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Abstract: The current study uses three different pin eccentricities (e) and six different welding speeds
to investigate the impact of pin eccentricity on friction stir welding (FSW) of AA5754-H24. To simulate
and forecast the impact of (e) and welding speed on the mechanical properties of friction stir welded
joints for (FSWed) AA5754-H24, an artificial neural network (ANN) model was developed. The
input parameters for the model in this work are welding speed (WS) and tool pin eccentricity (e).
The outputs of the developed ANN model include the mechanical properties of FSW AA5754-H24
(ultimate tensile strength, elongation, hardness of the thermomechanically affected zone (TMAZ),
and hardness of the weld nugget zone (NG)). The ANN model yielded a satisfactory performance.
The model has been used to predict the mechanical properties of the FSW AA5754 aluminum alloy as
a function of TPE and WS with excellent reliability. Experimentally, the tensile strength is increased
by increasing both the (e) and the speed, which was already captured from the ANN predictions. The
R2 values are higher than 0.97 for all the predictions, reflecting the output quality.

Keywords: friction stir welding; artificial neural network; tool pin eccentricity; mechanical
properties; ANN

1. Introduction

As experimentally proven by Thomas et al. [1] in 1991, friction stir welding (FSW) is a
solid-state welding process that joins two plates using a non-consumable rotating tool to
heat and stir the material plates at the interface of the joint. FSW generates frictional heat
through mechanical stirring between the rotating tool and materials to produce strong joints.
This process can be utilized for various materials, including aluminum, titanium, steel, and
copper alloys, and is known for its ability to produce high-quality defect-free weldments [1].
Friction stir welding (FSW) provides high-integrity joints for welding metal alloys in a solid
state. FSW is used in various applications, including shipbuilding, aerospace, automotive,
and railways [2–7]. For low, medium, and high deformation resistance alloys, investigations
have been conducted on how the welding parameters and tool shape affect the quality
of the weld [8–11]. When compared to conventional arc welding methods, FSW offers a
number of benefits [12–14]. FSW does not experience issues such as thermal distortion, gas
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porosity brought on by hydrogen absorption during welding, softening of the heat-affected
zone, or difficulties in linking sensitivity to solidification cracking, which are particularly
frequent in fusion welding processes [15–17].

Artificial neural network (ANN) is a technology used in the field of Artificial In-
telligence that represents an interconnected network consisting of multi-layered nodes
(neurons), including input and output nodes and weighted connections that are meant to
simulate a biological neural network [18,19]. Through years of experiments and research,
ANN techniques have demonstrated robust learning capabilities and high prediction accu-
racy through its ability to identify complex mathematical relationships between input and
output variables [20]. Accordingly, ANN models have been widely used in the literature as
predictive techniques in a range of different fields, including healthcare [21,22], sustainable
development [18,19,23], agriculture [23,24], and material science [25–28].

More specifically, in the field of material science, various ANN models have been used
to study friction stir welding. For example, Jamalian et al. [29] used an ANN model to study
the joint parameters, mechanical properties, and microstructures of multi-pass FSW of
AA5086-H34 joints. Darzi Naghibi et al. [30] also employed an ANN based model to predict
the optimal parameters of FSW, including rotary speed, welding speed, and tool offset on
maximizing the tensile strength for AA 5052 and AISI 304 joints. Similarly, Buffa et al. [31]
developed an ANN model to predict the microhardness values and the microstructure of
the FSW of Ti–6Al–4V titanium alloy joints using different process parameters. Another
example is presented by D’Orazio et al. [32] where they developed a multi-variable ANN
prediction model to predict the vertical force that occurs during the FSW of an AZ31
magnesium alloy sheet. Several other examples exist in the literature of the use of ANN in
studying FSW [33–35].

In order to predict the impact of pin eccentricity on the mechanical properties of AA
5754-H24 FSW aluminium alloys and to identify the ideal conditions for input parameters to
produce FSW joints with good mechanical properties, computer-aided ANN modelling has
recently become widely used in the field of friction stir welding [4,31,36–38]. Many publica-
tions are found in the literature on FSW of aluminum alloys, focusing on the correlation
between the friction stir welding parameters and the mechanical properties [31,39]. More
recently, research on modern trends involves the effects of tool eccentricity [40,41], tool pin
eccentricity [42], and tool pin or shoulder eccentricity in friction stir welding [43–45].

