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Abstract: Calcium carbonate (CaCO3) is a widely used inorganic powder, but its industrial applica-
tions are limited by its hydrophilicity and oleophobicity. Surface modification of CaCO3 can improve
its dispersion and stability in organic materials and further improve its potential value. In this study,
CaCO3 particles were modified with silane coupling agent (KH550) and titanate coupling agent
(HY311) combined with ultrasonication. The oil absorption value (OAV), activation degree (AG), and
sedimentation volume (SV) were employed to evaluate the modification performance. The results
showed that the modification effect of HY311 on CaCO3 was better than that of KH550, and ultrasonic
treatment played an auxiliary role. Based on response surface analysis, the optimal modification
conditions were determined as follows: the HY311 dosage was 0.7%, the KH550 dosage was 0.7%,
and ultrasonic time was 10 min. The OAV, AG, and SV of modified CaCO3 under these conditions
were 16.65 g DOP/100 g, 99.27%, and 0.65 mL/g, respectively. The SEM, FTIR, XRD and thermal
gravimetric analyses indicated successful coating of HY311 and KH550 coupling agents on the surface
of CaCO3. The optimization of the dosages of two coupling agents and ultrasonic time improved the
modification performance significantly.
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1. Introduction

As an inorganic raw material, calcium carbonate (CaCO3) is one of the cheapest and
most abundant minerals found on Earth [1,2]. It is widely used as filler material in the
field of rubber, plastics, papermaking, coatings [3,4], etc. Small CaCO3 particles with
hydrophilic and oleophobic properties are generally prone to agglomerate, leading to poor
dispersion in polymer matrix [5,6]. Therefore, to improve the application potential of
CaCO3 in industries, it is necessary to modify the surface of CaCO3 to improve its affinity
and dispersion stability in hydrophobic polymers. The surface of CaCO3 is commonly
modified with hydrophobic surfactants [7], such as silane coupling agents [8,9], titanate
coupling agents [10], aluminate coupling agents [11], fatty acids [12], etc. However, the
modification performance is still expected to be improved to achieve better dispersion
and compatibility in the polymer matrix and widen the potential functionalization of
CaCO3 [13,14].

Silane coupling agents are commonly used for the surface modification of many
inorganic powders, such as talcum powder, aluminum hydroxide, and magnesium hydrox-
ide [15,16]. The surface of copper (Cu) powder was modified with 3-aminopropyltriethoxysilane
(KH550) to improve its corrosion-resistant property [17]. Robaidi et al. [18] modified the
CaCO3 surface with a silane coupling agent, which improved the dispersion of CaCO3 in a
polyvinyl chloride (PVC) matrix and also provided good interfacial adhesion, along with
high tensile and impact strengths to the calcium carbonate/PVC composites. Yang et al. [8]
used a silane coupling agent to modify the surface of CaCO3 nanoparticles, by which the
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interfacial compatibility between CaCO3 nanoparticles and styrene-butadiene rubber (SBR)
latex was significantly improved.

It was reported that titanate coupling agents also have an obvious improvement on
both inorganic filler dispersion and inorganic–organic interface conditions [19]. Latinwo
et al. [20] modified calcium carbonate with a titanate coupling agent in isopropanol solvent,
which enhanced its dispersion and interfacial bonding in polyurethane foam and also
increased the tensile strength of polyurethane foam. Cheng et al. [21] modified the surface of
pulverized coal with titanate and silane coupling agents by the ultrasonic wet method, and
the modified pulverized coal could form a stable colloidal dispersion in anhydrous ethanol.
Both silane and titanate coupling agents are amphoteric organic compounds with groups
interacting with the surface of CaCO3 particles and organic polymer simultaneously [22].
One part of the group of molecules in the coupling agents can react with the –OH group
on the surface of CaCO3 to form a strong chemical bond, and the other part of the group
can establish covalent bonds with organic materials [1,13]. When the silane and titanate
coupling agents dissolve and mix with the anhydrous ethanol, the organic moieties of
the two coupling agents may interact with each other and improve the modification
performance. Therefore, the combined application of silane and titanate coupling agents
may achieve better modification performance on CaCO3.

