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Abstract: The Invar alloy is widely used for aircraft wing mould manufacturing. In this work,
keyhole-tungsten inert gas (K-TIG) butt welding was used to join 10 mm thick Invar 36 alloy plates.
The effect of heat input on the microstructure, morphology and mechanical properties was studied
by using scanning electron microscopy, high energy synchrotron X-ray diffraction, microhardness
mapping, tensile and impact testing. It was shown that regardless of the selected heat input, the
material was solely composed of austenite, although the grain size changed significantly. The
change in heat input also led to texture changes in the fusion zone, as qualitatively determined
with synchrotron radiation. With increases in heat input, the impact properties of the welded joints
decreased. The coefficient of thermal expansion of the joints was measured, which demonstrated that
the current process is suitable for aerospace applications.

Keywords: K-TIG welding; Invar 36 alloy; heat input; mechanical properties; synchrotron X-ray
diffraction

1. Introduction

Invar alloys have been widely used in large moulds in the aerospace industry [1] and
liquefied natural gas tankers due to their extremely low coefficient of thermal expansion
(CTE). The low CTE of these alloys occurs due to the Invar effect, i.e., when the atomic
concentration of Ni in Fe–Ni alloy is about 36%, the alloy shows the lowest CTE [2]. Invar
alloys are austenitic alloys, and their low coefficient of thermal expansion is easily affected
by their composition. The austenite structure with a face-centered lattice structure is also
a solid solution formed by nickel dissolved in γ-Fe. Therefore, when welding is used,
cracking, porosity and CTE mismatch with the base metal (BM) are prone to occur.

Metal inert gas (MIG) and tungsten inert gas (TIG) are traditional welding methods for
joining of Invar 36 alloys [3–5]. More recently, some advanced welding techniques have also
been widely used for joining of Invar 36 alloys [6], and these include laser welding, laser–
MIG hybrid welding and friction stir welding (FSW). However, each process has its own
advantages and disadvantages. For example, Zhao et al. [7] obtained Invar 36 alloy welds
with excellent properties and CTE using laser welding, but the method was not suitable for
middle-thickness Invar 36 alloy plates. Li et al. [8] used laser–MIG hybrid welding to join
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Invar 36 alloy plates, and the joints possessed excellent mechanical performance, but the
CTE was significantly higher than that of the BM. Jasthi et al. [9] performed FSW with an
Invar 36 alloy, and this process eliminated porosity, cracking, and other severe problems
which often occur during fusion welding. However, one the major drawbacks of FSW is its
low process flexibility. Compared with TIG welding and MIG welding, K-TIG welding has
higher penetration, good weld forming quality and high efficiency.

Keyhole TIG (K-TIG) welding, an upgraded version of TIG, is a new deep penetration
welding technology that encompasses a significant arc force. Furthermore, it is capable
of realizing single-pass welding of middle-thick plates without the need for filler metal
and grooves [10]. In addition, K-TIG allows a higher welding speed and has wider pro-
cess parameters than plasma arc welding, which is of extreme importance for industrial
applications [11]. Due to the aforementioned benefits, this welding technology has been
used in the welding of middle thick plates, such as zirconium [12], low carbon steel [13],
titanium [14] and stainless steel [15], as well as for dissimilar joints [16]. In combination
with auxiliary methods, K-TIG can also be used for high thermal conductivity materials [17],
armour steel [18] and underwater welding of duplex stainless steel [19]. Furthermore, Liu
et al. [20,21] found that the size, shape, and position of the keyhole outlet is highly dynamic.
Because of the large penetration of K-TIG welding, the grain size of the weld is coarser.
Large penetration is both an advantage and a disadvantage for K-TIG welding. Due to the
large heat input in K-TIG welding, the performance of the weld is negatively affected to
some extent.

In our previous study, K-TIG welding was used for welding of Invar 36 alloy [22].
However, the change in morphology, microstructure and mechanical properties of the weld
joints obtained with different welding parameters was not comprehensively discussed. The
relations among heat input and microstructure evolution are far from being completely es-
tablished. Thus, in the present study, K-TIG welding with different heat inputs was applied
to butt joining of 10 mm thick Invar 36 alloy plates. The weld appearance and microstruc-
ture characteristics were analysed. The weld properties, including microhardness, tensile
strength, and impact properties with different heat inputs, were systematically investigated.

2. Materials and Experiment Methods
2.1. Materials

Invar 36 alloy with a thickness of 10 mm was used. The composition and properties
of the Invar 36 alloy are presented in Table 1. The Invar 36 alloy plates were cut to
100 mm × 150 mm × 10 mm specimens before welding.