Tool eccentricity or tool runout occurs due to the tool offset with respect to the spindle
centre. In general, two types of eccentricity can be defined, namely, pin profile eccentricity
and tool eccentricity derived from concentric oscillations [43]. Tool pin eccentricity and
welding speeds can significantly affect the quality of the friction stir welded joints. Tool pin
eccentricity can affect the string action and material flow during the FSW process. Addition-
ally, the material flow behavior around the rotating tool will help achieve high-quality and
defect-free joints. Furthermore, the welding speed of the FSW process significantly affects
the welded joints’ quality and properties. Due to the selected low welding speed, the heat
generated during FSW can accumulate, thereby producing defected joints. On the other
hand, when the welding speed is high, the material may not be sufficiently softened, and
the material in the stir zone may have insufficient stirring, leading to the production of de-
fected joints. Thus, detecting a suitable welding speed is crucial for conducting defect-free
and high-quality weldments using the FSW process [43].

However, there seems to be a lack of research in the literature on the correlation
between the tool pin eccentricity and the mechanical properties of FSW of aluminum alloys.
Although a few numerical models for the FSW of aluminum alloys can be found in the
literature [31,43,46,47], none of them deal with tool pin eccentricity in the process input
parameters. This study aims to determine the correlation between welding speed (WS), tool
pin eccentricity, and mechanical characteristics of the aluminum alloy FSW AA5754-H24.
Neural networks were designed and properly trained based on the experimental data
obtained at a tool rotational speed of 600 rpm, different welding speeds, and different
values of tool pin eccentricity.
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The remainder of this article is structured as follows. Section 2 discusses the data
collection methodology for the experimental data used to train the ANN. Section 3 outlines
the development and training of the ANN model, as well as the produced results. Section 4
presents a discussion of the produced results from the ANN model. Finally, an overall
conclusion of this article is presented in Section 5.

2. Collecting the Experimental Data

At Suez University, the friction stir welding of AA5754-H24 aluminum alloy butt joint
was carried out using a locally produced FSW machine [48–51]. The welding samples are
produced on two plates that are 5 mm thick, 100 mm broad, and 120 mm long. Table 1
provides the chemical breakdown of the AA5754-H24 aluminium alloys. Table 2 is a list of
the measured mechanical characteristics of the employed Al alloys.

Table 1. Chemical composition of aluminium alloy AA5754.

wt.%
Fe Si Mn Cu Mg Zn Ti Cr Al

0.40 ± 0.03 0.40 ± 0.02 0.50 ± 0.04 0.10 ± 0.01 2.6–3.2 ± 0.03 0.20 ± 0.01 0.15 ± 0.01 0.30 ± 0.02 rest
-

Table 2. Measured mechanical characteristics of AA5754.

Proof Stress 0.2% (MPa) Tensile Strength (MPa) Elongation (%)

205 ± 5 260.57 ± 4.60 12.93 ± 1.80

The welding tool is made of an HRC62 heat-treated cold-worked tool steel rod W302
(0.1% Si, 0.39% C, 5.2% Cr, 0.40% Mn, 1.4% Mo, 0.95% V, and 90.6 wt%). Three tool designs
are prepared, as shown in Figure 1. The first is the tool without eccentricity (T0), in which
the pin and shoulder axes are aligned. The second tool contains a pin eccentricity of 0.2 mm
(T2), i.e., the pin axis is shifted by 0.2 mm from the tool axis. The third tool contains a pin
eccentricity of 0.8 mm (T8), i.e., the axis of the designed pin has been shifted 0.8 mm from
the axis of the tool. In every instance, a pin that is 4.6 mm long and 6 mm in diameter with
19 mm shoulder diameter and a 2◦ concavity is employed.
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The welding speeds used in FSW are 50, 100, 150, 200, 300, and 500 mm/min. In each
case, a rotation speed of 600 rpm is used along with a 0.2 mm tool plunge depth and a
3◦ tilt angle.