In addition, ultrasonic treatment is also commonly employed in the modification
process [23]. The ultrasonic (US) dispersion technique generates cavitation bubbles that
locally produce high temperature and high pressure; the bubbles collapse or disappear
in the liquid medium and produce a huge impact force and micro-jets [24]. The energy
generated by ultrasonic cavitation improves the interactions between organic modifiers and
inorganic particles. This facilitates the coating of the modifier on the surface of the inorganic
powder. Ultrasonic treatment has achieved better dispersion of nano titanium carbide (TiC)
powders aided by Tween 80 addition [25]. Hence, ultrasonic treatment can further improve
the lipophilic and hydrophobic properties of CaCO3 in the modification process. However,
to the best of our knowledge, there have been few reports on the modification of CaCO3 by
ultrasound-assisted silane and titanate coupling agents.

Therefore, this study proposes and explores the effects of an ultrasound-assisted silane
coupling agent (KH550) and a titanate coupling agent (HY311) on the modification of
CaCO3. The main objectives of this study were: (1) to determine the effects of the KH550
and HY311 combined with or without ultrasonic treatment; (2) to optimize the treatment
conditions of ultrasound-assisted KH550 and HY311 modification based on response
surface methodology; and (3) to characterize the modified CaCO3 with scanning electron
microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric
analysis (TGA), X-ray diffraction (XRD) and particle size analyzer.

2. Materials and Methods
2.1. Materials

CaCO3, with an average particle size of 14.56 µm, was procured from Tianjin Deen
Chemical Reagent Co., Ltd. (Tianjin, China). The titanate coupling agent (HY311, ethane-
diolato titanate) and silane coupling agent (KH550, 3-aminopropyltriethoxy silane) were
sourced from Heyuan Chemical Co., Ltd. (Huaian, China) and Chuangshi Chemical Co.,
Ltd. (Nanjing, China), respectively.

2.2. Surface Modification of CaCO3

A certain amount of HY311 or KH550 was weighed and dissolved in anhydrous
ethanol. Ethanol solution (15 mL) with different amounts of coupling agents (given in
wt% based on CaCO3) were added into a beaker with 20 g of CaCO3. The mixtures were
ultrasonicated at 90 W for 12 min at room temperature when the ultrasonic treatment was
conducted. Then, the mixture was filtered and dried in an oven at 80 ◦C for 24 h. Thereafter,
the modified CaCO3 product was obtained after grinding the residue.
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2.3. Performance Test
2.3.1. Oil Absorption Value

Oil absorption values (OAV) is the mass of dibutyl phthalate (DOP) adsorbed per 100
g CaCO3. OAV (g DOP/100 g) was tested according to the methods described by previous
studies [26,27] and was calculated using Equation (1):

OAV =
100 (M3 − M2)

M1
(1)

where M1 (g) is the mass of modified CaCO3 powder, M3 (g) is the weight of the dropping
bottle and DOP before DOP addition (g), and M2 (g) is the weight of the dropping bottle
and DOP after DOP addition (g). DOP was added to the CaCO3 powder until all the
particles clustered. All tests in this study were conducted in triplicate and the mean values
were reported.

2.3.2. Activation Degree

Activation degree (AG) was determined according to the method described by Hu
et al. [26] and Cao et al. [28]. AG (%) was obtained using Equation (2):

AG =

[
1 − (M4 − M5)

M1

]
× 100% (2)

where M1 (g) is the mass of modified CaCO3 powder, M5 (g) is the mass of glass sand
crucible, and M4 (g) is the mass of the uncoated CaCO3 and glass sand crucible after drying
in the test.

2.3.3. Sedimentation Volume

Sedimentation volume (SV, mL/g) was determined using Equation (3):

SV =
V1

M1
(3)

where V1 (mL) is the volume of the sediment in the test. The modified CaCO3 particles
(M1 g) were placed in a 50 mL measuring cylinder and liquid paraffin was added to
the 50 mL mark. Then, the suspension mixture was fully stirred to distribute CaCO3
evenly in the liquid paraffin. After standing for 24 h, the volume of the sediment V1 (mL)
was recorded.

2.4. Optimization of Modification Process

To enhance the modification performance and reduce the cost of chemicals, the com-
bined modification of CaCO3 by ultrasound-assisted silane and titanate coupling agents
was studied. Because both the amount of the coupling agents (HY311 and KH550) and
the ultrasonication time (UST) may affect the modification performance of CaCO3, mul-
tivariate statistical models were used to understand the effect of one parameter and its
role in finding the optimum point. Response surface analysis was employed to estimate
the multivariate polynomial fitted with the independent variables using Design Expert
software. The OAV, AG, and SV of the modified CaCO3 were tested and evaluated in a
sequence of 17 experimental runs with appropriate combinations, including the dosage
of HY311 (0.3–1.1%), the dosage of KH550 (0.3–1.1%) and ultrasonication time (8–12 min).
Thereafter, experimental verification was conducted under optimum conditions.

