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Abstract: Exposure of concrete to acidic environments can cause the degradation of concrete ele‑
ments and seriously affect the durability of concrete. As solid wastes are produced during industrial
activity, ITP (iron tailing powder), FA (fly ash), and LS (lithium slag) can be used as admixtures to
produce concrete and improve its workability. This paper focuses on the preparation of concrete
using a ternary mineral admixture system consisting of ITP, FA, and LS to investigate the acid ero‑
sion resistance of concrete in acetic acid solution at different cement replacement rates and different
water–binder ratios. The tests were performed by compressive strength analysis, mass analysis, ap‑
parent deterioration analysis, and microstructure analysis by mercury intrusion porosimetry and
scanning electron microscopy. The results show that when the water–binder ratio is certain and the
cement replacement rate is greater than 16%; especially at 20%, the concrete shows strong resistance
to acid erosion; when the cement replacement rate is certain and the water–binder ratio is less than
0.47; especially at 0.42, the concrete shows strong resistance to acid erosion. Microstructural analysis
shows that the ternary mineral admixture system composed of ITP, FA, and LS promotes the for‑
mation of hydration products such as C‑S‑H and AFt, improves the compactness and compressive
strength of concrete, and reduces the connected porosity of concrete, which can obtain good over‑
all performance. In general, concrete prepared with a ternary mineral admixture system consisting
of ITP, FA, and LS has better acid erosion resistance than ordinary concrete. The use of different
kinds of solid waste powder to replace cement can effectively reduce carbon emissions and protect
the environment.

Keywords: iron tailing powder; fly ash; lithium slag; acid erosion; compressive strength

1. Introduction
Concrete is one of the most extensively used building materials in the world, and

its durability is exceptionally significant in structural design, especially in infrastructure
design, where the performance of concrete exposed to acidic environments is one of the
critical issues of concrete durability [1,2]. Exposure of concrete to acidic environment will
reduce the performance of infrastructure, shorten the service life and increase the mainte‑
nance cost.

Regarding the improvement of the operational performance of concrete structures
in acidic environments, some studies have shown that using different kinds of admixtures
and newmaterials can improve the performance of concrete. In addition, the use of biocide
to inhibit the growth of acid bacteria is also one of the effective ways to achieve this [3,4].
The effects of cement type, water–cement ratio (W/C) [5,6], polymer materials, aggregate
type, and supplementary cementitious materials (SCMs) [7–9] of acid erosion resistance
of concrete have been investigated in some previous studies. Alexander et al. [10] studied
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ordinary Portland cement concrete and calcium aluminate cement concrete under the con‑
ditions of biological acids in sewers and showed that calcium aluminate cement concrete
is significantly better than ordinary Portland cement concrete in terms of acid erosion re‑
sistance. Kim et al. [11] tested cement mortar samples with a W/C of 0.45 as a control case
and evaluated the durability performance at W/C of 0.45 to 0.60. The findings showed that
the durability performance of cement mortar decreased significantly with the increase in
porosity with the rise inW/C.Wang et al. [12] researched concrete incorporatedwith super
absorbent polymers (SAP) under the effect of acid rain erosion. The studies showed that
with the addition of SAP, the erosive effect of acid rain on concrete diminished. The added
SAP promoted hydration, reduced deterioration due to pore deformation, improved the
internal pore structure of concrete, and enhanced the acid erosion resistance of concrete.
Araghi et al. [13] investigated sulfuric acid erosion on concrete using polyethene terephtha‑
late (PET) particles as replacement aggregates and determined that developing the number
of PET particles as replacement aggregates in concrete resulted in less crushing load and
loss of weight. Ultrasonic pulse velocity values and concrete containing PET particles had
better resistance to sulfuric acid erosion performance. Roy et al. [9] examined the effects
of mortars prepared using silica fume, fly ash, and metakaolin, respectively, as SCMs in
different acid corrosion environments and showed that the addition of silica fume, fly ash,
andmetakaolin, respectively, improved the acid erosion resistance of concrete. Nowadays,
the application of SCMs [14–17] is effectively practiced, and the commonly used SCMs are
mainly industrial solid wastes [18–21]. A series of research results have shown that the use
of industrial solid wastes as SCMs can improve the performance of concrete, which is of
great significance to save natural energy and protect the environment. Bakharev et al. [22]
explored the durability of alkali‑activated slag concrete under acid erosion. Analysis of the
evolution of compressive strength, degradation products, and microstructural changes in
concrete shows that activated slag concrete has high acid resistance in acidic environments
and outperforms the durability of ordinary concrete of the same grade. Cheng et al. [23]
prepared concrete by replacing cementwith iron tailings powder as an admixture. The per‑
meability, frost resistance, and carbonation resistance of the concrete were tested, which
shown that concrete made by substituting part of the cement with mechanochemically ac‑
tivated iron tailings has better durability than ordinary concrete. Zhai et al. [24] added a
certain amount of lithium slag powder as a kind of SCM in the cement system, and dis‑
ciovered that the combination of appropriate amount of lithium slag powder could make
the slurry structure denser, enhance the permeability resistance of concrete, and further
improve the durability of concrete. Goyal et al. [25] performed an experimental study us‑
ing a binary mixture of silica fume and fly ash versus silica fume only as a kind of SCM to
monitor the corrosion process by measuring mass loss and compressive strength in an ag‑
gressive chemical environment. The study reported that the binary mixture of silica fume
and fly ash demonstrated superior erosion resistance to the mixture containing only silica
fume as a kind of SCM.