By evaluating the joint tensile characteristics and calculating the Vickers hardness in
the heat-affected zone (HAZ) and weld nugget zone (WNZ), the FSW joints are evaluated.
A “Instron” tensile testing machine with a 300 KN capability is used for tensile testing.
Flat tensile specimens with the dimensions specified in Figure 2 are cut perpendicular to
the welding direction. The moving head of the machine moves at a velocity of 0.1 mm/s
in accordance with ASTM: E8/E8M-16a standard. With a 1 kg load close to the section
centerline, the Vickers hardness of the weld nuggets and the thermomechanically affected
zone (TMAZ) of the cross sections perpendicular to the welding line direction are measured.
To evaluate the mechanical performance of the welding, measurements were made of the
ultimate tensile strength, elongation, and hardness of FSWed nugget zone (WNZ) and
thermomechanically affected zone (TMAZ). The measured data are shown in Table 3.
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Table 3. Measured data used to train the ANN.

No. e (mm) Welding Speed (mm/min) Tensile Strength (Mpa) Elongation (%)
Average Hardness (HV)

HAZ WNZ

1 0 50 231.00 9.66 59.9 ± 0.3 59.5 ± 0.6
2 0 100 235.38 11.36 63.0 ± 0.1 68.1 ± 0.9
3 0 150 234.06 11.60 63.4 ± 0.1 68.1 ± 0.3
4 0 200 237.43 11.58 60.2 ± 0.2 66.9 ± 0.7
5 0 300 238.58 10.21 61.6 ± 0.4 67.3 ± 0.3
6 0 500 244.95 7.92 66.9 ± 0.5 64.05 ± 0.5

7 0.2 50 238.80 11.32 60.6 ± 0.7 62.0 ± 0.6
8 0.2 100 240.31 11.35 59.9 ± 0.3 62.7 ± 0.4
9 0.2 150 240.02 11.39 63.4 ± 0.4 64.9 ± 0.8

10 0.2 200 243.22 12.39 60.9 ± 0.8 65.3 ± 0.3
11 0.2 300 243.69 11.25 65.7 ± 0.4 64.82 ± 0.7
12 0.2 500 249.87 9.21 67.5 ± 0.6 73.1 ± 0.6

13 0.8 50 242.26 11.74 68.9 ± 0.9 61.1 ± 0.9
14 0.8 100 239.76 10.99 60.9 ± 0.6 65.7 ± 0.4
15 0.8 150 238.97 10.54 64.2 ± 0.8 67.2 ± 0.7
16 0.8 200 238.87 10.50 66.9 ± 0.5 68.1 ± 0.8
17 0.8 300 238.74 11.10 58.9 ± 0.3 62.3 ± 0.3
18 0.8 500 237.15 6.14 64.2 ± 0.4 71.9 ± 0.5

For FSW joints made with T0 and T2 tools, it has been found that the tensile strength
increases as the welding speed rises. The highest possible tensile strength is reached at
500 mm/min welding speed, and it lowers for the FSW joints made with tool T8 (highest
speed). This may be caused by the rate at which heat is applied, which regulates the
amount of plastic deformation that occurs. Moreover, a tool pin that is eccentric by more
than 0.3 mm produces more heat input [42,52]. This causes a stress concentration, which
greatly worsens the mechanical characteristics of the weld joint. Additionally, lowering
the rotational speed and increasing the welding speed (by increasing the revolutionary
pitch) reduces the heat input. This increases the tensile strength as the welding speed
is increased. However, decreasing the welding speed causes more heat input and a low
tensile strength [36].
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The FSWed nugget zone and the TMAZ are used to measure the hardness values of
the FSW welded joints. The junction with the maximum hardness is one that has been
welded using a T2 tool with an eccentricity of (e 0.2) at a welding speed of 500 mm/min.
The TMAZ is found to have less hardness than the weld nugget zone.

