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Abstract: Octacalcium phosphate (OCP) has received considerable attention in the field of ceramic
biomaterials as an advanced functional material. It exhibits a layered structure composed of apatitic
and hydrated layers and can incorporate various dicarboxylate ions into the hydrated layer. Saturated
dicarboxylic acids (HOOC(CH2)nCOOH) with an odd number of methylene groups (–CH2–) exhibit
lower incorporation fractions than those with an even number of methylene groups, possibly owing
to a compositional dependence on the synthetic method. In this study, calcium carbonate, phosphoric
acid, and various amounts of glutaric acid were used to produce glutarate-ion-incorporated OCP by
a wet chemical method, which is different from the conventional synthetic strategy. While utilising
1–20 mmol of glutaric acid during synthesis did not produce the desired product, using 25 mmol of
glutaric acid resulted in the formation of single-phase glutarate-ion-incorporated OCP with a Ca/P
molar ratio of 1.57 and a 90% incorporation fraction of glutarate ions. This glutarate-ion-incorporation
fraction is significantly higher than that reported in the previous studies (35%). Thus, the synthetic
procedure proposed herein was able to produce single-phase OCP containing glutarate ions with a
high incorporation fraction. Our findings can contribute to development of novel functional ceramic
biomaterials in the future.

Keywords: octacalcium phosphate; glutarate ion; incorporation

1. Introduction

Octacalcium phosphate (OCP, Ca8(HPO4)2(PO4)4·5H2O) has attracted immense atten-
tion in biomaterials research as a novel hard-tissue repair material [1]. Numerous studies
report in vitro [2–7] and in vivo [8–18] biological characterisations and clinical tests of OCP-
based biomaterials [19–23]. Composite materials composed of OCP and collagen exhibited
excellent biological properties, which make them a good substitute for autogenous bone.
Additionally, a theranostic material using organically modified OCP at the molecular level
has been proposed [24]. Therefore, OCP is a promising material for the fabrication of
next-generation advanced ceramic biomaterials.

OCP comprises a layered structure composed of apatitic and hydrated layers [25–27];
the hydrogen phosphate ions (HPO4

2−) in the hydrated layer can be substituted by various
carboxylate ions [28] (di-, tri-, and tetracarboxylate ions, but mainly dicarboxylate ions).
OCP is the only calcium phosphate compound that enables the incorporation of carboxylate
ions in its crystals. So far, no publications have reported on the synthesis of carboxylate-
ion-incorporated OCP by soaking carboxylic-acid-free OCPs in aqueous carboxylic acid
solutions, indicating that carboxylic acid incorporation into OCP crystals likely occurs
during crystal growth—that is, during the OCP synthesis. Thus, numerous studies have
attempted OCP synthesis with carboxylic acids to investigate this chemical specificity.
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A typical synthetic method for carboxylate-ion-incorporated OCP involves the hy-
drolysis of alpha-tricalcium phosphate (TCP, Ca3(PO4)2) in an aqueous solution of the
relevant carboxylic acid [29]. This method has been extensively used to investigate the
incorporation of dicarboxylate ions into OCP [30–34]. The incorporation of dicarboxylic
acid into OCP is challenging depending on the molecule to be incorporated; for instance,
isophthalic acid has been successfully incorporated into OCP, but incorporation of tereph-
thalic acid has not yet been achieved [33]. In addition, certain carboxylic acids, such as
azelaic acid, have been reported to be incorporable by some researchers, while others report
they cannot be incorporated [32,33]; this can be attributed to the differences in the synthetic
conditions. Therefore, the investigation of synthetic methods is a vital aspect of research on
carboxylate-ion-incorporated OCPs.

Moreover, saturated dicarboxylic acids (HOOC(CH2)nCOOH) with an odd number
of main-chain methylene groups (–CH2–) exhibit a lower incorporation fraction in OCP
than those with an even number of methylene groups [34]; this was first pointed out by
Marković et al. in 1993 [32], this phenomenon requires further investigation. The low
incorporation fraction of carboxylic acids with an odd number of methylene groups could
also be attributed to a synthetic method dependence. We have studied and established the
synthetic method of carboxylate-ion-incorporated OCP by the reaction of calcium carbonate
and phosphoric acid in the carboxylic acid solution [35–40]. By synthesizing samples using
this method, we have successfully obtained OCPs with precisely controlled interplanar
spacings. In addition, while incorporating carboxylic acid into OCP, we found an elaborate
molecular recognition between the OCP crystals and carboxylic acid molecules. However,
so far, we have not attempted to incorporate the carboxylic acids with an odd number
of methylene groups into OCP using this synthetic method. In this study, glutarate-ion-
incorporated OCP was synthesised using our synthetic method instead of the conventional
synthetic method that uses alpha-TCP. Glutaric acid is a typical carboxylic acid with an
odd number of methylene groups (n = 3, Figure 1).
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2. Materials and Methods
2.1. Synthesis