Although the use of SCMs to enhance the durability of concrete has been extensively
studied [26,27], most studies have focused on a single mineral admixture, while the nature
of the mineral admixture can also negatively affect the concrete, such as the low volcanic
ash activity of some mineral admixtures [28–30], which is not conducive to the improve‑
ment of concrete strength. In addition, compared with using a single mineral admixture,
there is significantly less research on the durability of concrete with multiple mineral ad‑
mixtures. Therefore, in this study, concrete was produced using a ternary mineral ad‑
mixture system consisting of industrial solid waste ITP, FA, and LS, immersed in a low
pH acetic acid environment for durability studies. On this basis, the effects of different ce‑
ment replacement rates (CRRs) and different water–binder ratios (w/b) on the compressive
strength, compressive strength loss, mass loss, and apparent deterioration of concretewere
analyzed, while the pore space and hydration products of ternary mineral admixture con‑
crete were investigated using mercury intrusion porosimetry (MIP) and scanning electron
microscopy (SEM) techniques to support the conclusions obtained from the experiments.
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2. Materials and Methods
2.1. Materials

The P.O 42.5 Portland cement (OPC) was selected as the binder, meeting the Chi‑
nese standard GB 175‑2007. At different CRRs, ITP, FA, and LS were used to replace
OPC. The chemical compositions and specific surface areas of ITP, FA, and LS are listed in
Tables 1 and 2, respectively. The specific surface area was determined by BET method.
The particle size distributions and microscopic morphology of ITP, FA, and LS are pre‑
sented in Figures 1 and 2, respectively. The particle size distribution was determined by
MalvernMastersizer 2000 laser particle size analyzer; themicroscopic morphologywas de‑
termined by ZEISS Gemini 300 scanning electron microscope. The iron tailings sand (ITS)
was utilized as a fine aggregate with a fineness modulus of 2.0. The physical properties are
provided in Table 3, and the particle gradation of ITS is shown in Figure 3. The iron tail‑
ings rock (ITR), with a particle size scope of 5 to 20 mm, was utilized as coarse aggregate.
The physical properties of ITR are provided in Table 4, and the particle gradation of ITR
is reported in Figure 4. The particle gradation was determined by the Chinese standard
GB/T14685‑2011. The water reducer was a P‑II water reducer. The performance index of
water reducer is listed in Table 5. The acidwas a 99.5% concentration of concentrated acetic
acid. The regular tap water (drinking water) was used for mixing.