2.5. Characterization

The particle sizes of CaCO3 before and after surface modification were measured using
a laser particle size analyzer (LS230, Beckman Coulter, Brea, CA, USA). The functional
groups of CaCO3 samples were characterized by Fourier transform infrared (FTIR, Nicolet
iS50, Thermo Scientific, Waltham, MA, USA) in the range of 400–4000 cm−1 using the
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KBr disc method. The morphologies of the materials were obtained by scanning electron
microscopy (SEM, Quanta FEG 250, FEI Corporation, Hilsboro, OR, USA). The thermal
gravimetric analysis (TGA) was performed on a thermogravimetric analyzer (TGA55, TA
Instrument, New Castle, DE, USA). The original and modified CaCO3 samples were heated
from room temperature to 800 ◦C at a rate of 10 ◦C/min in a nitrogen atmosphere. The
crystal structures of the CaCO3 before and after modification were examined by X-ray
diffraction (XRD, Ultima IV, Rigaku Corporation, Tokyo, Japan) in the 2θ range of 5–90◦.

3. Results and Discussion
3.1. Single-Factor Experiments
3.1.1. Effect of KH550 Combined with Ultrasonic Treatment

The CaCO3 particles were first modified by the ultrasound-assisted (12 min) KH550
treatment. The OAV, AG, and SV values of the CaCO3 were used to evaluate the modi-
fication performance. Smaller OAV and higher AG indicate better CaCO3 nanoparticle
processability and surface hydrophobicity [28,29]. The SV can also reflect the dispersion
potential of particles in the liquid phase. As shown in Figure 1, the OAV, SV, and AG of
unmodified CaCO3 were found to be 45.56 g DOP/100 g, 6.2 mL/g, and 0%, respectively.
With increased KH550 dosage, OAV and SV decreased first and then increased, whereas
AG exhibited an opposite trend.
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Figure 1. Effect of KH550 dosage combined with ultrasonic treatment. 

When the KH550 dosage was 1.2% (given in wt% based on CaCO3), the OAV and SV 
of CaCO3 decreased to a minimum of 36.60 g DOP/100 g and 5.2 mL/g, respectively, 
whereas the AG reached a maximum of 49.29%. Hence, the hydrophobicity and dispersi-
bility of the modified CaCO3 surface were the highest under these conditions. When the 
dosage of KH550 was under 1.2%, the surface of CaCO3 was not covered sufficiently [26]. 
Nevertheless, an excessive organic molecular chain with the KH550 dosage above 1.2% 
could increase the surface energy potential of modified CaCO3, strengthen its hydrophilic-
ity, and increase the OAV value [22]. Meanwhile, the organic layer formed by the silane 
coupling agent improved the activation degree of CaCO3 significantly. 
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When the KH550 dosage was 1.2% (given in wt% based on CaCO3), the OAV and SV of
CaCO3 decreased to a minimum of 36.60 g DOP/100 g and 5.2 mL/g, respectively, whereas
the AG reached a maximum of 49.29%. Hence, the hydrophobicity and dispersibility of
the modified CaCO3 surface were the highest under these conditions. When the dosage
of KH550 was under 1.2%, the surface of CaCO3 was not covered sufficiently [26]. Nev-
ertheless, an excessive organic molecular chain with the KH550 dosage above 1.2% could
increase the surface energy potential of modified CaCO3, strengthen its hydrophilicity, and
increase the OAV value [22]. Meanwhile, the organic layer formed by the silane coupling
agent improved the activation degree of CaCO3 significantly.

3.1.2. Effect of HY311 Dosage without Ultrasonic Treatment

The effect of HY311 dosage on the OAV, AG, and SV of the modified CaCO3 are shown
in Figure 2. With increased HY311 dosage, OAV and SV decreased significantly, whereas
AG increased first and then decreased. When the amount of HY311 was 1.6%, AG reached
a maximum of 81.17%, and SV decreased to the minimum value of 1.02 mL/g. Meanwhile,
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compared with the modification of CaCO3 with KH550, the modification performance of
HY311 clearly improved.
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Figure 2. Effect of HY311 dosage on OAV, AG and SV of the modified CaCO3.

