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Abstract: Lignin is the second-most available biopolymer in nature. In this work, lignin was employed
as the carbon precursor for the one-step synthesis of sulfur-doped nanoporous carbons. Sulfur-doped
nanoporous carbons have several applications in scientific and technological sectors. In order to
synthesize sulfur-doped nanoporous carbons from lignin, sodium thiosulfate was employed as a
sulfurizing agent and potassium hydroxide as the activating agent to create porosity. The resultant
carbons were characterized by pore textural properties, X-ray photoelectron spectroscopy (XPS),
X-ray diffraction (XRD), and scanning electron microscopy (SEM). The nanoporous carbons possess
BET surface areas of 741–3626 m2/g and a total pore volume of 0.5–1.74 cm3/g. The BET surface area
of the carbon was one of the highest that was reported for any carbon-based materials. The sulfur
contents of the carbons are 1–12.6 at.%, and the key functionalities include S=C, S-C=O, and SOx. The
adsorption isotherms of three gases, CO2, CH4, and N2, were measured at 298 K, with pressure up to
1 bar. In all the carbons, the adsorbed amount was highest for CO2, followed by CH4 and N2. The
equilibrium uptake capacity for CO2 was as high as ~11 mmol/g at 298 K and 760 torr, which is likely
the highest among all the porous carbon-based materials reported so far. Ideally adsorbed solution
theory (IAST) was employed to calculate the selectivity for CO2/N2, CO2/CH4, and CH4/N2, and
some of the carbons reported a very high selectivity value. The overall results suggest that these
carbons can potentially be used for gas separation purposes.

Keywords: porous carbon; sustainability; surface area; CO2 separation

1. Introduction

Sulfur-doped porous carbon is a unique form of heteroatom doped carbon. Unlike
other common types of heteroatoms, such as nitrogen, oxygen, or boron, sulfur atoms
are significantly larger than carbon atoms, and therefore, sulfur atoms protrude out of
the graphene plant, giving rise to a few unique properties of the parent carbon, such as
superconductivity, as revealed in the theoretical studies [1,2]. In addition, the lone pair of
electrons in the sulfur atom induces polarizability and interactions with oxygen [3]. There
are several specific applications of sulfur-doped porous carbon, including electrocatalysis
for fuel cells [4], electrodes for electrochemical capacitors [5], anode material for Li-ion
batteries [6], cathodes for Li-S batteries [7], heavy metal removal [8], toxic gas removal [9],
H2 storage [10], CO2 separation [11], and many others [12].

Most of the time, sulfur-doped carbons are synthesized by carbonizing S-bearing
carbon precursors, like thiophenemethanol [13], cysteine [14], algae [15], ionic liquids [16],
and others [12]. The detailed list of precursors that have been employed to synthesize
sulfur-doped nanoporous carbons are listed in [12]. The porosity within the sulfur-doped
carbon is achieved by post-synthesis activation [17] or utilizing templating strategies [13],
including hard and soft templates. In our past research, we incorporated sodium thiosulfate
(Na2S2O3) at elevated temperatures to introduce sulfur functionalities within the porous
carbon [8,18–22]. The uniqueness of incorporating Na2S2O3 is that it does not require an
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S-bearing carbon precursor to synthesize sulfur-doped carbon, as sulfur is contributed by
the Na2S2O3.

Lignin is the second most naturally abundant biopolymer present in the environment.
It is one of the key constituents of wood along with cellulose and hemicellulose. Although
there are three key structural constituents of lignin, including coumaryl, guaiacyl, and
sinapyl alcohol, these three components are randomly cross-linked with each other, giving
rise to the structural heterogeneity of lignin polymer. The exact structure of lignin polymer
depends on the wood (tree) type and processing conditions. Lignin is industrially produced
as a by-product in pulp and paper industries and bio-refineries. Although there is much
research on the use of lignin, it still lacks prominent value-added utilization. The majority
of lignin is used as low-calorie fuel. Historically, lignin was used in several types of
specialty carbons, including activated carbon [23,24], mesoporous carbon [25,26], and
carbon fibers [27,28]. Synthesis of porous carbon from lignin not may only introduce
sustainability in the synthesis but also influences the economy of lignin by increasing its
value-added utilization.