Table 1. Chemical compositions of ITP, FA, and LS.

Materials
Chemical Composition (%)

SiO2 Al2O3 CaO Fe2O3 MgO SO3 K2O Na2O TiO2 MnO

ITP 62.26 4.78 7.77 14.37 6.33 0.48 1.39 1.34 0.53 0.21
FA 60.06 25.09 2.93 6.74 0.86 0.26 1.61 0.11 1.49 0.16
LS 54.55 25.38 6.44 1.41 0.60 6.05 0.70 0.10 0.03 0.07

Table 2. Specific surface area of ITP, FA, and LS.

Materials ITP FA LS

Specific surface area (m2/kg) 1290 1391 13,627
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Table 5. The performance index of WR.

Water
Reduction Rate

(%)

Water Secretion
Rate (%)

Gas Content
(%)

28 d Shrinkage
Ratio (%)

Solids Content
(%)

27 24 3.9 103 12.04

2.2. Mix Proportion and Preparation of Concrete
The mixed proportions of concrete are listed in Table 6. IFL‑0 is the OPC without

admixture; specimens IFL‑1 to IFL‑4 are the ternary systems composed of ITP, FA, and LS
with a mixed mass ratio of 2:1:1, a fixed w/b of 0.42 and CRRs of 10%, 20%, 30%, and 40%,
respectively; specimens IFL‑2, IFL‑5 to IFL‑7 are the ternary systems composed of ITP, FA,
and LS with a mixed mass ratio of 2:1:1, a fixed CRR of 20% and w/b of 0.42, 0.44, 0.46 and
0.48, respectively.

Table 6. The mix proportions of concrete.

Specimen
Dosage of Each Component (kg/m3)

Water OPC ITP FA LS ITS ITR Water
Reducer

IFL‑0 176.4 420 0 0 0 740 1 110 5.2
IFL‑1 176.4 378 21 10.5 10.5 740 1 110 5.2
IFL‑2 176.4 336 42 21 21 740 1 110 5.2
IFL‑3 176.4 294 63 31.5 31.5 740 1 110 5.2
IFL‑4 176.4 252 84 42 42 740 1 110 5.2
IFL‑5 184.8 336 42 21 21 740 1 110 5.2
IFL‑6 193.2 336 42 21 21 740 1 110 5.2
IFL‑7 201.6 336 42 21 21 740 1 110 5.2

For specimen preparation, ITS and ITR were dried in the oven at 105 ◦C for 24 h.
Before the dried ITS and ITR were placed into the blender for 1 min, the weighed OPC,
ITP, FA, and LS were put into the blender for 1 min. Finally, the water and water reducer
were mixed well, and all of them were dumped into the blender for 2 min. After mixing,
the mixtures were put into a 100 mm × 100 mm × 100 mm mold and consolidated using
a vibrating table for 30 s. The specimens were cured at a standard curing condition of
20 ± 2 ◦C and 95 ± 5% relative humidity for 24 h before being tested.

2.3. Test Methods
(1) Acid erosion: The acid erosion test consisted of 99.5% concentrated acetic acid be‑

ing configured into an acidic solution with pH = 3. During the erosion process, the
concentration of the saturated solution was adjusted every seven days to keep the
concentration of the solution stable. The saturated solution was replaced once every
30 days, and the soaking cycle was 60 days.

(2) Compressive strength loss: The Shenzhen Universal testing equipment was used to
test the concrete cube’s compressive strength in line with Chinese standard
GB/T 50081‑2019, and the compressive strength loss (CSL) was computed as follows:

CSL =
ft − fS

ft
× 100,

where ft is the average compressive strength (MPa) of three specimens for the stan‑
dard curing 28 days and fs is the average compressive strength (MPa) of three speci‑
mens for the acid erosion 60 days.