When the HY311 dosage increased from 0.4% to 1.2%, the number of CaCO3 particles
coated with HY311 gradually increased. This led to a slight decrease in OAV, which was
consistent with the findings of Hu et al. [26]. Then, with further increase in the amount of
HY311, the surface coating of CaCO3 particles reached its saturation, and thus, there was
not much change in OAV.

When the HY311 dosage was increased to 1.6%, the lipophilic ends of the modifier
molecules that were coated on the surface of CaCO3 particles extended outwards, rendering
the particles insoluble in water [30], and the AG reached a maximum of 81.17%. The higher
the degree of activation, the more hydrophobic the surface of CaCO3 particles [29]. This
resulted in better dispersion of modified CaCO3 in liquid paraffin, and so the SV decreased
to the minimum value of 1.02 mL/g.

With further increase in the addition of HY311, there was a slight change in SV and
a significant decrease in AG. The reason for this could be that the amount of coupling
agent added was too large; the surface of the CaCO3 showed a change from single-layer
adsorption to double-layer or multi-layer adsorption. The hydrophilic ends of the excessive
number of modifier molecules were directed outwards [26], which reduced the lipophilicity
of the CaCO3 surface.

3.1.3. Effect of HY311 Combined with Ultrasonic Treatment

The OAV, AG, and SV of CaCO3 modified by HY311 combined with ultrasonic treat-
ment of 12 min are shown in Figure 3. With the increasing amount of HY311, the changes
in OAV, AG, and SV showed similar trends compared to Figure 2. When the addition of
HY311 was increased to 1.2%, OAV decreased from 45.56 g DOP/100 g to a minimum of
19.13 g DOP/100 g, AG increased from 0 to a maximum of 92.98%, and SV decreased from
6.2 mL/g to a minimum of 0.9 mL/g. The AG and SV indicated enhanced modification
performance with ultrasonic treatment.

Figure 3 shows that 1.2% of HY311 had the best modification effect on CaCO3 when
ultrasonicated for 12 min. When the amount of HY311 was more than 1.2%, OAV showed
little change due to the single layer of modifier formed on the surface of CaCO3. However,
excessive modifier molecules affected the dispersibility of CaCO3 particles in liquid paraffin
and reduced AG, which could be explained by the decreased lipophilicity of the CaCO3
surface [13,22]. Compared with the modification of CaCO3 with HY311 individually,
ultrasound-assisted dispersion could further increase the AG and reduce the OAV and
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SV of CaCO3, resulting in significantly better modification performance. Therefore, the
treatment of CaCO3 by ultrasound-assisted silane and titanate coupling agents may further
improve the modification performance.
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3.2. Response Surface Analysis

In order to determine the optimal experimental conditions for the modification of
CaCO3, a multi-factor experimental strategy was designed based on single-factor experi-
ments. The experimental design and results with OAV, AG, and SV are shown in Table 1.
The correlation between the experimentally determined real value and the predicted value
of the model under the three-factor scheme is shown in Figure 4.

Table 1. Response surface design and results on the modification conditions.

Run No. HY311
(%)

KH550
(%)

UST
(min)

OAV (g DOP/100 g) AG (%) SV (mL/g)

Actual
Value

Predicted
Value

Actual
Value

Predicted
Value

Actual
Value

Predicted
Value

1 0.7 0.7 10 16.63 16.73 99.18 99.23 0.6100 0.6260
2 0.7 1.1 8 18.16 18.12 93.68 93.76 1 0.9911
3 0.7 0.3 8 18.36 18.39 98.25 98.32 1.0500 1.0600
4 0.3 0.7 8 18.50 18.52 96.19 95.99 0.9230 0.9305
5 1.1 0.7 12 18.73 18.71 94.75 94.95 0.9230 0.9155
6 1.1 0.3 10 20.27 20.25 97.49 97.36 0.9100 0.9086
7 0.7 1.1 12 17.75 17.72 98.45 98.38 1.1200 1.1100
8 1.1 1.1 10 19.42 19.47 98.19 98.06 0.9600 0.9786
9 0.3 0.3 10 20.13 20.08 97.72 97.85 0.9800 0.9614