In this work, we synthesized sulfur-doped nanoporous carbon from lignin using a
one-step approach. We incorporated a varying ratio of sodium thiosulfate (Na2S2O3) and
potassium hydroxide (KOH) to simultaneously introduce sulfur functionalities and porosity
into the carbon matrix. The resultant carbon was employed for gas separation purposes.

2. Experimental
2.1. Synthesis of Sulfur-Doped Carbons

For all the synthesis purposes, commercially available dealkaline lignin (TCI America)
was employed. Typically, the desired components of lignin, sodium thiosulfate (Na2S2O3),
and potassium hydroxide (KOH) were mixed in a coffee grinder and then loaded onto
an alumina boat. The boat was introduced to the Lindberg-BlueTM (USA) tube furnace.
The tube furnace was heated to 800 ◦C with a ramp rate of 10 ◦C/min, dwelled at 800 ◦C
for 2 min, and then cooled to room temperature. All the heating and cooling operations
were performed under N2 gas. The final products were washed several times with DI
water and then filtered and dried. The names of the carbons according to the ratio of
lignin, Na2S2O3, and KOH are given in Table 1. The schematic of the synthesis is shown in
Figure 1. From the table, it is clear that the total mixture was in the range of 7–12 g, which
is the maximum amount of materials that be processed within the porcelain boat onto the
tube surface. The ratio of Na2S2O3 and KOH was also adjusted according to the literature
and our previous fundings; too low or too high amounts of these materials may result in
improper impregnation/activation or breakdown of the entire carbon matrix.
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Table 1. Sample identity.

Sample Identity Lignin: Na2S2O3: KOH

LS-1 3:2:2
LS-2 3:3:1
LS-3 3:1:3
LS-4 3:6:0
LS-5 3:6:3

2.2. Characterization of Sulfur-Doped Carbons

All the carbons were characterized with pore textural properties, x-ray photoelectron
spectroscopy (XPS), and scanning electron microscopy (SEM). The pore textural properties,
including BET specific surface area (BET SSA) and pore size distribution, were calculated
using N2 adsorption isotherms at 77 K and CO2 adsorption isotherms at 273 K in Quanta-
chorme’s Autosorb iQ-any gas instrument (USA). The non-local density function theory
(NLDFT)-based pore size distribution below 12 Å was calculated using CO2 adsorption
isotherm, whereas the larger (>12 Å) pores were calculated using N2 adsorption isotherm.
X-ray photoelectron spectroscopy (XPS) results were obtained in a Thermo-Fisher K-alpha
instrument (USA)with a monochromatic Al-Kα as an X-ray anode. The intensity of X-ray
energy was set to 1486.6 eV, and the resolution was 0.5 eV. Scanning electron microscopic
images (SEM) were obtained in a Carl Zeiss Merlin SEM microscope (USA) operating at
1 kV. X-ray diffraction patterns were obtained in Rigaku miniflex XRD instrument. In order
to capture the XRD pattern of the carbon, it was ground to a fine powder in mortar and
pestle and introduced within the sample holder.

2.3. Gas Adsorption Studies

Equilibrium adsorption isotherms of pure-component CO2, CH4, and N2 were mea-
sured on all the nanoporous carbons at the temperature of 298 K and pressure up to
760 torr in the same Autosorb iQ-any gas instrument. The temperature was maintained
by an additional Chiller (Julabo) (USA). All the gases were of ultra-high purity (UHP)
grade. About 80 mg of each of the sample was inserted in the sample tube along with
filler rod and non-elutriation cap. Each sample was outgassed at 300 ◦C for 3 h before the
adsorption experiment.