(3) Mass loss: The mass test measures the mass of the specimen after 28 days of the
standard curing and the mass of the specimen after 60 days of acid erosion. The mass
of the concrete was measured using an electronic scale with a precision of ±1 g. At
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the measurement time, the specimens were rinsed with tap water, and then dried at
50 ± 2 ◦C for 48 h. The mass loss (ML) of concrete was then determined as follows

ML =
Wt − WS

Wt
× 100％,

where Wt is the average mass (g) of three specimens for the standard curing 28 days
and Ws is the average mass (g) of three specimens for the acid erosion 60 days.

(4) Apparent deterioration: The apparent deterioration test examined soaking concrete
specimens in an acetic acid solution that causes apparent changes by recording the
apparent changes of acid erosion on concrete specimens in the early, middle, and
late stages.

(5) MIP: Taking the concrete specimen, a 15 mm thick slice of concrete was cut out with a
cutter before a core was drilled and sampled using an electric drill and a hollow drill
bit with an inner diameter of 8–14 mm. The sample contained no aggregate. After
sampling, the specimen was immersed in anhydrous ethanol for seven days to termi‑
nate hydration. Finally, the specimen was baked for three days at a temperature of
50± 2 ◦C to obtain the sample to be tested. The pore distribution was determined us‑
ing the AutoPore Iv 9510 high performance automatic mercury injection instrument.

(6) SEM: Taking the concrete specimen, a 3–5 mm thick slice of concrete was cut out with
a cutter before using an electric drill to drill a core sample in the slice. After sam‑
pling, the specimen was immersed in anhydrous ethanol for seven days to terminate
hydration. Then, the sample was placed in an ultrasonic cleaner to clean, and finally
put into an oven at a temperature of 50 ± 2 ◦C for three days to obtain the sample
to be tested. The micromorphology was determined by ZEISS Gemini 300 scanning
electron microscope.

3. Results and Discussion
3.1. Compressive Strength
3.1.1. Compressive Strength of Concrete at Different CRRs

The 28 d compressive strength of concrete after standard curing with different CRRs
is shown in Figure 5. At a certain w/b, the 28 d compressive strength of concrete after stan‑
dard curing first rises and subsequently drops as CRRs improve. The 28 d compressive
strength of the concrete after standard curing reaches a maximum value of 53.3 MPa when
the CRR is 20%, compared to IFL‑2 with IFL‑0, which increases by 16.9%. When the CRRs
are 10%, 30%, and 40%, respectively, the 28 d compressive strength after standard curing
increases by 16.7%, 11% and 5.5%, respectively, compared with IFL‑0. The result indicates
that the use of mineral admixtures instead of cement is beneficial to increase the compres‑
sive strength of concrete, which is consistent with the conclusion in the literature [31–33].
The mechanically ground ITP makes the microstructure denser, and the fine ITP exhibits
the filling effect of macroaggregates [23]. Proper blending with FA and LS can improve
the particle gradation, disperse in the concrete, fill the spaces inside the microstructure,
and increase the compressive strength of the test block. Meanwhile, ITP, FA, and LS con‑
tain volcanically active chemical components and react with CH (Ca(OH)2) to form C‑S‑H
gels [24,34], which makes the internal structure of concrete denser and enhances the com‑
pressive strength.