Carboxylate-ion-free OCP (plain OCP) and glutarate-ion-incorporated OCP were
produced through a previously reported wet process [35]. To fabricate plain OCP, 6.0 mmol
of H3PO4 (85% aqueous solution; Wako Pure Chemical Industries, Osaka, Japan) was
added to 100 cm3 of ultrapure water at 60 ◦C under stirring (500 rpm), followed by the
addition of 8.0 mmol of CaCO3 (calcite phase: 99.5%, Nacalai Tesque, Kyoto, Japan). After
3 h, the pH of the slurry was decreased to 5.0 by adding an appropriate amount of HCl
solution (1.0 mol·dm–3, Nacalai Tesque). The aim of this process is to dissolve and remove
the unreacted CaCO3. Subsequently, after 30 min of stirring at 60 ◦C, the precipitates were
isolated by suction filtration using a conventional filter paper, rinsed with ultrapure water
and ethanol, and dried at 40 ◦C overnight. This sample was labelled as the control.

Similarly, glutarate-ion-incorporated OCP was fabricated using a previously pub-
lished method with appropriate modifications [35]. First, glutaric acid (1–25 mmol)
(HOOC(CH2)3COOH: 99.0%, Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) was com-
pletely dissolved in 100 cm3 of ultrapure water at 60 ◦C by adding NH3 solution (28 mass%
aqueous solution, Wako Pure Chemical Industries), and the pH of the solution was adjusted
to 5.5. Subsequently, an H3PO4 solution (5.0 mmol) was added to the glutaric acid solution,
followed by the addition of 8.0 mmol of CaCO3. The slurry was stirred at 500 rpm at
60 ◦C. After 3 h, the pH of the slurry was reduced to 5.0 using an HCl solution, and the
precipitates were isolated by suction filtration, rinsed, and dried after 30 min of stirring.
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These samples were labelled as GAX, where X is the amount (mmol) of glutaric acid used
for synthesis.

2.2. Characterisation

The crystalline phases of the samples were characterised by powder X-ray diffraction
(XRD; MiniFlex600, Rigaku Corp., Tokyo, Japan) using Cu Kα radiation and an X-ray
wavelength of 0.154056 nm. The interplanar spacing of the (100) (d100) planes of the
representative OCP samples was evaluated by XRD after mixing fluorophlogopite (Topy
Industries Ltd., Tokyo, Japan) as an angular standard at an OCP: fluorophlogopite mass
ratio of 4:1. The chemical structures of the typical samples were characterised by Fourier
transform infrared (FTIR) spectroscopy (FT/IR-6200, JASCO Corp., Tokyo, Japan) using the
KBr pellet method with an OCP:KBr (for infrared spectrophotometry, Wako Pure Chemical
Industries) mass ratio of 1:300. The Ca/P molar ratios of the representative samples were
determined using the inductively coupled plasma atomic emission spectroscopy (ICP-AES;
ICP-8100, Shimadzu Co., Kyoto, Japan) after dissolving the samples in aqua regia. The
carbon contents of the samples were evaluated using a carbon and sulfur analyser (EMIA-
920V, HORIBA, Ltd., Kyoto, Japan), and their crystal morphologies were analysed using
scanning electron microscopy (SEM, JSM-7900F, JEOL Ltd., Tokyo, Japan) after coating with
a thin Pt film.

3. Results and Discussion

The XRD patterns of the specimens synthesised using different amounts of glutaric
acid are shown in Figure 2. All the samples exhibited the same crystalline phase as OCP;
other crystalline phases, such as those of the starting material calcite, were not detected.
The control exhibited the crystalline phase of plain OCP, which was identified using the
powder diffraction file (PDF) #01-074-1301. GA1 and GA5 also exhibited crystalline phases
similar to that of plain OCP; however, the reflection peak intensities were lower than those
of the control, indicating a disordered OCP-phase layered structure.
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The XRD peak positions of GA10 were almost identical to those of plain OCP, with
an additional shoulder at the low-angle side of the main peak (at 4.7◦); contrarily, GA15
exhibited a remarkable peak shift with a higher main peak intensity (at 3.9◦). Thus, glutarate
ions were incorporated into OCP and formed OCP with a well-ordered layered structure.
The d100 calculated from the 2θ value of the main peak position was almost equal to that
evaluated from the glutarate-ion-incorporated OCP, as described later in the paper. A small
shoulder derived from plain OCP appeared at the higher-angle side of the main peaks in
the GA15 and GA20 patterns, indicating that GA15 and GA20 were mixtures of plain and
glutarate-ion-incorporated OCP. Moreover, this shoulder peak was absent in the GA25
pattern. Thus, 25 mmol of glutaric acid was required for the single-phase formation of
glutarate-ion-incorporated OCP. Subsequently, the control and GA25 were characterised.