Table 1. Chemical composition of Invar 36 alloy (wt.%).

C Si Mn P S Ni Fe

0.05 0.2 0.2–0.6 0.02 0.02 35–37 Balance

2.2. Welding Process

Prior to welding, the plates were cleaned by mechanical grinding and acetone. Autoge-
nous single-pass welding was performed. The equipment (shown in Figure 1) for the K-TIG
welding was provided by Shanghai Duomu Industrial Co., Ltd. The welding parameters
are detailed in Table 2. The heat input was calculated using the following equation:

q = ηUI/v (1)

where q is the welding heat input (J/mm), U is the welding voltage (V), I is the welding
current (A), v is the welding speed (mm/s), and η is the process efficiency, which was set
to 0.9.
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Figure 1. K-TIG welding equipment: (a) welding power system and (b) welding torch.

Table 2. Welding parameters for K-TIG welding of Invar 36 alloy.

Sample
Number

Welding
Current (A)

Welding
Speed
(mm/min)

Welding
Voltage (V)

Heat Input
(J/mm)

Joint
Gap

Shielding
Gas Flow
Rate

1 420 2.35 18 2895.3 0 24 L/min
2 450 2.35 18 3102.1 0 24 L/min
3 480 2.35 18 3308.9 0 24 L/min

2.3. Experiment Methods

Grinding of the welded samples for metallography was performed with SiC papers
with grades from 180# to 1200#. Then, the samples were polished with 0.5 µm diamond
suspension. Finally, the specimens were chemically etched in 40 mL of aqua regia for 20 s.
The microstructure was characterized using an 4XCJZ optical microscope and a S-3400N
scanning electron microscope (SEM). The grain size mentioned in this paper was measured
by imageJ software. The average grain size was measured multiple times within the same
region of the weld to ensure an adequate statistical sample. High-energy synchrotron X-ray
radiation was used to scan the sample from one side of the base material to the other side,
passing by both the heat affected zones (HAZ) and fusion zones (FZ). Experiments were
performed at the P07 HEMS beamline of DESY, using a beam energy of 87 keV and a 2D
Perkin Elmer fast detector. Data processing was performed using an in-house developed
python routine available at CENIMAT/I3N. Tensile testing was performed on an automatic
drawing machine (WE-60) using a displacement speed of 1 mm/min at room temperature.
The specimen’s dimensions were defined according to the ASTM E8-13a standard and are
detailed in Figure 2a [23]. According to ASTM E23-18 [24], the Charpy impact test was
performed with a pre-added V-notch placed in the HAZ and the FZ as shown in Figure 2b,c.
X-ray radiographs were used to detect defects such as porosity and cracks in the joints.
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Figure 2. Dimensions of specimens for mechanical testing: (a) tensile specimens, (b) Charpy V-notch
impact tests for the fusion zone, and (c) Charpy V-notch impact test for the heat affected zone.

3. Results and Discussion
3.1. Macrostructure

Figure 3a–c present the cross-sections of the welds obtained with different heat in-
puts (2895.3, 3102.1 and 3308.9 J/mm). All the welds had full penetration, but the weld
appearance changed significantly. The width of weld at the half-thickness of the joint and
the width of the weld root were used to represent the joint size, where both increased with
the increase in the heat input. The large heat input increased the weld pool size, which
increased both the root and weld widths.
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Figure 3. Cross-section of welds: (a) heat input of 2895.3 J/mm, (b) heat input of 3102.1 J/mm,
and (c) heat input of 3308.9 J/mm. Close-up of the microstructure of the welds: (d) heat input of
2895.3 J/mm, (e) heat input of 3102.1 J/mm, and (f) heat input of 3308.9 J/mm.

With the increase in heat input, the reinforcement of the weld decreased gradually,
while the depth of the depression (undercut) observed at the face of the welded joint
increased gradually, as shown in Figure 3a–c. Figure 4 shows a schematic diagram of the
weld pool under different heat inputs. When the heat input was low, melting of the material
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at the bottom of the melt pool was not complete, which led to a large bending of the front
wall of the pool. A large amount of plasma was discharged upward to squeeze the molten
pool, which contributed to the formation of the observed reinforcement. The increase in
this reinforcement may affect the tensile properties and fracture of the joint. The heat input
changes the trajectory of the plasma jet in the orifice channel, resulting in the formation of
a hump in the center of the weld. This intensifies the formation of edge biting, which also
plays an important role in the formation of edge biting defects. Both bite defects and the
root fusion boundary can be used as stress concentration points, which have a significant
influence on the joint’s fracture mode and tensile properties [25].
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Figure 4. Schematic representation of the weld longitudinal cross-section and arc shape considering
different heat inputs: (a) low heat input, and (b) high heat input.