The acid erosion 60 d compressive strength of concrete with different CRRs is dis‑
played in Figure 5 At a certain w/b, the acid erosion 60 d compressive strength of concrete
specimens first rises and then drops with increasing CRRs. When the CRR is about 16%,
the acid erosion 60 d compressive strength is the same as the standard curing 28 d com‑
pressive strength of concrete. When the CRR is below 16%, the 28 d compressive strength
of concrete after standard curing is better than the acid erosion 60 d compressive strength
of concrete. The highest loss of compressive strength of concrete after 60 d of acid ero‑
sion is 5.1% at a CRR of 10%. When the CRRs are higher than 16%, the acid erosion 60 d
compressive strength of concrete is better than the 28 d compressive strength of concrete
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after standard curing. The highest rise in compressive strength of concrete in 60 days of
acid erosion is 3.4% at a CRR of 20%, indicating stronger resistance to acid erosion. This
is consistent with the conclusion in the literature [25] that the presence of supplementary
cementitious materials lowers the detrimental effect of acids on concrete. When the CRRs
are lower than 16%, the cement content is relatively large, and the acid solution mainly
reacts with the hydration products generated by cement hydration, resulting in the loose
expansion of the internal structure of concrete and a decrease in concrete compactness, a
reduction in compressive strength. When the CRRs are higher than 16% with increasing
admixture, the early activity of ITP is low [28], which reduces the hydration rate of ce‑
ment and the internal pore structure of concrete. As the reaction proceeds, the volcanic
ash reaction of ITP, FA, and LS with specific activity occurs [34,35], which consumes the
unhydrated particles and fills the connected pores. In addition, the good volcanic ash reac‑
tion of FA and LS can improve the pore structure of concrete [24,36], enhance the amount
of cementation and the cementation process, and fill capillaries and void cracks in concrete
specimens. Therefore, the filling effect increases the compactness of concrete to some ex‑
tent, strengthens the acid erosion resistance of concrete, and hinders the transmission of
erosion media into concrete pores.
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Figure 5. The variation of compressive strength of concrete at different CRRs.

3.1.2. Compressive Strength of Concrete at Different w/b
The 28 d compressive strength of concrete after standard curing with different w/b

is presented in Figure 6. At a certain CRR, the 28 d compressive strength of concrete af‑
ter standard curing gradually drops with the improvement of w/b. When the w/b is 0.42,
the concrete specimen’s standard curing 28 d compressive strength reaches a maximum of
53.3 MPa. When the w/b increases from 0.42 to 0.44, 0.46, and 0.48, the 28 d compressive
strength of concrete after standard curing decreases by 9.2%, 16.5%, and 20.3%, respec‑
tively, which is consistent with the conclusion in the literature [37] that the compressive
strength of concrete drops as w/b increases. As w/b increases, the concrete’s hardening
water level rises more, porosity increases, and the corresponding capillary pores increase,
resulting in the concrete’s decreasing compactness. This phenomenon becomes more se‑
vere with the growth of water content, so with the rise of the w/b test block, compressive
strength decreases.

The acid erosion 60 d compressive strength of concrete with different w/b is shown
in Figure 6. At a certain CRR, the acid erosion 60 d compressive strength of concrete grad‑
ually decreases with the increase in the w/b. When the w/b is about 0.47, the acid erosion
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60 d compressive strength is the same as the 28 d compressive strength of concrete after
standard curing. When thew/b is less than 0.47, the acid erosion 60 d compressive strength
of concrete is better than the 28 d compressive strength of concrete after standard curing,
which shows strong resistance to acid erosion. The acid erosion 60 d compressive strength
of concrete improved by 3.4% at a w/b of 0.42. When the w/b is higher than 0.47, the acid
erosion 60 d compressive strength of concrete is lower than the 28 d compressive strength of
concrete after standard curing, and the acid erosion 60 d compressive strength of concrete
lost 1.2% at a w/b of 0.48. When the w/b is less than 0.47, the particle size of the incor‑
porated ITP, FA, and LS is very dense, which improves the density and impermeability of
the concrete and improves the filling of cement particles. Themicro‑aggregate effect of ITP
improves the hydration environment of cement [23] and the homogeneity of the concrete.
Moreover, the addition of admixtures makes up for the defect of the poor bonding surface
of cement paste and aggregate [32], which hinders the erosion of concrete by acetic acid
solution. As the w/b increases, the greater the degree of diffusion of the erosion medium,
the faster the diffusion rate, and the erosion resistance of concrete decreases, resulting in
lower compressive strength. When the w/b is too large, the water content of the concrete
is high, and the water reducer releases the water in the flocculation structure generated
by cement hydration. Excess water in the system occurs, thus significantly increasing the
porosity of the concrete structure. An increase in thew/b alsomakes the internal secondary
hydration incomplete. The reduction of hydration products leads to the internal system of
the substantial organization becoming thin and the erosion medium more easily invaded,
making the compressive strength of tangible decrease.

