internal
pressure; Grüneisen parameter; liquid metals; melting point

1. Introduction

Metal melting is the initial stage of most technological processes. Therefore, research
on metallic liquids is of great practical importance. The simplest objects are monoatomic
liquids. In the model of a simple liquid, atoms do not have dipole moments, are not
chemically bound, and have a spherically symmetric interaction potential [1,2]. In the
physical lattice model, it is assumed that the liquid has a lattice structure, at least in the
first coordination sphere [3], and the atomic oscillation occurs inside the free volume, i.e.,
the space available for the movement of the atom [4].

The molecular kinetic theory also provides relationships that are adequately related to
the experimental data. Lindemann [5] calculated the vibration frequency of atoms at the
melting point. Using the frequency of atomic vibrations, Andrade [6] derived a formula
that relates dynamic viscosity to molar mass, volume and melting point.

In the Einstein model, the substance contains a large number of independent quantum
harmonic oscillators of the same natural atomic frequency, and above the Einstein tem-
perature, the heat capacity increases slightly [7]. In the Debye model, quantum harmonic
oscillators have different frequencies, and above the Debye temperature ΘD, all modes of
atomic vibrations are excited. In the high temperature approximation, the Einstein and
Debye temperatures differ slightly [8]. Grimvall and Sjödin [9] investigated the relationship
between the different physical properties of materials and the Debye temperature. In [10],
the analysis of the properties of metallic liquid is considered in detail.

In this work, we will investigate the thermodynamic coefficients that characterize
the change in the volume of monatomic liquid metals. The isobaric thermal expansivity
αp determines the temperature change of volume V at constant pressure p. Thermal
expansion is associated with the asymmetry of interatomic interaction [11,12], and as a
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result, the repulsive force grows faster than the attractive force. Upon transition to the
liquid state, bulk thermal expansion sharply increases [13]. The isothermal compressibility
βT determines the change in volume under pressure at a constant temperature T. Isobaric
thermal expansivity and isothermal compressibility are directly related to the thermal
pressure pth, the internal pressure pi, and the Grüneisen parameter [14].

Molar mass and volume, as well as the interatomic bond energy, represent the most
general atomic characteristic of a substance. Interatomic interaction characterizes the
cohesion energy, which is equal to the energy required for the decomposition of a solid into
independent atoms at 0 K. Thermal energy is used to compare the strength of an interatomic
interaction with the destructive effect of thermal motion. It was demonstrated that isobaric
thermal expansivity [15–17], bulk modulus [9,18], and internal pressure [19,20] are related
to interatomic bond energy. In particular, the isobaric thermal expansivity is inversely
proportional to cohesion energy [16] and melting point [21].

This article describes new data on the relationship between volumetric thermodynamic
coefficients with atomic characteristics and the interatomic interaction in liquid metals at
their melting point.

2. Method

We used dimensional analysis to identify the relationship between physical and
chemical quantities [22,23]. Each object is characterized by a set of significant physical
quantities. At the first stage, we identified these quantities. Then, we found relations
between significant quantities that provided the same dimension on the left and right
side of the equation. The dimensional analysis provided good results in the study on
the viscosity, surface tension, and self-diffusion of metallic liquids [24–26]. The adjusted
coefficient of determination R2

adj was used to assess how well a relationship predicts
outcomes. The better the linear regression fits the data in comparison to the simple average,
the closer the value of R2

adj is to 1.
The melting point at which the metal passes from the solid to the liquid state was

chosen as the characteristic temperature. At this temperature, the short range order of liquid
metals can be close to crystalline [27,28]. The quantities at the melting point are marked
with subindex m. Data on the cohesion energy Ec (J·mol−1), melting point Tm (K) molar
volume Vm (m3·mol−1), heat capacity at constant pressure Cp (J·mol−1·K−1) and atomic
mass m (kg) were taken from [10]. Reference [29] contains the Debye temperature ΘD
(K), and references [30,31] contain the Fermi energy EF (J·mol−1). Reference [32] contains
the Wigner–Sietz radius rs (m) and the valency of chemical element z. The isothermal
compressibility at melting point βTm (J−1·m3) was taken from [30,33], and the isobaric
thermal expansivity at melting point αpm (K−1) was from [10,33]. In this work, we analyzed
data for alkali, alkaline earth, rare earth, and transition metals.

3. Results and Discussion

The dimension analysis of significant thermophysical quantities allowed us to obtain
the simple relations for the thermal expansivity αp and the isothermal compressibility βT:

E ∝ R
(

T
αp

)0.5
, (1)

E ∝
V
βT

, (2)

where E is the molar energy of the interatomic bond (J·mol−1), V is the molar volume
(m3·mol−1), and R is the universal gas constant (J·K−1·mol−1).

Figures 1 and 2 show relations (1) and (2) at the melting point Tm in the form:

Ec = 11.2R
(

Tm

αpm

)0.5
, (3)
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Ec = 0.7
Vm

βTm
. (4)
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Figure 1. Relationship between the cohesive energy Ec and 11.2 × R(Tm/αpm)0.5 parameter. The
dashed line corresponds to the equality Ec = 11.2R(Tm/αpm)0.5.
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line corresponds to the equality Ec = 0.7 × Vm/βTm.