3.2. Microstructure

Figure 3d–f detail the microstructure of the FZ near the HAZ obtained from magnifica-
tions of Figure 3a–c. The BM, HAZ and FZ contained fine equiaxed austenite grains, coarse
equiaxed austenite grains and columnar austenite grains, respectively.

With the increase in heat input, the grain size and area of the HAZ increased signif-
icantly, as shown in Figure 5a. The large heat input led to overheating, explaining the
increase in the HAZ area. The higher the temperature and residence time, the easier it is for
atomic diffusion to occur, which facilitates grain growth. Typically, the HAZ is considered
as a weak zone of the welded joint and may have significant influence on the resulting
mechanical and functional properties.
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The grain structure in the FZ was divided into upper and lower parts according to
different growth directions, as detailed in Figure 3. With the increase in heat input, the
grain size widths of the upper and lower parts increased, as shown in Figure 5b. Large heat
input reduced the non-uniform nucleation rate and prolonged the residence time of the
weld pool at high temperatures, which provided sufficient time for the growth of grains in
the FZ. As is shown later, the grain size is related to the impact properties, tensile properties
and hardness of the joint.

The composition results obtained in the FZ (see Spectrum 1–3 in Figure 3d–f) are
detailed in Figure 6. The contents of Fe and Ni changed only slightly, indicating that the
heat input had little influence on material composition.

Materials 2023, 16, x FOR PEER REVIEW 6 of 16 
 

 

  

Figure 5. Influence of heat input on grain size: (a) area and grain size of HAZ, and (b) width of 
columnar grain in the FZ. 

  

 

Figure 6. Composition of the FZ under different heat inputs: (a) spectrum 1 (2895.3 J/mm), (b) spec-
trum 2 (3102.1 J/mm), and (c) Spectrum3 (3308.9 J/mm). 

3.3. Spatially Resolved Synchrotron X-ray Diffraction 
Figure 7 details the spatially resolved synchrotron X-ray diffraction analysis scanning 

the joint from the BM to the FZ. A single-phase FCC crystal structure is preserved all 
across the welded joint, indicating that the selected weld heat inputs were not conducive 
to changes in the existing phase structure in both the HAZ and FZ [26]. However, the 

Figure 6. Composition of the FZ under different heat inputs: (a) spectrum 1 (2895.3 J/mm), (b) spec-
trum 2 (3102.1 J/mm), and (c) Spectrum3 (3308.9 J/mm).

3.3. Spatially Resolved Synchrotron X-ray Diffraction

Figure 7 details the spatially resolved synchrotron X-ray diffraction analysis scanning
the joint from the BM to the FZ. A single-phase FCC crystal structure is preserved all
across the welded joint, indicating that the selected weld heat inputs were not conducive
to changes in the existing phase structure in both the HAZ and FZ [26]. However, the
diffracted intensity varies between the BM, HAZ and FZ, and this is related to changes in
both the grain size and texture of the welded joints.
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Figure 7. Superimposed synchrotron X-ray diffraction patterns across the welded joint (covering the
BM, HAZ and FZ) of a K-TIG weld.

3.4. Microhardness

Microhardness curves across the welds with different heat inputs were investigated as
shown in Figure 8. The position of the hardness test point is marked by the weld in the
upper left corner of Figure 8. The hardness of the welded joints with heat inputs of 2895.3
and 3102.1 J/mm were similar, while the hardness of the welded joint with largest heat
input of 3308.9 J/mm decreased slightly. This was mainly correlated with the change in
grain size in both the HAZ and FZ. The welded joint with a heat input of 3308.9 J/mm
had the largest grain sizes in these regions (refer to Figure 5), leading to a reduction in
microhardness. In addition, the dimensions of the HAZ and FZ were the largest, as also
evidenced by these microhardness measurements.
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3.5. Tensile Testing