Materials 2023, 16, x FOR PEER REVIEW 8 of 15 
 

 

of concrete is better than the 28 d compressive strength of concrete after standard curing, 

which shows strong resistance to acid erosion. The acid erosion 60 d compressive strength 

of concrete improved by 3.4% at a w/b of 0.42. When the w/b is higher than 0.47, the acid 

erosion 60 d compressive strength of concrete is lower than the 28 d compressive strength 

of concrete after standard curing, and the acid erosion 60 d compressive strength of con-

crete lost 1.2% at a w/b of 0.48. When the w/b is less than 0.47, the particle size of the 

incorporated ITP, FA, and LS is very dense, which improves the density and impermea-

bility of the concrete and improves the filling of cement particles. The micro-aggregate 

effect of ITP improves the hydration environment of cement [23] and the homogeneity of 

the concrete. Moreover, the addition of admixtures makes up for the defect of the poor 

bonding surface of cement paste and aggregate [32], which hinders the erosion of concrete 

by acetic acid solution. As the w/b increases, the greater the degree of diffusion of the 

erosion medium, the faster the diffusion rate, and the erosion resistance of concrete de-

creases, resulting in lower compressive strength. When the w/b is too large, the water 

content of the concrete is high, and the water reducer releases the water in the flocculation 

structure generated by cement hydration. Excess water in the system occurs, thus signifi-

cantly increasing the porosity of the concrete structure. An increase in the w/b also makes 

the internal secondary hydration incomplete. The reduction of hydration products leads 

to the internal system of the substantial organization becoming thin and the erosion me-

dium more easily invaded, making the compressive strength of tangible decrease. 

 

Figure 6. The variation of compressive strength of concrete at different w/b. 

3.2. Mass Loss 

3.2.1. Mass Loss of Concrete at Different CRRs 

The mass and ML of concrete at different CRRs is exhibited in Table 7. It can be seen 

that the CCRs were 0, 10%, 20%, 30%, and 40%, respectively, and the ML of concrete was 

2.49%, 0.75%, −0.12%, 0.32%, and 0.56%, respectively, for a certain w/b. The concrete mass 

with a CRR of 20% increased by 0.12%. The result indicates that the concrete composed of 

ITP, FA, and LS can improve the mass of concrete after an acid erosion, which is consistent 

with the conclusion in the literature [25]. When the acid comes into contact with the con-

crete, it reacts with the hydration products and produces products that cause an increase 

in the mass of the concrete [38]. The mass of concrete in OPC (IFL-0) loss was 2.49%. The 

variation of concrete mass at different CRRs is shown in Figure 7. The mass of admixture 

concrete has little change, while that of OPC concrete has great change. Compared with 

the concrete of OPC, the overall ML of the composite admixture was smaller. From the 

results, the composite admixture reduced the ML of the concrete with certain acid erosion 

resistance. 

  

40

42

44

46

48

50

52

54

56

58

（
）

C
om

pr
es

si
ve

 s
tr

en
gt

h
M

P
a

w/b

 Standard curing 28d
 Acid erosion 60d

0.42 0.44 0.46 0.48

Figure 6. The variation of compressive strength of concrete at different w/b.

3.2. Mass Loss
3.2.1. Mass Loss of Concrete at Different CRRs

The mass and ML of concrete at different CRRs is exhibited in Table 7. It can be seen
that the CCRs were 0, 10%, 20%, 30%, and 40%, respectively, and the ML of concrete was
2.49%, 0.75%,−0.12%, 0.32%, and 0.56%, respectively, for a certain w/b. The concrete mass
with a CRR of 20% increased by 0.12%. The result indicates that the concrete composed
of ITP, FA, and LS can improve the mass of concrete after an acid erosion, which is con‑
sistent with the conclusion in the literature [25]. When the acid comes into contact with
the concrete, it reacts with the hydration products and produces products that cause an
increase in the mass of the concrete [38]. The mass of concrete in OPC (IFL‑0) loss was
2.49%. The variation of concrete mass at different CRRs is shown in Figure 7. The mass of
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admixture concrete has little change, while that of OPC concrete has great change. Com‑
pared with the concrete of OPC, the overall ML of the composite admixture was smaller.
From the results, the composite admixture reduced theMLof the concretewith certain acid
erosion resistance.