3. Results and Discussion
3.1. Material Characteristics

The N2 adsorption-desorption isotherms at 77 K are shown in Figure 2a. The sharp
rise in the low-pressure region suggests the presence of macroporosity. A narrow stretch of
hysteresis loop is also observed in all the isotherms, signifying the presence of mesoporosity.
The NLDFT-based pore size distribution is shown in Figure 2b. This figure shows that all
the carbons have a few pores in the narrow micropore region, including 8.1, 5.5, and 4.7 Å;
the pore width around 3.4 Å is attributed to the graphite layer spacing and not a true pore.
In the large micropore region, the carbons possess two distinct pores around the 14.7 and
19.3 Å regions. The majority of the carbons also demonstrated a distributed mesoporosity
within 20–45 Å, supporting the presence of a hysteresis loop in Figure 2a. The detailed
pore textural properties are shown in Table 2. It is observed that LS-3 has the highest BET
SSA (3626 m2/g) and pore volume (1.74 cm3/g). A porous carbon with a BET surface
area more than 3000 m2/g is very difficult to produce and has been rarely reported in the
literature [29–34]; only one work reported the BET surface area higher than that of LS-3 (a
MOF-derived porous carbon with BET: 4300 m2/g) [34]. The lowest porosity belongs to
LS-4 (BET: 280 m2/g; pore volume: 0.157 cm3/g), synthesized without KOH. It is clear that
KOH is the primary agent in creating the porosity, Na2S2O3 is primarily used to introduce
sulfur functionalities. The influence of Na2S2O3 in creating porosity is very small.
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Table 2. Pore textual properties.

Sample Identity BET SSA (m2/g)
Total Pore

Volume (cm3/g)
Micropore

Volume (cm3/g)
Mesopore

Volume (cm3/g)

LS-1 1915 1.079 0.532 0.547
LS-2 787 0.443 0.292 0.151
LS-3 3626 1.741 1.44 0.301
LS-4 280 0.157 0.089 0.068
LS-5 741 0.501 0.214 0.287

The quantitative results for XPS are shown in Table 3. The C, S, and O contents were cal-
culated by fitting the C-1s, S-2p, and O-1s peaks, and the representative peak fitting results
for LS-3 and LS-5 are shown in Figure 3a–f. As observed in the table, LS-4 has the highest
amount of sulfur content (12.6 at.%), followed by LS-5 (8.9 at.%). It is quite intuitive to note
that the sulfur content is directly proportional to the addition of Na2S2O3 in the course of
synthesis; sulfur content decreases in the order of LS-4 > LS-5 > LS-2 > LS-1 > LS-3. Despite
LS-5 and LS-4 having the same Na2S2O3 contents, a higher KOH in LS-5 causes removal of
some of the sulfur contents in the course of activation. It is also interesting to note that LS-4
has about 1 at.% sulfur, which originated from the pristine lignin itself in the course of its
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industrial production. Within different types of sulfur functionalities, the largest fraction of
sulfur is associated with C-S contents in all the porous carbon samples, followed by SOx
and S=C-O. From Table 3, it is obvious that higher sulfur content also caused higher oxygen
content (except LS-3), which might have affected sulfur functionalities, resulting in lower-
ing of total carbon content. Within the oxygen-bearing functionalities, the largest group
belonged to S=O/C=O/O-H, directly correlating the oxygen contents with sulfur. LS-4,
which had the highest sulfur content, had the lowest total carbon content, only 51.3 at.%.
According to XPS, C-C sp2 is the primary carbon structure, suggesting that all the carbons
are mostly graphitic in nature. It also needs to be noted that the LS-3, LS-4, and LS-5 have
sodium that may have originated from Na2S2O3 and/or during the commercial production
of lignin.
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Figure 3. X-ray photoelectron spectroscopy (XPS) analysis; peak deconvolution results of C-1s (a),
S-2p (b), and O-1s (c) of LS-3; and C-1s (d), S-2p (e), and O-1s (f) of LS-5.
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Table 3. XPS-based quantitative functionalities C, O, and S in LS-1 to -5.