Figure 3 shows the top surface view of the AA5754-H24 FSW joints at rotating speeds
of 600 rpm and various welding speeds of 50, 100, 150, 200, 300, and 500 mm/min using
the FSW tools T0, T2, and T8 previously discussed. All joints appear nearly identical on
the top surface, which is mostly affected by the shoulder, with the exception that the top
surfaces of joints fused at low welding speeds are smoother and have less flash on both the
advancing side (AS) and the retreating side (RS). On the other hand, it can be observed that
the welding speed has a noticeable impact on the way the surface of welded joints looks. At
these high welding speeds, beginning at 300 mm/min, the semicircular banding features
visibly grow broader. The measured semicircular banding features spacing agrees with
the calculated ones, claims Krishnan [53]. For the welding speeds of 50, 100, 150, 200, 300,
and 500 mm/min, the measured semicircular spacing (revolutionary pitch) in this study is
0.083, 0.167, 0.25, 0.333, 0.5, and 0.83 mm, respectively. This spacing appears to be almost
identical to the spacing in Figure 3.
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3. Methodology of the ANN Model

Most manufacturing processes are complex in nature, highly non-linear, and have
a large number of input parameters. Currently, no mathematical models can describe
the behavior of these processes. Due to the cost-effective and relatively easily under-
standable nature of ANN models and their ability to be trained using data collected from
these complex manufacturing processes, they have been extensively used as predictive
techniques [54,55].

The input layer, the hidden layer, and the output layer are the three layers that
constitute an ANN. All of the input parameters are contained in the input layer. The hidden
layer processes data from the input layer, after which the final (output) layer computes the
next output vector. In Figure 4, the three layers of the ANN model utilized in this study are
shown schematically.
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An ANN consists of simple synchronous processing elements that are inspired by
the biological nervous system. The basic unit in the ANN is the neuron. Neurons are
connected by links known as synapses, and associated with each synapse is a weight factor.
In this work, two training algorithms (gradient descent with momentum algorithm, and
Levenberg–Marquardt Algorithm) were used with a single hidden layer (eight neurons).
The inputs and outputs were normalized in the range of 0:1. Thus, the network architecture
consisted of two input neurons, eight hidden neurons with a nonlinear activation function,
a logistic sigmoid (logsig), and four output neurons with a linear activation function. Table 4
shows the trained network weights and biases.

Table 4. Weights and biases for the ANN after the training stage.

Layer Neurons per Layer
Weights Biases

i Wi1 Wi2 bi

1 8 1 2.7009 4.5649 −1.7555
2 −2.0315 −3.4643 1.3986
3 −3.1972 18.3450 22.1916
4 3.9171 −3.6640 1.4856
5 −15.2546 −39.2993 −7.1898
6 3.8393 −3.3341 1.5511
7 7.4015 1.4190 6.2523
8 0.6582 −1.6493 1.0211
j Wj1 Wj2 Wj3 Wj4 Wj5 Wj6 Wj7 Wj8 bj

2 4 1 0.6098 0.6742 −0.5132 4.8089 0.0594 −5.3504 0.7177 −0.0521 0.2423
2 3.0641 3.2349 −0.1842 5.0439 0.0677 −5.7714 0.5053 1.1842 −0.2822
3 −2.0024 −2.1078 −4.1730 9.0617 −0.4064 −9.6011 0.4018 0.1366 3.8853
4 −17.6851 −19.4517 0.8332 15.4643 0.4267 −16.9510 0.8747 0.9753 −0.3709

The ANN is trained and tested using MATLAB. After training the ANN successfully,
it is tested using measured data that are different from what was used in the training
processes. The number of neurons is increased through the training process from five to
nine to define the output accurately.

To train and test an ANN neural network, we need ANN training (patterns), input
data, and corresponding target values (measured data). A total of 18 patterns have been
obtained in this work from the experiments. The welding speed and tool pin eccentricity
are inputs to the network, while the outputs include tensile strength, elongation, TMAZ
hardness, and weld nugget zone hardness. As a result, the architecture of the ANN changes
to 2-8-4, where 2 represents the input values, 8 represents the number of hidden layer
neurons, and 4 represents the outputs. Four measured results have been utilized as test
data, and fourteen out of a total of eighteen measured results have been used as data sets
to train the network (75% training data against 25% test data). The measured results are
used to develop and test the ANN model.
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4. Results and Discussion

Figure 5 shows the variation in the mechanical properties of AA5754-H24 FSW joints
with tool pin eccentricity and welding speed, and the predicted new data obtained from
the network after the training process. As can be seen from the figure, the predicted values
match very well with the measured data.
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The results of the training and testing of the ANN model for the measured and
predicted data are given in Figure 6a,b. The results show that both the measured and
predicted data sets are highly similar, with variance values (R) of 0.9986 and 0.9889 for
training and testing, respectively. Figure 6c–f compare the measured and predicted results
of the test data. From these figures, it can be observed that the measured and predicted
values are also highly similar. The ability of a neural network to reliably anticipate the
results of the test data that have not yet been seen is, nevertheless, its main criterion for
quality.