Table 7. The mass and ML of concrete at different CRRs.

Specimen CRRs (%) w/b Standard Curing
28 d (g)

Acid Erosion
60 d (g) ML (%)

IFL‑0 0 0.42 2365 2306 2.49
IFL‑1 10 0.42 2520 2501 0.75
IFL‑2 20 0.42 2498 2501 −0.12
IFL‑3 30 0.42 2466 2458 0.32
IFL‑4 40 0.42 2516 2502 0.56
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3.2.2. Mass Loss of Concrete at Different w/b
The mass and ML of concrete at different w/b are exhibited in Table 8. When the

w/b is 0.42, 0.44, 0.46, and 0.48, respectively, the ML of concrete is −0.12%, 0.20%, 0.24%,
and 0.40%, respectively. It can be seen from the results that the mass loss increases with
the increase in w/b. The reason is that the higher w/b, the higher the porosity, the higher
the corrosion degree and the greater ML, which is consistent with the conclusion in liter‑
ature [38]. The variation of concrete mass at different w/b is shown in Figure 8. There is
no change in the mass of these four specimens. Compared with the mass loss of the OPC
concrete, the overall mass loss rate of the composite admixture is smaller and has certain
acid erosion resistance.

Table 8. The mass and ML of concrete at different w/b.

Specimen CRRs (%) w/b Standard Curing
28 d (g)

Acid Erosion
60 d (g) ML (%)

IFL‑2 20 0.42 2498 2501 −0.12
IFL‑5 20 0.44 2478 2473 0.20
IFL‑6 20 0.46 2501 2495 0.24
IFL‑7 20 0.48 2523 2513 0.40
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Figure 8. The variation of the mass of concrete at different w/b.

3.3. Apparent Deterioration
The process of concrete test block being soaked by acid solution is displayed in

Figure 9. Deterioration of concrete surfaces occurs due to acid erosion [39]. The apparent
decline of concrete is shown in Figure 10. In the early erosion, the character and corners of
the concrete test block were relatively intact. Sanding only appeared in the surface layer.
With time, in the middle of the erosion, the corners of the concrete test block began to be
damaged, and the central part was relatively more intact. Because of the loss of the paste,
the surface of the test block appeared rougher, and the overall shape became irregular. The
test block surface damage is aggravated by the continuous erosion of acetic acid solution.
In the late erosion, the test block surface damage deteriorates, there are different degrees
of pockmarks and etching pits, and the overall pockmarks are relatively dense. The reason
is that the erosion medium in acetic acid solution reacts with the hydration product and
forms soluble salt, which leads to the deterioration of the surface of the concrete test block.
The overall resistance of the concrete test block to the erosion of the acid solution is good,
no more bottomless pits and larger cracks appear on the surface.
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3.4. MIP
The particle pore distribution of concrete is displayed in Figure 11. The pore distri‑