The XRD patterns of the control and GA25 with the internal angular standard material
fluorophlogopite (Figure 3) were used to determine the exact d100 value. The 100 reflection
peak of the control was detected at 4.71◦, and its d100 was calculated to be 1.87 nm; this
value is almost equal to the d100 of plain OCP (1.878 nm). The 100 reflection peak of GA25
was detected at 3.85◦, and its d100 was calculated to be 2.29 nm; this value is slightly higher
than the experimentally determined and computationally predicted d100 values of glutarate-
ion-incorporated OCP (2.23 nm [34] and 2.24 nm [41], respectively). This is possibly due
to the higher incorporation fraction of glutaric acid in GA25 in this study compared to
previous publications, as described below.
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The incorporation of glutarate ions into OCP was also confirmed by FTIR spectroscopy.
The FTIR spectra of the control and GA25 are shown in Figure 4; the absorption peaks
were assigned based on a previous report [42]. All the peaks in the control spectrum
could be attributed to plain OCP. The peak derived from the hydrated-layer hydrogen
phosphate ions was clearly detected at 1193 cm–1 in the control (indicated by a dashed
line in Figure 4); however, this peak was absent in the GA25 spectrum, which exhibited
absorption peaks derived from dissociated carboxyl groups in the range of 1600–1400 cm–1.
This indicated a replacement of the hydrated-layer hydrogen phosphate ions in OCP by
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the glutarate ions in GA25. Therefore, the XRD and FTIR results confirmed GA25 to be a
glutarate-ion-incorporated OCP.
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Figure 5 shows SEM images of the control and GA25. The control exhibited a plate-
like shape that was several micrometres in size; this is the representative morphology of
plain OCP. GA25 also exhibited a plate-like shape, with a slightly larger size than that
of the control. This is consistent with previous reports on succinate- and suberate-ion-
incorporated OCP [40]. Considering the crystal morphology in indicating the growth
behaviour, the process of glutarate ion incorporation into OCP is possibly similar to the
previously reported processes of succinate and suberate ion incorporation into OCP.

Materials 2022, 15, x FOR PEER REVIEW 5 of 9 
 

 

The incorporation of glutarate ions into OCP was also confirmed by FTIR spectros-
copy. The FTIR spectra of the control and GA25 are shown in Figure 4; the absorption 
peaks were assigned based on a previous report [42]. All the peaks in the control spectrum 
could be attributed to plain OCP. The peak derived from the hydrated-layer hydrogen 
phosphate ions was clearly detected at 1193 cm–1 in the control (indicated by a dashed line 
in Figure 4); however, this peak was absent in the GA25 spectrum, which exhibited ab-
sorption peaks derived from dissociated carboxyl groups in the range of 1600–1400 cm–1. 
This indicated a replacement of the hydrated-layer hydrogen phosphate ions in OCP by 
the glutarate ions in GA25. Therefore, the XRD and FTIR results confirmed GA25 to be a 
glutarate-ion-incorporated OCP.  

 
Figure 4. FTIR spectra of plain OCP (control) and the OCP sample synthesised using 25 mmol of 
glutaric acid (GA25). 

Figure 5 shows SEM images of the control and GA25. The control exhibited a plate-
like shape that was several micrometres in size; this is the representative morphology of 
plain OCP. GA25 also exhibited a plate-like shape, with a slightly larger size than that of 
the control. This is consistent with previous reports on succinate- and suberate-ion-incor-
porated OCP [40]. Considering the crystal morphology in indicating the growth behav-
iour, the process of glutarate ion incorporation into OCP is possibly similar to the previ-
ously reported processes of succinate and suberate ion incorporation into OCP. 

 
Figure 5. SEM images of plain OCP (control) and the OCP sample synthesised using 25 mmol of 
glutaric acid (GA25). 
Figure 5. SEM images of plain OCP (control) and the OCP sample synthesised using 25 mmol of
glutaric acid (GA25).