Elements (%) LS-1 LS-2 LS-3 LS-4 LS-5

C (%)

C-C sp2 77.3

87.2

69.5

79.6

73.0

80.1

39.0

51.3

58.4

69.6
C-C sp3 9.0 8.8 6.4 9.5 9.5

C-O, C-S 0.9 1.2 0.7 2.2 1.3

C=O 0 0.0 0.8 0.6 0.5

S (%)

S-C 1.9

3.0

3.5

6.5

0.4

1.0

6.5

12.6

5.5

8.9S=C-O 0.2 0.5 0.1 1.1 1.0

SOx 0.9 2.5 0.6 5.0 2.4

O (%)
S=O, C-O, OH 6.0

8.8
9.8

11.5
8.6

13.5
26.5

30.9
8.9

11.2
C-O-H 2.8 1.8 4.8 4.5 2.3

The representative SEM images of LS-3 are shown in Figure 4a–d at different levels of
magnification. The carbon particles are irregular in shape, with a size around 20–100 µm. A
three-dimensional network of larger pores is observed in the SEM images with macropore
size in the range of 1.5–4 µm. Such a pore system along with meso- and micropores may
have created a hierarchical porous network in the carbon matrix, which can be highly
beneficial for faster diffusion of an adsorbate molecule in the course of diffusion.
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Figure 4. Representative Scanning Electron Imaging (SEM) results of LS-3 (a–d).

The X-ray diffraction (XRD) images are shown in Figure 5. Two ‘hump’-like and very
broad peaks around 23◦ and 43◦ are observed for all the carbons. These peaks are remnants
of graphitic ordering and are present in almost all sp2 hybridized carbons [35]. For LS-5,
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there are a few small peaks observed, which may be associated with salts of Na and/or K,
which could originate from Na2S2O3, KOH, and the impurities present in pristine lignin
itself. Relatively higher amounts of Na also support the XPS observation, and such sodium
originates from sodium thiosulfate and/or pristine lignin. We did not pursue any further
analysis to reveal details of these salts, as it is beyond the scope of this study.
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3.2. Gas Adsorption Studies

The adsorption isotherms CO2, CH4, and N2 are shown in Figure 6a–e for LS-1, -2, -3,
-4, and -5, respectively. For all the plots, the CO2 adsorption amount is higher, followed
by CH4 and N2. The largest equilibrium adsorption capacity of CO2 was demonstrated
by LS-3 (~10.89 mmol/g at 757 torr pressure), which has the highest BET surface area
and micropore volume. Such a high equilibrium uptake of CO2 is probably the highest
CO2 uptake capacity ever reported for any carbon-based material in the literature. The
adsorption of all these gases is influenced by micropore volume. As observed in this study,
there is a linear trend of adsorbed amounts of CO2, CH4, and N2, suggesting that the
micropore volume played a pivotal role in the adsorption processes. In addition, CO2
adsorption may also be influenced by the presence of sulfur functionalities. It has been
reported that mono- or dioxidized sulfur on the carbon surface causes high enthalpy of CO2
adsorption of 4–6 kcal/mol, which may be attributed to the negative charge of an oxygen
atom, possibly caused by the high positive charge on the sulfur atom [36]. Theoretical
calculations also revealed that electron overlap between CO2 and sulfur functionalities on
the carbon surface may enhance the interactions between CO2 and the carbon substrate [37].
As observed in Figure 5, there is a possible presence of Na and K salts, which might have
originated from Na2S2O3, KOH, or the pristine lignin itself. To the best of our knowledge,
these salts do not have any influence in the adsorption of CO2, CH4, or N2.

Working capacity is generally defined as the difference in the adsorbed amount within
the adsorbed pressure of 1 bar (760 torr) and desorbed pressure of 0.1 bar (76 torr). For a
suitable adsorbent, consistent working capacity with multiple cycles is required. In this
work, we have selected LS-5 as the adsorbent and CO2 adsorbate gas to study the cyclability
of working capacity, and the result is shown in Figure 7. As observed in this figure, the
working capacity maintains a constant value within 10 cycles, with a standard deviation of
no more than ±0.1.
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Figure 6. Adsorption isotherms of CO2, CH4, and N2 for LS-1 (a), LS-2 (b), LS-3 (c), LS-4 (d), and
LS-5 (e).