Figure 9 depicts the tensile properties of the welded joints under different heat inputs.
The tensile strength and joint elongation of the welded joint with different heat inputs
showed only minor changes. The tensile strength with different heat inputs was 438, 427
and 431 MPa, respectively. The joint elongation with different heat inputs was 29.2, 31
and 30.8%, respectively. All the welded joints maintained excellent mechanical properties
with only a slight reduction compared with the BM (441 MPa) due to changes in grain size
and joint shape. Although there were changes in the microstructure and joint shape of the
welded joints, as detailed in Figure 3, these were not sufficient to significantly modify the
macroscopic tensile response of the welded joints obtained under distinct heat inputs.
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Figure 10 shows the fracture locations of the K-TIG welds with different heat inputs.
Similar fracture paths were observed in all welded joints. The fracture of the welds first
initiated at the root of the weld due to stress concentration, and then the crack propagated
stably towards the upper part of the FZ. The elongation, Luders bands and neck contraction
of the FZ were clearly observed, as shown in Figure 10d. Since the material has an FCC
structure, the deformation of each grain could not be coordinated at grain boundaries
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because of the hindrance of grain boundaries, resulting in uneven deformation of each
grain. The grain coarsening of Invar 36 welds was significant, so a macroscopic Luders
zone appeared [27]. A cross-sectional view of the fractured specimen is shown in Figure 10e.
The lower part of the fracture first cracked under tensile stress, forming a fibrous zone.
Then the upper part of the fracture formed under the action of a shear stress, forming a
shear lip zone. The fiber region is generally the fracture source region. The shear lip is
always found at the edge of the fracture and has an angle of about 45◦ with the surface of
the component. It is formed by shear tearing under the condition of plane stress, and the
surface of the shear lip is relatively smooth.
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Figure 10. Fractured specimens of the K-TIG welds: (a) Sample 1 (2895.3 J/mm), (b) Sample 2
(3102.1 J/mm), (c) Sample 3 (3308.9 J/mm), (d) side view of K-TIG, weld and (e) schematic illustration
of fracture location.

3.6. Charpy Impact Testing

The impact properties of K-TIG welds with different heat inputs are detailed in Table 3.
The energy absorbed was 179.7, 161.8 and 151.8 J for the 2895.3, 3102.1 and 3308.9 J/mm
joints, respectively. As for the HAZ, the energy absorbed until fracture was 172.8, 157.2
and 150.5 J, for the 2895.3, 3102.1 and 3308.9 J/mm joints, respectively. Compared with the
BM (202.7 J), the impact properties of welded joints were slightly reduced. Moreover, with
increased heat input, the impact properties of both the HAZ and FZ decreased. The grain
coarsening of both the HAZ and FZ is the primary reason for the decrease in the impact
properties following the Hall–Petch effect. As the heat input increased, the grain size of the
HAZ and FZ increased (refer to Figure 5); thus, the impact properties of the joint decreased
accordingly. The impact properties of the FZ were generally higher than those of the HAZ.
The HAZ was the connection between the liquid weld pool and the solid BM, which led
uneven distribution of microstructure and stress on both sides. Under the impact load, the
uneven stress distribution of the notch significantly reduced the impact energy of the HAZ.

Table 3 shows the macroscopic morphology of the impact fracture. A significant
amount of deformation occurred in all samples, indicating that the welded joints had good
plasticity. Figures 11 and 12 detail the SEM images of the impact fracture surfaces. A large
amount of plastic deformation, dimple areas and shear lip areas appeared in the fracture
surface, which was characteristic of ductile fracture. The fracture surfaces for the different
heat inputs were similar and were divided into shear lip zone, initial fracture zone, dimple
fracture zone and unfractured zone. The dimple fracture zone was mainly composed of
secondary fiber zone, which was formed by crack propagation into the compressive stress
zone [27].
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Table 3. Impact properties of welds obtained with different heat inputs.

Sample Number Heat Input (J/mm)
Impact Property, Ak (J)

FZ HAZ

1 2895.3
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(3102.1 J/mm) and (c) Sample 3 (3308.9 J/mm).

Prominent lacerated dimples on the fracture surface were evident, as shown in the
enlarged view of Figures 11 and 12. The SEM morphology with different heat inputs
was similar but the size of the dimples in the FZ was smaller than that of the HAZ. The
size of dimples was not only related to the impact toughness of the material, but also
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to its strain hardening index [28]. The coarse austenite grains had a higher deformation
hardening index, so it is difficult to shrink the neck, resulting in smaller and shallower
fracture dimples [28,29]. The grain size of the FZ was significantly larger than that of the
HAZ, indicating a smaller dimple size in the FZ.

3.7. Comparison of Mechanical Properties

Table 4 describes the Invar 36 alloy K-TIG welding properties compared with other
welding processes. As can be seen from the table, the material elongation after K-TIG
welding is higher, the hardness is lower, and the ultimate tensile strength compared with
the base material is also higher than the other welding techniques listed. This shows that
K-TIG is suitable for successful welding of Invar 36 alloys.

Table 4. Comparison on the properties of Invar36 welded joints by K-TIG and other welding processes.