The compositional analysis indicated that the Ca/P ratios of the control and GA25
were 1.37 and 1.57, respectively, and their carbon contents were 0.1 and 4.7 in mass%,
respectively. The general chemical formula of the OCP with incorporated dicarboxylate
ions is Ca8(HPO4)2–z(DCI)z(PO4)4·mH2O (0 ≤ Z ≤ 1), where the DCI is dicarboxylate
ion. As the Ca/P molar ratio of GA25 was 1.57, z in the chemical formula of OCP with
incorporated dicarboxylate ions was calculated to be 0.90. Hence, the substitution fraction
of hydrogen phosphate ions by glutarate ion in GA25, evaluated using its Ca/P ratio,
was 90%.

Table 1 summarises the Ca/P molar ratio of the control and GA25 samples and the
substitution fraction of GA25, along with the data previously reported by Monma [33].



Materials 2023, 16, 64 6 of 9

According to a previous report by Monma [33], carboxylate ions of saturated dicarboxylic
acids with an odd number of methylene groups in the main chain, such as malonate,
glutarate, pimerate, and azelate ions, exhibit a lower incorporation fraction into OCP than
those with an even number of methylene groups. Interestingly, the synthetic strategy
proposed here fabricated OCP with a substitution fraction of 90%. In this study, the
glutaric acid concentration in GA25 was approximately 250 mmol·dm–3, similar to the
dicarboxylic acid concentration used in Monma’s process; thus, the high substitution
fraction of glutarate ions could not be attributed to a higher reaction-solution glutaric
acid concentration. However, the starting materials of the two synthetic methods were
different. Here, the starting materials, calcium carbonate and phosphoric acid (used as
the calcium and phosphate source, respectively), reacted to form dicalcium phosphate
dihydrate (DCPD, CaHPO4·2H2O), which subsequently transformed into the OCP phase.
In Monma’s process, alpha-TCP was used as the starting material, which transformed into
the OCP phase.

Table 1. Ca/P molar ratios and substitution fractions of the hydrated-layer hydrogen phosphate ions
by dicarboxylate ions in the plain OCP (control) and the OCP sample synthesised using 25 mmol of
glutaric acid (GA25), along with the previously reported data [33].

Incorporated Anion Ca/P Molar Ratio Substitution Fraction 1 (%)

Hydrogen phosphate ion
(control) 1.37 N/A

Glutarate ion (GA25) 1.57 90 2

Malonate ion 1.47 3 42 3

Succinate ion 1.55 3 83 3

Glutarate ion 1.45 3 35 3

Adipate ion 1.56 3 86 3

Pimerate ion 1.41 3 22 3

Suberate ion 1.55 3 92 3

Azelate ion 1.45 3 50 3

Sebacate ion 1.53 3 79 3

1 Substitution fraction indicates the replacement ratio of the replaceable HPO4
2– in OCP by dicarboxylate ions.

2 The substitution fraction of GA25 is calculated from its Ca/P molar ratio. 3 The values are cited from ref. [33].

Further research is required to understand the influence of the OCP-phase formation
process on the final product composition. However, this study confirms that the substitution
fraction of dicarboxylate ions with an odd number of methylene groups into OCP can
be effectively increased by controlling the OCP-formation route. Glutamic acid, which
is a derivative of glutaric acid, is a type of amino acid comprising an odd number of
methylene groups. Glutamic acid enhances the osteoblast activation and extra-cellular
matrix mineralization processes [43]; therefore, this synthetic process can effectively in
incorporate such biologically relevant molecules into OCP. In addition, calcium phosphate
nanoparticles have been investigated for applying drug carriers [44,45]. Thus, this study
contributes immensely to the synthetic chemistry of dicarboxylate-ion-incorporated OCP
and could facilitate the development of novel functional ceramic biomaterials.

4. Conclusions

In this study, glutarate-ion-incorporated OCP was synthesised via the reaction of
CaCO3 and H3PO4 with different concentrations of glutaric acid. Plain OCP was formed
with 1–10 mmol of glutaric acid, a mixture of plain and glutaric-acid-incorporated OCP was
formed with 15–20 mmol of glutaric acid, and a single phase of glutarate-ion-incorporated
OCP was formed with 25 mmol of glutaric acid. This glutarate-ion-incorporated OCP
exhibited a plate-like shape that was several micrometres in size. FTIR analysis confirmed
glutarate ion incorporation, with its fraction quantitatively evaluated by compositional anal-
ysis. The glutarate-ion-incorporated OCP exhibited a Ca/P molar ratio of 1.57, indicating
the substitution fraction of replaceable hydrogen phosphate ions in OCP by glutarate ions
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to be 90%; this substitution fraction is higher than previously reported values. Hence, the
synthetic strategy reported here effectively produces glutarate-ion-incorporated OCP with
a high incorporation fraction. Moreover, our findings can contribute to the development of
novel functional ceramic biomaterials.
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