10 0.7 0.7 10 16.68 16.73 98.50 99.23 0.6200 0.6260
11 0.7 0.7 10 16.62 16.72 99.85 99.23 0.6500 0.6260
12 0.7 0.7 10 16.71 16.73 99.69 99.23 0.6500 0.6260
13 0.3 1.1 10 19.35 19.37 98.33 98.45 0.9700 0.9714
14 0.7 0.3 12 18.87 18.91 92.59 92.51 0.9500 0.9589
15 0.7 0.7 10 16.72 16.73 98.95 99.23 0.6000 0.6260
16 1.1 0.7 8 18.50 18.49 92.92 92.97 0.9690 0.9593
17 0.3 0.7 12 18.40 18.41 92.87 92.82 0.9800 0.9897
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According to Figure 4a–c, the correlation coefficients (R2) between the predicted value
and the real values of OAV, AG, and SV of modified CaCO3 were 0.9989, 0.9866, and
0.9926, respectively. The small differences between the predicted values and the real values
indicated the good fit of the models. Taking the OAV, AG, and SV as the response values,
the quadratic multinomial regression equations obtained by RSM tests are shown in the
Supplementary Material as Equations (S1)–(S3). The analysis of variance of regression
model equations are shown in Tables S1–S3. The p values of the models were all less than
0.001 (significant), indicating the high reliability of the models.

As shown in Figure 5, the 3D-response surface clearly showed the changes in OAV,
AG, and SV after the modification of CaCO3. In Figure 5a–c, the OAV of modified CaCO3
changed with the addition of HY311 and KH550 and the different UST. When the dosages
of HY311 and KH550 were 0.7% with a UST of 10 min, the OAV of modified CaCO3 was
minimum, and the effect of CaCO3 modification was the best. The order in which the three
factors influenced the response value OAV was: HY311 > KH550 > UST. This was consistent
with the results of single-factor tests, in which HY311 had the best modification effect on
CaCO3 when ultrasonicated for 12 min.

It could be seen from Figure 5d–f and Figure 5g–i that when the UST was 10 min and
the amount of HY311 and KH550 added were both 0.7%, the AG and SV of modified CaCO3
were the highest and lowest during the tests, respectively. Meanwhile, Figure 5a,d,g show
that the combined use of two coupling agents dramatically improved the modification
performance. Furthermore, the UST also had a significant effect on AG.

Based on the RSM results and the quadratic multinomial regression equations
(Equation (S1)–(S3) in the Supplementary Material), the model achieved a minimum OAV
of 16.73 g DOP/100 g. For this, the modification conditions were: UST of 9.45 min, 0.69%
HY311, and 0.75% KH550. Similarly, when the model achieved the maximum value of
AG (99.27%), UST was 9.87 min, HY311 dosage was 0.71%, and KH550 dosage was 0.67%.
When the minimum value of SV reached 0.65 mL/g, the UST was 9.94 min, and HY311 and
KH550 dosages were 0.71% and 0.68%, respectively.

Therefore, in this study, the best modification scheme of CaCO3 included a UST
of 10 min and 0.7% dosages of HY311 and KH550. Under the optimal conditions for
modification, experimental verification was carried out. The OAV of modified CaCO3
was 16.65 g DOP/100 g, AG was 99.27%, and SV was 0.65 mL/g. The error between
experimental and predicted values was small, indicating that the results of response surface
optimization were reliable.
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3.3. Characterization of CaCO3 Particles
3.3.1. Surface Morphology

The morphology of CaCO3 is one of the properties for its industrial applications [31,32].
The SEM images of original CaCO3 and the CaCO3 modified using the optimal modification
condition (the HY311 dosage was 0.7%, the KH550 dosage was 0.7%, and ultrasonic time
was 10 min) are shown in Figure 6. As presented in Figure 6a, the surface of the unmodified
CaCO3 particles were relatively flat and smooth, and most of them showed angular block
structures. After modification, several irregular particles were adsorbed on the surface of
the modified CaCO3. This could be due to the coating of CaCO3 surface with an organic
layer during the modification process [28].
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Figure 6. SEM images of (a) the original CaCO3 and (b) CaCO3 modified with KH550 and HY311
coupling agents combined with ultrasound treatment.

3.3.2. Fourier Transform Infrared Spectra

The FTIR spectra of CaCO3 before and after modification are shown in Figure 7a.
The adsorption peaks at 3440 cm−1 and 1600 cm−1 could respectively be attributed to the
stretching and bend vibrations of H–O–H, which might belong to the adsorbed water on the
surface [33,34]. The absorption peaks of unmodified CaCO3 at 2512 and 1799 cm−1 could
be attributed to the CO3

2- groups [2,14]. Peaks for antisymmetric stretching vibrations,
out-of-plane bending vibrations, and in-plane bending vibrations of CO3

2- appeared also
at 1428 [14,35], 875 [14,36], and 708 cm−1 [36,37], respectively.
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Figure 7. FTIR spectra (a) and XRD patterns (b) of CaCO3 before and after modification.