bution was determined using the AutoPore Iv 9510 high performance automatic mercury
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injection instrument. The peak strength of IFL‑4 is higher than that of IFL‑5, implying
a high peak with a large CRR. Referring to the method in literature [40], the aperture is
divided into species, and the results are shown in Figure 12. IFL‑4 dominant pores are
20–50 mm in diameter and account for 39% of the total; IFL‑5 prevalent pores are less than
20 mm in diameter and account for 38% of the total. The increase in the number of tiny
pores can improve the impermeability of concrete, indicating that IFL‑5 is more resistant
to acid attack than IFL‑4. This finding is corroborated by the previous experimental re‑
sults obtained within the context of this study, the CSL of IFL‑4 is 0.2%, the CSL of IFL‑5 is
−2.1%, the CSL of IFL‑5 is smaller; the ML of IFL‑4 is 0.56%, the ML of IFL‑5 is 0.2%, and
the ML of IFL‑5 is smaller. The variation in the pore structure of concrete is an essential
indicator of mechanical properties and durability [40]. The microstructure and properties
of concrete can be improved by using mineral admixtures.
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Figure 10. The apparent deterioration of concrete.
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Figure 11. The particle pore distribution of concrete.

3.5. SEM
The SEMof themulti‑solidwastemineral admixture concrete is presented in Figure 13.

In the hardened slurry, it can be observed that a large number of rod‑like CH are shown
in Figure 13a, clustered C‑S‑H gels are shown in Figure 13b, the needle‑like AFt are pre‑
sented in Figure 13c. Figure 13d shows reacted FA and unreacted ITP. A large amount
of C‑S‑H gels with Aft crystals makes the concrete internally dense [41], less porous, with
uniform pore distribution, and more viscous, which is beneficial to enhance the compres‑
sive strength and permeability of concrete. The unreacted ITP and reacted FA are depicted
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in Figure 13d. This indicates that the hydration ability of FA is a little stronger than that
of ITP. The primary role of FA is to enhance the performance of concrete by facilitating
secondary hydration reactions. In contrast, the primary function of ITP is the filling effect,
which corresponds to the experimental results that the previous admixture can enhance
the compressive strength of concrete. Using ITP, FA, and LS as mineral admixtures to
replace some OPC, concrete with excellent properties can be made.
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4. Conclusions
The study focuses on the durability of ITP‑FA‑LS ternary mineral admixture con‑

crete under acetic acid erosion. The compressive strength, compressive strength loss, and
mass loss of concrete were analyzed by different CRRs and different w/b, and the mi‑
crostructure of concretewas conducted usingMIP and SEM. The following conclusions can
be derived:

(1) When the CRR is 20%, the standard curing 28 d compressive strength of concrete is
the highest, which is higher than OPC concrete. When the w/b is 0.42, the standard
curing 28 d compressive strength of concrete is the highest. The activity of ITP is
significantly increased after grinding. Appropriate mixing with FA and LS can help
with the particle gradation and produce amicro‑aggregate effect. A volcanic ash reac‑
tion occurs, which has a strong hydration reaction ability andmakes the compressive
strength of concrete increase.

(2) Concrete eroded with acetic acid solution after 60 days. When the CRR is greater
than 16%, especially at 20%, the concrete strength increase rate after acid erosion 60 d
was the largest and showed strong acid erosion resistance. When the w/b is less than
0.47, especially at 0.42, the concrete strength increase rate after acid erosion 60 d is
the largest and shows strong acid erosion resistance. The good volcanic ash activity
of FA and LS improved the pore structure of concrete, and improved the amount of
cementation and cementation process. The filling effect increased the compactness of
concrete to a certain extent, strengthened the acid penetration resistance of concrete,
and hindered the transport of ions in acetic acid solution in the pores of the concrete.

(3) Acidic solution erosion deteriorates the concrete surface. At the same time, there is a
loss of mass of concrete, which is minimal when the CRRs is 20% and minimal when
thew/b is 0.42; all of them are smaller than theML of theOPC concrete specimen. The
ternary mineral admixture system consisting of ITP, FA, and LS resulted in more del‑
icate pores and a denser structure of concrete, which effectively hindered the erosion
of concrete by acetic acid solution.

(4) The mineral doping system reduces the permeability of the erosion medium. To a
certain extent, it can alleviate the erosion of acid solution concrete through MIP and
SEM, which confirms that the concrete has lower internal porosity and better density.
The ITP‑FA‑LS ternary mineral admixture concrete has better acid erosion resistance
than OPC concrete.
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