Welding Process Thickness
of BM (mm)

Weld Speed
(mm/min)

Elongation
(%)

Microhardness
(HV)

UTS of BM
(Ta) (MPa)

UTS of Weld
(Tb) (MPa)

Tb/Ta
(%)

K-TIG (present work) 10 235 29.2 115 441.0 438.0 99.3

FSW [30] 3 120 22 144 516.0 472.0 91.5

Laser welding [31] 3 1200 12 130 517.6 440.0 85.1

Multi-layer multi-pass
MIG welding [32] 19.05 27 38 138 432 363 84.0

3.8. Coefficient of Thermal Expansion Test

The CTE mismatch is one of the main problems associated with welding of Invar
36 alloy. Therefore, it was necessary to determine the CTE of both the BM and the weld.
The weld joints obtained with a heat input of 3102.1 J/mm were used for the CTE testing.
The measured expansion values of both the BM and weld are shown in Figure 13a, and the
CTE values are shown in Figure 13b. These were calculated by the following formula:

[CTE]Ti =

[
1

∆T
∆L
L0

]
Ti
=

1
∆T

[(
∆L
L0

)
m
+ A

]
Ti

(2)

where the unit of CTE is (µm/m).

L0 is the initial length of the sample at room temperature,
∆L is the difference of the expansion value of the sample at a certain temperature,
∆T is the temperature difference,
dL/dT is the instantaneous expansion value at a certain temperature point,
ATi is the calibration constant used to eliminate the expansion deviation between the sample
and the test fixture used in the measurement process.

Both the dimension change and CTE curves of the BM and weld were almost super-
imposed on each other. In general, the expansion value increased with the increase in
temperature, as shown in Figure 13a. The CTE gradually increased with the increase in
temperature and then decreased when the temperature was above 456 ◦C (Figure 13b). The
curve associated with the dimension change was divided into three parts: low thermal
expansion zone, transition zone, and high thermal expansion zone [29]. In the low expan-
sion zone, the expansion value of the BM and weld increased slowly, and the difference in
CTE was small. In the transition zone, the expansion value and CTE of the weld and BM
increased rapidly. In the high thermal expansion zone, the expansion value maintained a
high growth rate and the CTE remained at a high value. Therefore, it is inferred that the
Curie temperature points of the weld and BM were basically unchanged, which further
confirms that the K-TIG welding process has a very limited impact on the low expansion
characteristic of Invar alloys [8]. The nickel content is one of the main factors affecting the
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CTE of Invar alloys [2]. The main reason that the CTE of the weld did not mismatch that of
the BM, was related to the preservation of the Ni content in the FZ [22].
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3.9. X-ray Non-Destructive Test

The quality of the K-TIG welded specimens was further assessed using non-destructive
testing. The weld joints obtained with a heat input of 3102.1 J/mm were used for testing, as
shown in Figure 14. Radiography was used to identify and analyse potential defects within
the welded joint. It was observed that no defects such as pores and cracks existed. This
suggests that K-TIG welding of Invar 36 alloy effectively solved the problems of porosity
and cracking typically found in laser–MIG hybrid welding and multi-layer multi-pass
welding of Invar 36 alloy [33,34].
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Figure 14. Radiography testing of the welded joint (heat input of 3102.1 J/mm).

The large heat input of K-TIG welding and slow cooling rate of the molten pool were
conducive to the floating of bubbles and avoiding porosity defects. The presence of a
protective atmosphere and the non-existence of a filler metal reduced the impurities in the
molten pool, which effectively prevented the formation of cracks.

4. Conclusions

Invar 36 alloy plates that were 10 mm thick were successfully welded using K-TIG
welding with a single pass. The influence of heat input on the weld appearance, mi-
crostructure and properties was thoroughly investigated. The main conclusions were
drawn as follows:

1. With the increase in the heat input, the width of the weld root and reinforcement
increased, while the depression increased.
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2. The grain size in both the HAZ and FZ increased with the increase in heat input.
There was no change in the crystal structure across the joint, although texture changes
occurred due to the weld thermal cycle, as observed by synchrotron X-ray diffraction.

3. The tensile strength of the welded joints ranged between 428 and 438 MPa, while the
elongation remained between 29.2 and 31.0%, indicating that the heat input had a low
impact on the macroscopic tensile response of the Invar 36 joints.

4. With the increase in heat input, the impact properties of both the HAZ and FZ in the
welds decreased.

5. The CTE of the welded joint was similar to that of the BM. No potential welding
defects were observed in the joints for all selected heat inputs.
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