After modification, the FTIR spectrum of CaCO3 showed a strong new absorption
peak at 1046 cm−1, which was due to the antisymmetric stretching vibrations of the Si–O
bond [38]. Meanwhile, the peak at 472 cm−1 could also be assigned to the stretching
vibrations of the Si–O–Si bond [39]. This confirmed the successful coating of the silane
coupling agent on the surface of CaCO3 particles. The peaks at 2512, 1799, 1428, 875,
and 708 cm−1 in the spectrum of unmodified CaCO3 were dramatically changed in the
spectrum of modified CaCO3, which either disappeared or decreased in intensity. These
results indicated that the coupling agents were coated on the surface of the CaCO3.
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3.3.3. X-ray Diffraction Patterns and Thermogravimetric Analysis

The XRD pattern of original CaCO3 in Figure 7b is well-matched with the standard
card profiles recorded on PDF 81-2027, which are the characteristic peaks of calcite. After
modification with KH550 and HY311 coupling agents combined with ultrasound treatment,
there were no obvious newly appeared peaks in the XRD patterns, indicating that the main
crystal structure of CaCO3 was unchanged. Meanwhile, the intensity of the peaks was
slightly weakened, which was due to the modifier molecules coated on the surface of the
CaCO3 particles [14]. This result was also consistent with previous studies [2,27,29], which
suggested the successful modification of CaCO3.

The TGA curves of the original and modified CaCO3 are presented in Figure S1 in the
Supplementary Material. Before 550 ◦C, both the CaCO3 samples exhibited good thermal
stability and almost no mass loss. At temperatures above 550 ◦C, mass losses of the original
and modified CaCO3 particles were clearly observed, which might be mainly attributed
to the thermal decomposition of CaCO3 to produce CaO and CO2 [14]. However, the
decomposition temperature of modified CaCO3 was noticeably lower than that of the
original CaCO3, which could be attributed to the thermal decomposition of the coupling
agents. Similar results were also obtained in previous studies [2,8].

3.3.4. Particle Size Analysis

The particle size of CaCO3 affects both the filling effect and the cost in the applica-
tion [13,40]. Particle size analysis was employed to determine the particle size distribution
of CaCO3 particles and the effect of modification. The particle size distributions of unmodi-
fied CaCO3 and CaCO3 modified by the optimal conditions (UST: 10 min, HY311 dosages
of 0.7% and KH550 dosages of 0.7%) are presented in Figure 8. The particle size distribution
of unmodified CaCO3 was divided into two parts. The minimum and maximum particle
sizes of CaCO3 were 1.16 µm and 704 µm, respectively. The particle sizes were mainly
between 2–700 µm, with an average particle size of 14.56 µm. In Figure 8b, the minimum
and maximum particle sizes of the modified CaCO3 increased to 1.95 µm and 837.2 µm,
respectively. The particle sizes were mainly in the range of 3–800 µm with an average
particle size of 89.15 µm.
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Figure 8b showed that the particle size distribution of CaCO3 was only slightly af-
fected by the modification. The particle diameters were mainly in the same range as the
original CaCO3, despite the obviously improved OAV, AG, and SV of the modified CaCO3.
Meanwhile, the average particle size increased from 14.56 to 89.15 µm, which could be due
to the agglomeration of small particles and successful surface modification [41].

4. Conclusions

According to the OAV, AG, and SV of the modified CaCO3, the effect of HY311
modification on CaCO3 was better than that of KH550, and ultrasonic treatment played an
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auxiliary role. Based on response surface analysis, the optimal conditions for modification
were found to be HY311 dosage of 0.7%, KH550 dosage of 0.7%, and UST of 10 min. In the
tests under this condition, the actual OAV, AG, and SV of modified CaCO3 were 16.65 g
DOP/100 g, 99.27%, and 0.65 mL/g, respectively. The optimization of the dosages of two
coupling agents and UST improved the modification performance significantly. The SEM,
FTIR, XRD and thermal gravimetric analyses indicated successful coating of HY311 and
KH550 coupling agents on the surface of CaCO3.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16103788/s1. Table S1: Analysis of variance of regression
model equation for OAV; Table S2: Analysis of variance of regression model equation for AG; Table S3:
Analysis of variance of regression model equation for SV; Equations (S1)–(S3); Figure S1: TG curves
of CaCO3 before and after modification.
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