The gas adsorption isotherms were fitted with the Sips isotherm model equation,
given below.

q =
ambp1/n

1 + bp1/n (1)

where q is the adsorbed amount (mmol/g), p is the pressure (torr), and am, b, and n are all
Sips constants. The Sips equation is fit employing the solver function of Microsoft Excel,
and the values are given in Table S1 of the supporting information.
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Figure 7. Cyclability of working capacity of CO2 adsorption in LS-5.

Owing to the experimental difficulty in performing mixed gas adsorption, it is common
practice to calculate the selectivity from the pure-component gas adsorption isotherms.
Selectivity provides an indication of the preference of the adsorbent materials to prefer one
component over another when both species are present in the feed stream. The selectivity
(α1/2) of component 1 (preferred adsorbate) over component 2 (non-preferred adsorbate) is
defined as follows [38]:

α1/2 =
x1/y1

x2/y2
(2)

where x and y are the mole fractions of adsorbate in the adsorbed phase and bulk gas
phase, respectively. The most popular way of calculating selectivity from adsorption
isotherms is the Ideally Adsorbed Solution Theory (IAST), originally proposed by Myers
and Prausnitz [39]. The selectivity values for CO2/N2, CO2/CH4, and CH4/N2 are shown
in Figure 8a–c, respectively. From Figure 8a, it is observed that LS-2 and LS-4 have the
highest selectivity for CO2/N2 (about 180–120) at the lowest pressure, but it decreases
significantly at the higher pressure. At the higher pressure, the highest selectivity was
demonstrated by LS-3, which is about 80-60. The lowest selectivity was demonstrated by
LS-1. For the selectivity of CO2/CH4 (Figure 8b), the highest selectivity was demonstrated
by LS-4 (20-11), followed by LS-3, LS-2, LS-1, and LS-5. For CH4/N2, the highest selectivity
was demonstrated by LS-2 and LS-5 (Figure 8c), which was about 80–140 in the lower
pressure range and 23-9 in the lower pressure range. The selectivity of CO2/N2 is probably
one of the highest among other S-doped porous carbons reported in the literature; only
the sulfur-doped mesoporous carbon synthesized from resorcinol-formaldehyde in our
previous work [22] demonstrated slightly higher selectivity of 190 compared to that of
LS-3 and LS-4. For CO2/CH4, the selectivity values lie within 3.3–15.7 in the literature [40].
The selectivity of CO2/CH4 for LS-4 (21-11) is higher than that reported in the literature.
The selectivity of CH4/N2 was reported to be as high as 14 in the literature; LS-2 and
LS-5 demonstrated a much higher selectivity than this value. It is also important to note
that the high equilibrium uptake capacity of a pure preferred component does not always
confirm its high selectivity over a non-preferred component; the selectivity also depends
on the shape of the pure-component isotherms of both the preferred and non-preferred
component. As an example, LS-5 demonstrated very high equilibrium uptake capacity for
CO2 and CH4; however, it represents the highest selectivity owing to the linear nature of
the isotherms.
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4. Conclusions

In this work, we successfully synthesized sulfur-doped nanoporous carbon with ultra-
high surface area from lignin by one-step carbonization with the help sodium thiosulfate
as a sulfurizing agent and potassium hydroxide as an activating agent. The peak deconvo-
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lution results of XPS confirmed that the nanoporous carbons possess the sulfur contents
of 1 to 12.6 at.%. The porosity analysis revealed that the BET specific surface areas of
the carbons are in the range of 741–3626 m2/g. The surface area of 3626 m2/g is one of
the highest for carbon-based materials reported in literature. Pure-component adsorption
isotherms of CO2, CH4, and N2 were measured on all the porous carbons at 298 K, with
pressure up to 760 torr. The carbon with the highest BET surface area demonstrated the
highest CO2 uptake of more than 10.89 mmol/g, which is one of the highest for porous
carbon-based materials reported in literature. The IAST method was applied to calculate
the selectivity of CO2/N2, CO2/CH4, and CH4/N2 from the pure-component isotherm
data, and the results demonstrated that these materials can potentially be used for gas
separation purposes.
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