The arithmetical mean of the number of inputs and outputs is typically used to
determine how many neurons should be employed in the hidden layer. As a result, it is
advised to employ a scaled conjugate gradient (SCG) with eight hidden layer neurons in
the current application. Five to nine hidden layers are used in this application’s testing.
Based on these outcomes, the model performed well. The network with nine hidden layer
neurons has produced the same accuracy of results for the eight hidden layer neurons.
Accordingly, only eight hidden layer neurons have been used in the present application.
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The prediction accuracy for the results produced by the network is based on statistical
methods. Errors occurring during the training and testing processes are called the root-
mean-squared (RMS), an absolute fraction of variance (R2), and mean error percentage
values. These are calculated as follows [14]:

RMS =
(
(1/p)∑|tj− oj|2

)1/2
, R2 = 1−
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∑
j
(tj− oj)2
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tj
× 100
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The results are shown in Table 5.

Table 5. Statistical values of predication data.

RMS of Train R2 of Train Mean Error of Train RMS of Test R2 of Test Mean Error of Test

Tensile strength 0.3993 0.9993 0.0608 1.1346 0.9946 0.2512
Elongation 0.0904 0.9992 0.0536 0.3515 0.9894 0.2865
Hardness of TMAZ 0.5167 0.9958 0.3159 1.2759 0.9735 3.3267
Hardness of WNZ 0.0755 0.9999 0.0036 0.3743 0.9979 0.0101

As can be seen in Table 5, the absolute fraction of variance (R2) values for the outputs
of the tensile strength, elongation, hardness of TMAZ and weld metal for the training data
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are all greater than 0.99 and for the test data are all greater than 0.98, except for the hardness
of the TMAZ, which is 0.97, respectively. Based on these results, it can be concluded that
the proposed model is highly accurate.

5. Conclusions

In this study, AA5754-H24 has been friction-welded using a wide range of welding
speeds at three different tool pin eccentricities, and an ANN model has been developed
to predict mechanical properties. The experimental results have been used to train the
ANN model used afterward for prediction. Based on the obtained results, the following
conclusions can be outlined:

• The ANN model has been developed based on the FSW experimental work data of
AA5754-H24, in which FS was welded using 0, 0.2, and 0.8 mm TPE and welding
speeds of 50, 100, 150, 200, 300, and 500 mm/min.

• The ANN model was successfully used to predict the effect of tool pin eccentricity on
the mechanical properties of FSW AA 5547-H24, and the networks can be used as an
alternative.

• The RMS error values for the ultimate tensile strength, elongation, hardness of the
TMAZ, and weld metal for the test data were 1.1346, 0.3515, 1.2759, and 0.3743,
respectively; the R2 values are all greater than 0.98, except for the hardness of the
TMAZ, which is 0.97.

• It is found that the correlations between the measured and predicted values of the
ultimate tensile strength, elongation, and hardness of the weld metal are better than
those of the hardness of the TMAZ.
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Nomenclature

bi Biases of layer one, i = 1, 2, 3, . . . , 8
bj Biases of layer two, j = 1, 2, 3, 4
oj Output (prediction data), where j = 1, 2, 3, . . . , 14 for training and j = 1, 2, 3, 4 for testing.
p Samples (p = 14 for training, p = 4 for testing).
R2 Absolute fraction of variance
RMS Root-mean squared
tj Target (measured data), where j = 1, 2, 3, . . . , 14 for training and j = 1, 2, 3, 4 for testing.
TMAZ Thermo mechanical affected zone
Wi Weights of layer one, i = 1, 2, 3, . . . , 8
Wj Weights of layer two, j = 1, 2, 3, 4
WNZ Weld nugget zone
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