Here, the cohesive energy Ec was used as the energy of the interatomic bond. Dimen-
sionless factor 11.2 in formula (3) is equal to the average ratio of Ec to R(Tm/αpm)0.5 for all
metals, and dimensionless factor 0.7 in formula (4) is equal to the average ratio of Ec to
Vm/βTm. For Equations (3) and (4), the coefficient of determination R2

adj exceeds 0.80, and
these equations can be assessed as good. Relation (3) between the cohesive energy and the
thermal expansivity was obtained for the first time. Relation (4) is more obvious and has
already been used in different versions [30,34].

The analysis shows that Equations (3) and (4) for alkali metals, with the exception of
lithium, have a coefficient of determination greater than 0.95. In addition, a high coefficient
of determination is observed in metals with face-centered cubic (fcc) and hexagonal closed-
packed (hcp) lattices, which have the highest packing density, 74%. For example, the
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relationship between the cohesive energy and the R(Tm/αpm)0.5 parameter has R2
adj = 0.96

for fcc metals. Body-centered cubic (bcc) metals, with a lower packing density of 68%,
show more scattering around Equations (3) and (4). The influence of the lattices type on the
properties of metals in the liquid state can be associated with the preservation of the local
atomic structure near the melting point [35].

The isochoric thermal pressure coefficient pth characterizes the change in the pressure
with a change in temperature at a constant volume, and from relations (1) and (2), we
reduce it to this form:

pth =

(
∂p
∂T

)
V
=

αp

βT
∝

R2T
EV

. (5)

The internal pressure characterizes the change in the internal energy U (J) with a
change in volume at a constant temperature, and at normal pressure, one can use this
approximation [20]:

pi =

(
∂U
∂V

)
T
=

αpT
βT

− p ≈
αpT
βT

∝
R2T2

EV
. (6)

If we take E = RTm, then relations (5) and (6) at the melting point can be reduced to
this simple form:

pthm ∝
R

Vm
, (7)

pim ∝
RTm

Vm
. (8)

Figures 3 and 4 show relations (7) and (8) in the form of a linear regression. For clarity,
relation (7) is presented on a logarithmic scale. The high coefficients of determination,
especially for internal pressure pim, confirms the significance of initial relations (1) and (2)
obtained using the dimensional analysis.

Materials 2023, 16, x FOR PEER REVIEW 5 of 10 
 

 

 

Figure 3. Relationship between the thermal pressure pthm and RVm−1 parameter. 

 

Figure 4. Relationship between the internal pressure pim and thermal energy density RTmVm−1. 

The amplitude of atomic vibrations Am (m) was determined from the kinetic theory 

[24]: 

mk

Th
A

B

m

D
m

2
=


, (10) 

where ΘD is the Debye temperature (K), h is the Plank constant (J·s), and m is the atomic 

mass (kg). It follows from (10) that the amplitude increases with an increase in the melting 

point Tm and a decrease in the atomic mass m and Debye temperature ΘD. 

For strong interatomic bonds, the amplitude of atomic vibrations is smaller. Essen-

tially, the amplitude also characterizes the interatomic interaction. Figures 5 and 6 show 

the dependences of isothermal compressibility βTm and internal pressure pim on the ampli-

tude of atomic vibrations at the melting point. The compressibility increases and the in-

ternal pressure decreases when the amplitude increase. Dependencies are linear if βTm and 

pim are presented on a logarithmic scale. Therefore, dependency can be written as an ex-

ponential: 

mA
Tm e

166.0
019.0= , (11) 

Figure 3. Relationship between the thermal pressure pthm and RVm
−1 parameter.

The thermal pressure pth is inversely proportional to the molar volume Vm (Figure 3).
The ferromagnetic metals Ni, Co, and Fe noticeably deviate from the linear regression. The
molar volume is related to the atomic size a by the relation

Vm = NAa3, (9)

where NA is the Avogadro constant (mol−1). So, the thermal pressure decreases with
increasing atomic size. Thermal expansivity analysis showed that αpm does not depend on
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the atomic size and does not affect dependency (5). The independence is confirmed by the
random distribution of points on the experimental dependence of αpm on the atomic size a.
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Figure 4. Relationship between the internal pressure pim and thermal energy density RTmVm
−1.

Figure 4 demonstrates the strong relationship between internal pressure pim and
thermal energy density RTmVm

−1. This suggests that the internal pressure at the melting
point is mainly due to the thermal vibration of atoms.

Relations (7) and (8) also show a higher coefficient of determination for fcc and hcp
metals. For alkaline earth metals, the coefficient of determination exceeds 0.995, and for
alkali metals, with the exception of lithium, it is above 0.999.

The amplitude of atomic vibrations Am (m) was determined from the kinetic the-
ory [24]:

Am =
h

π ΘD

√
Tm

2kBm
, (10)

where ΘD is the Debye temperature (K), h is the Plank constant (J·s), and m is the atomic
mass (kg). It follows from (10) that the amplitude increases with an increase in the melting
point Tm and a decrease in the atomic mass m and Debye temperature ΘD.

For strong interatomic bonds, the amplitude of atomic vibrations is smaller. Essentially,
the amplitude also characterizes the interatomic interaction. Figures 5 and 6 show the
dependences of isothermal compressibility βTm and internal pressure pim on the amplitude
of atomic vibrations at the melting point. The compressibility increases and the internal
pressure decreases when the amplitude increase. Dependencies are linear if βTm and pim are
presented on a logarithmic scale. Therefore, dependency can be written as an exponential:

βTm = 0.019e 0.166Am , (11)

pim = 14.4e 0.2Am . (12)

where the vibration amplitude is given in picometers (pm) and the isothermal compress-
ibility βTm and internal pressure pim are given in SI base units. The thermal expansivity
αpm does not depend on the amplitude of atomic vibrations, and the thermal pressure pthm
has a noticeably lower coefficient of determination of 0.67.

The relationship between the thermal expansivity αpm and the vibration amplitude
Am is characterized by a coefficient of determination close to zero. This confirms the
concept of anharmonicity [11,12], according to which the thermal expansion is related to
the nonlinearity of the interatomic interaction force.
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melting point Am.

The thermal expansivity and isothermal compressibility are also included in the
expression for the Grüneisen parameter [36]:

γ = V
(

∂p
∂U

)
V
=

αpVm

βTCV
, (13)

where CV (J·mol−1·K−1) is the heat capacity at constant volume. The Grüneisen parameter
characterizes the isochoric change in the internal energy density U/V with a change
in pressure.

In the Debye model, the parameter γ is related to the atomic vibration and is calculated
using the formula

γvib = − V
ΘD

(
∂ΘD
∂V

)
T
= −

(
∂ ln ΘD
∂ ln V

)
T

(14)
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We choose melting point Tm as a fixed temperature. Figure 7 shows the dependence
of lnΘD on lnVm, from which γvib = 1.02 can be found. Thus, the average vibrational
component of the Grüneisen parameter of liquid metals at the melting point is 1.02.
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The electronic contribution to the Grüneisen parameter [37,38] is

γel = −
(

∂ ln D
∂ ln ρ

)
T

, (15)

where D (J−1) is the electronic density of states at the Fermi energy level, and ρ (m–3) is the
concentration of free electrons. According to [7], the electron density of the state is

D ∝ E0.5
F Vm. (16)

The free electron density ρ can be calculated from the Wigner–Seitz radius rs [39]:

1
ρ
=

4π r3
s

3
. (17)

The Wigner–Seitz radius is the radius of a sphere whose volume is equal to the volume
per a free electron. The concentration of free electrons can also be obtained from the formula

ρ =
z NA
Vm

, (18)

where z is the valency of chemical elements. Figure 8 shows the dependence of ln(EF
0.5Vm)

on lnρ. It follows that for alkali and alkaline earth metals, there is a strong relationship,
with a determination coefficient of 0.999, and the electronic contribution to the Grüneisen
parameter is 0.60.

Dimensionless Grüneisen parameter γ is a useful quantity for characterizing the
vibrational anharmonicity that causes thermal expansion. The expression for the difference
in heat capacities (Cp − Cv) contains the square of the thermal expansivity [40]:

Cp − Cv =
α2

pVT
βT

. (19)
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Figure 9 shows a fairly close relationship between the Grüneisen parameter γ and the
difference in heat capacities (Cp − Cv) for metals at the melting point, and it confirms the
relationship between γ and vibrational anharmonicity.
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4. Conclusions

The relationships between the volumetric thermodynamic coefficients of liquid metals
at the melting point and the energy of interatomic interaction were investigated. The iso-
baric thermal expansivity αp, isothermal compressibility βT, isochoric thermal pressure pth,
internal pressure pi, and the Grüneisen parameter were used as thermodynamic coefficients.
The energy quantities were molar cohesive energy Ec and thermal energy RTm. Using
the dimensional analysis, we obtained equations that relate the cohesive energy to the
thermodynamic coefficients. The relationships were confirmed with experimental data
from alkali, alkaline earth, rare earth, transition metals.

The following results were obtained in this work: Thermodynamic coefficients at the
melting point depend on the type of crystal lattice. Ratios for liquid metals with face-
centered cubic and hexagonal closed-packed lattices as well as for alkali and alkaline earth
metals have the highest coefficient of determination. Cohesive energy is proportional to
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the square root of the ratio of the melting point Tm divided by thermal expansivity αp.
Thermal expansivity αp does not depend on atomic size and atomic vibration amplitude.
This confirms the concept of anharmonicity of thermal expansion. Bulk compressibility
βT and internal pressure pi are related to atomic vibration amplitude by an exponential
dependence. Internal pressure is closely related to thermal energy density, and at melting
point, it is mainly due to the thermal vibration of the atoms. Thermal pressure pth decreases
with an increasing atomic size. The contribution of electrons and atomic vibrations to the
Grüneisen parameter γ can be calculated for liquid metals at the melting point.
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